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Abstract

This paper describes our approach for six clas-
sification tasks (Tasks 1a, 3a, 3b, 4 and 5) and
one span detection task (Task 1b) from the So-
cial Media Mining for Health (SMM4H) 2021
shared tasks. We developed two separate sys-
tems for classification and span detection, both
based on pre-trained Transformer-based mod-
els. In addition, we applied oversampling and
classifier ensembling in the classification tasks.
The results of our submissions are over the
median scores in all tasks except for Task 1a.
Furthermore, our model achieved first place in
Task 4 and obtained a 7% higher F1-score than
the median in Task 1b.

1 Introduction

Social media platforms such as Twitter have been
widely used to share experiences and health in-
formation such as adverse drug effects (ADEs),
thus attracting an increasing number of researchers
to conduct health-related research using this data.
However, because social media data consists of
user-generated content that is noisy and written
in informal language, health language processing
with social media data is still challenging. To pro-
mote the use of social media for health information
extraction and analysis, the Health Language Pro-
cessing Lab of the University of Pennsylvania orga-
nized Social Media Mining for Health Applications
(SMM4H) shared tasks. This year, the SMM4H
shared tasks included 8 subtasks (Magge et al.,
2021). Our team, the Sarker Lab at Emory Uni-
versity, participated in six classification tasks (i.e.,
Task 1a, 3a, 3b, 4, and 5) and one span detection
task (i.e., Task 1b) of the SMM4H 2021 shared
tasks. In recent years, Transformer-based models
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), whose advantage is modeling of
long-range context semantics, revolutionised the
field of NLP and achieved state-of-the-art results
in different NLP tasks. Encouraged by those suc-

cesses, we developed separate systems for classifi-
cation and span detection both based on pre-trained
Transformer-based models. We experimented with
different Transformer-based model variants, and
the model that achieved the best result on the val-
idation set was selected as the final system. In
addition, we performed undersampling and over-
sampling to address the problem of data imbalance
and applied an ensemble technique in the classifi-
cation tasks. The performances of our submissions
are above the median F1-scores in all tasks except
for Task 1a. Furthermore, our model achieved first
place in Task 4 and obtained a 7% higher F1-score
than the median in Task 1b.

2 Classification Tasks

2.1 Problem Definition and Datasets
We participated in six classification tasks including
Task 1a: Classification of adverse effect mentions
in English tweets; Task 3a and 3b: Classification
of change in medication regimen in tweets and
drug reviews from WebMD.com; Task 4: Classifi-
cation of tweets self-reporting adverse pregnancy
outcomes; Task 5: Classification of tweets self-
reporting potential cases of COVID-19; and Task
6: Classification of COVID19 tweets containing
symptoms. Further details about the data can be
found in Magge et al. (2021). Among the six classi-
fication tasks, Task 6 was three-way classification
and used micro-averaged F1-score as the evalua-
tion metric, while the remaining tasks were binary
classification and used the F1-score for the positive
class for evaluation. For all tasks, we split the train-
ing data into a training set (TRN) and a validation
set (TRN_VAL) with a 90/10 ratio, and evaluated
the model on the validation set (VAL) released by
the organizers.

2.2 Method
We used a uniform framework for all classification
tasks, which consists of a Transformer-based en-
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Task Task 1a Task 3a Task 3b Task 4 Task 5 Task 6 Task 1ao Task 3ao Task 5o

BT 64.5 59.6 88.4 89.3 71.6 98.4 67.2 60.4 71.9
CL 62.4 55.3 87.0 83.3 67.2 98.0 63.6 54.2 66.4
RBB 71.9 57.6 89.0 89.4 74.9 98.2 75.4 60.3 75.8
RBL 68.4 61.4 88.8 92.0 76.5 98.6 78.6 62.4 76.8
RBB+BT 66.7 62.5 89.1 91.2 79.2 98.6 73.9 64.7 77.0
RBB+RBL 69.1 66.7 89.4 92.7 80.3 98.8 75.2 65.6 79.2
RBB+CL 66.7 59.1 89.1 88.2 75.4 98.4 69.6 62.4 74.7
BT+RBL 68.5 65.7 89.5 92.9 78.7 99.0 76.5 66.9 78.3
BT+CL 66.7 59.4 88.7 87.4 72.8 98.4 67.9 61.7 74.1
RBL+CL 65.4 60.0 89.3 90.6 74.6 98.6 73.7 63.2 74.4
RBB+BT+RBL 67.3 64.9 89.4 92.5 80.8 98.8 74.3 66.4 79.1
RBB+BT+CL 67.3 61.5 89.0 89.7 74.8 98.8 67.9 63.8 76.7
RBB+RBL+CL 68.5 61.4 89.7 91.4 76.7 98.6 73.7 66.1 77.5
BT+RBL+CL 66.7 61.2 89.5 91.4 76.4 99.0 71.6 65.3 77.2
BT+CL+RBB+RBL 66.7 61.9 89.8 91.8 78.2 98.6 75.0 65.6 79.1

Table 1: F1-scores of individual models and ensemble models on the validation (VAL) sets, where Task*o de-
notes that the models are trained on the oversampled training (TRN) sets, and ALL denotes the ensemble of four
individual models. The model that performed best on each task is highlighted in boldface.

coder, a pooling layer, a linear layer, and an output
layer with Softmax activation. For each instance,
the encoder converts each token into an embedding
vector, and the pooling layer generates a document
embedding by averaging the token embeddings.
The document embedding is then fed into the linear
layer and the output layer. The output is a proba-
bility vector with values between 0 and 1, which is
used to compute a logistic loss during the training
phase, and the class with the highest probability is
chosen during the inference phase.

Encoder: Encouraged by the success of pre-
trained Transformer-based language models, we
experimented on four Transformer-based models
pre-trained on different corpora–BERTweet (BT)
(Nguyen et al., 2020) trained on English tweets,
Bio_Clinical BERT (CL) (Alsentzer et al., 2019) on
biomedical research papers and clinical notes, and
RoBERTaBase (RBB) and RoBERTaLarge (RBL)
(Liu et al., 2019) on generic text such as English
Wikipedia. We selected these models in order to
investigate how the model size and the domain of
pre-training data can benefit the performance on
health-related tasks with social media data.

Preprocessing: To reduce the noise of
tweets, we used the open source tool
preprocess-twitter for data prepro-
cessing.1 The preprocessing includes lowercasing,
normalization of numbers, usernames, urls,
hashtags and text smileys, and adding extra marks
for capital words, hashtags and repeated letters.

1https://nlp.stanford.edu/projects/
glove/preprocess-twitter.rb

Oversampling: As described in Magge et al.
(2021), the class distributions of Task 1a, Task 3a
and Task 5 are imbalanced. To address the problem,
we oversampled the minority class in the training
set by picking samples at random with replacement
using a Python toolkit called imbalanced-learn.
The script is available on Github.2 After oversam-
pling, the new training sets included 28,942, 9644
and 9786 instances for Task 1a, Task 3a and Task
5, respectively.

Ensemble Modeling: In an attempt to improve
performance over individual classifiers, we applied
an ensemble technique to combine the results of
different models. We averaged the outputs (i.e., the
probability vectors) of each model and selected the
class with the highest value as the inference result.

2.3 Experiments and Results

We trained each model for 10 epochs, and the
checkpoints that achieved the best performances
on TRN_VAL were selected for evaluation. We ex-
perimented with two learning rates ∈ {2e−5, 3e−5}
and three different random initializations, meaning
that there were six checkpoints in total for each
model.3 For each type of model, the median of
the six checkpoints was used when we reported
the results of individual models (i.e., BT, CL, RBB,
and RBL). For each ensemble model, all of the
six checkpoints of the same type of model were

2https://gist.github.com/yguo0102/
c72b5c0c353bea31bd7d72a15f6a0899

3Other hyper-parameters are fixed for all models. The
batch size is 32, the weight decay is 0.1, and the warm-up
ratio is 0.06.

https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
https://gist.github.com/yguo0102/c72b5c0c353bea31bd7d72a15f6a0899
https://gist.github.com/yguo0102/c72b5c0c353bea31bd7d72a15f6a0899
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used. Therefore, an ensemble model that combines
k types of models consists of 6× k checkpoints.

Task Precision Recall F1-Score

O
ur

s

Task 1a 52.1 32.7 40.0
Task 3a 72.1 63.5 68.0
Task 3b 84.2 88.2 86.0
Task 4 93.9 92.2 93.0
Task 5 73.2 77.3 75.0
Task 6 94.5 94.5 94.0

M
ed

ia
n Task 1a 50.5 40.9 44.0

Task 4 91.8 92.3 92.5
Task 5 73.9 74.4 74.5
Task 6 93.2 93.2 93.0

Table 2: Our results and the median results on the eval-
uation sets of the classification tasks. The system that
ranked first during the competition is highlighted in
boldface.

Table 1 shows the results of individual models
and ensemble models trained on the oversampled
training sets. For each task, we submitted the
model that performed best on the validation set,
and the results of the test sets are shown in Table
2. The performances of our systems were above
the median for each task except for Task 1a, and
achieved first place on Task 4. For Task 3a and
Task 3b, our system achieved 18% higher F1-score
on Task 3a and comparable result on Task 3b com-
pared to the baseline model (Weissenbacher et al.,
2020).4

2.4 Analysis

In general, for individual models, RoBERTaBase

and RoBERTaLarge performed better or compa-
rable to BERTweet, and Bio_Clinical BERT un-
derperformed on all tasks compared to the other
models, which is consistent with our previous find-
ings (Guo et al., 2020). Ensemble models outper-
formed individual models on all tasks except for
Task 1a. We observed that for Task 1a, all mod-
els achieved high F1-scores (around 97%) on the
TRN_VAL set after training for 1 epoch, but the
performance dropped by 25%-35% on the VAL set.
Similarly, our F1-score on the testing set of Task
1a is 40%, which is lower than that on the VAL
set. Since the same trend is not present for other
tasks, we hypothesized that the types of ADE in
the training set and validation set of Task 1a may
have low overlap.

To test our hypothesis, we counted the number
of distinct ADE labels and normalized ADE labels

4Because we were the only participant for Task 3a and 3b,
there is no median score available.

using the data of Task 1b and Task 1c, shown in
Table 3. Interestingly, the overlap percentage of
normalized ADE labels is as high as 85.5%, and
that of unnormalized ADE labels is much lower.
This suggests that most types of ADE in the valida-
tion set are included in the training set but the ADE
descriptions can vary widely. This result indicates
that the gap between the performance on the train-
ing set and validation set may be attributed to the
limited generalizability of pre-trained Transformer-
based models to capture the semantic similarities
between different expressions of the same ADE.

Type Training Validation Overlap/percent
ADE 1127 85 35/41.2%
ADEn 476 69 59/85.5%

Table 3: The number of the distinct ADE labels in the
training set and validation set of Task 1, where ADEn

denotes the normalized ADE labels. The overlap per-
centage is computed based on the validation set.

3 Task 1b - ADE Span Detection

3.1 Problem Definition and Dataset
Task 1b aims at distinguishing adverse effect men-
tions from Non-ADE expressions and identifying
the text spans of these adverse effect mentions. A
tweet can have more than one ADE mention, and an
ADE mention can be a sequence of words as well.
The training set consists of 17,385 tweets annotated
with 1713 ADE mentions for 1235 tweets, and the
validation set consists of 915 tweets annotated with
87 ADE mentions for 65 tweets.

3.2 Method
We implemented several Transformer-based mod-
els including BioBERT (Lee et al., 2020), SciB-
ERT (Beltagy et al., 2019), BERTweet (Nguyen
et al., 2020) and two models of BERT (Devlin
et al., 2019), and compared their performances.5

BioBERT is specifically trained for biomedical text
and widely used for the biomedical text-mining for
NER. SciBERT is trained on more general domain
data such as computer science text. BERTweet is
a pre-trained language model for English Tweets.
In addition, since the dataset is very imbalanced,
we also performed undersampling to change the
composition of the training set. Specifically, we
randomly divided the training data with negative la-
bels into 10 non-overlapping subsets, each of which

5For each of these 5 methods, we used the “cased” and
“base” models if it is not specified.
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has a slightly larger size (2000 tweets) compared
to the positive data (the same 1235 positive tweets),
and then 5 subsets were randomly selected for our
experiment.

3.3 Experiments and Results
In our experiments, since the tweets are relatively
short, we set the max sequence length to 128, batch
size to 128 for BERTLarge and 256 for other mod-
els. The learning rate was set to 5e−5, and the epoch
was set to 20 for all 5 models. The final submis-
sions were evaluated in terms of precision, recall,
and F1-score by the official evaluation scripts pro-
vided by the organizers, for each ADE extracted
where the spans overlap either entirely or partially.
However, for the convenience of comparing the
performance of the models during the experiments,
we used Seqeval,6 which is a Python framework for
sequence labeling evaluation, to compare all meth-
ods on the validation set also by precision, recall,
and F1-score at the token level. Table 4 shows the
performances for these 5 models.

Model Precision Recall F1-score
BioBERT 38.0 42.2 40.0
BERTweet 36.6 41.3 38.8
SciBERT 44.3 42.2 43.2
BERTBase 48.1 39.1 43.1
BERTLarge 47.6 46.9 47.3

Table 4: The performances of models on validation set.
The highest scores of precision, recall, and F1-score
have been highlighted in the table respectively.

From Table 4, it can be observed that BERTLarge

outperforms all other models with the highest recall
and F1-score. As a result, we chose BERTLarge as
the model used in the final submission. Finally, the
result we received from the organizers was similar
to the performance on the validation set, which
is above the median. Although our recall is 17%
worse than the median recall, our precision is 68.1
(+19%) and our F1-score is 49.0 which is 7% higher
than the median F1-score.

3.4 Analysis
3.4.1 Comparison Between Models
We conducted the research on the learning effi-
ciency and the performance over 20 epochs of each
model, evaluating each time on the validation set.
The results of precision, recall, and F1-score for
each epoch are shown in Figure 1.

6https://github.com/chakki-works/
seqeval

These three plots show that the learning
efficiency of BERTLarge is very fast. When the
epoch is 2, precision, recall and F1-score for this
model reach about 35%, while the scores of other
models are only around 15% at this stage. In
addition, as shown in the plots, the performance of
BERTLarge is consistently better than other models
during training, which may benefit from its larger
pre-training dataset. However, it is surprising to
find that, unlike the curves of BioBERT, SciBERT
and BERTweet, the curves of BERTBase model are
relatively unstable, with some fluctuations.

3.4.2 Undersampling Experiments
Since BERTLarge was the best model in our ex-
periments, we separately finetuned BERTLarge for
10 epochs on each of the 5 undersampled datasets,
and compared the average scores for these 5 sub-
sets with the performance scores obtained without
undersampling. These results were also evaluated
on the validation set at the token level. The results
for undersampling are shown in Table 5. The aver-
aged F1-score for all the undersampled subsets is
significantly lower than the best performance. Al-
though we used all the positive data, it is possible
that the drastic reduction in the amount of nega-
tive data and the total training data has had a very
large impact on the results. Furthermore, randomly
sampling the negative examples changes the prior
distribution of the probability for the classifier. Due
to time constraints associated with the shared task
deadline, we were unable to try more advanced
heuristics to select the negative examples for the
undersampling, which is worth further exploring in
future work.

Model Precision Recall F1-score
Subset-data1 22.1 62.5 32.7
Subset-data2 24.7 60.9 35.1
Subset-data3 22.7 63.6 33.3
Subset-data4 25.4 68.8 37.1
Subset-data5 23.0 64.1 33.9
AVG of Subset-data 23.6 64.0 34.4
With all training data 47.6 46.9 47.3

Table 5: Results when training on 5 undersampled
datasets. Subset-data1 to Subset-data5 represent the 5
subsets that were randomly selected for experiment.

3.4.3 Performance Analysis
In order to conduct the research on the results we
received from the organizers, we compared the
annotated data for validation set provided by the or-

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
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Figure 1: F1-score, Precision and Recall for different models applied to the span detection task. The x-axis
represents epoch.

ganizers with the results predicted by BERTLarge.
This analysis revealed two primary causes why our
model did not receive higher scores. Firstly, the
number of true positives is relatively small. 87 an-
notations with label “ADE” were given in the val-
idation set, but after the prediction, only 60 ADE
mentions in the validation set (including true posi-
tive cases and false positive cases) were obtained.
In these 60 ADE mentions, 23 cases which we
only partially correctly predicted are also included,
which means that many true ADEs were not de-
tected (false negatives). Secondly, most of the ADE
mentions predicted by our models, which are not
annotated with label “ADE” in the validation set,
did not appear for no reason, but actually have been
annotated with label “ADE” in the training set. For
example, “nosleep”, which does not seem to have
any ambiguity, is marked as ADE in one tweet, but
not in another tweet, which might be due to the
differences in the contexts in which they are men-
tioned. For example, in some tweets, "nosleep"
appears in the tag "teamnosleep"; although it was
predicted as ADE mention after being tokenized, it
was not actually labeled as ADE by annotators.

4 Conclusion

In this work, we developed two systems based on
pre-trained Transformer-based models for multi-
ple health-related classification tasks and one span
detection task for the SMM4H 2021 shared tasks.
We experimented with different Transformer-based
model variants as well as sampling strategies and
applied an ensemble technique in the classifica-
tion tasks. The results of our submissions are over
the median F1-scores in all tasks except for Task
1a. Furthermore, our model achieved first place
in Task 4 and obtained a 7% higher F1-score than

the median in Task 1b. For future work, we will
investigate methods to improve the generalizability
of pre-trained Transformer-based models to deal
with various health-related expressions in social
media data.
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