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Abstract

This paper describes the model built for the
SIGTYP 2021 Shared Task aimed at iden-
tifying 18 typologically different languages
from speech recordings. Mel-frequency cep-
stral coefficients derived from audio files are
transformed into spectrograms, which are then
fed into a ResNet-50-based CNN architecture.
The final model achieved validation and test
accuracies of 0.73 and 0.53, respectively.

1 Introduction

In the SIGTYP 2021 Shared Task, participants are
asked to predict language IDs from speech record-
ings. The novelty of this Shared Task consists in (i)
the variety of the languages involved, which com-
prises very different language genera/families (see
Table 1), and (ii) the use of speech form.

Indeed, many linguistics-related Shared Tasks
seem to focus on a restricted number of related
languages (often Indo-European ones) and model
their spellings.1 In particular, this latter feature
poses a number of theoretical and practical chal-
lenges, especially when some language comparison
is involved, as in typological studies.

Writing systems, as is known, can highly diverge
in what they represent, even when they are segmen-
tal scripts (not to mention that a language can be
encoded in different writing systems, like, for ex-
ample, Kabyle). If we consider the languages in the
Shared Task dataset, it would be very hard to find
a meaningful way to compare, for example, the Ja-
vanese writing system with the Portuguese one: the
former could be written in the scriptio continua of
its traditional script,2 while the latter’s alphabetical
script distinguishes space-delimited tokens (mostly
corresponding to morphosyntactic words). Interest-
ingly enough, it is no less challenging to compare

1Interestingly, though, Gorman et al. (2020) concerns map-
ping of graphemes onto phonemes.

2Nowadays, however, Javanese is more commonly written
in a Latin script.

word-based scripts, in that there is no single def-
inition of graphemic (let alone morphosyntactic)
word across languages, and even within the same
writing system, inconsistencies are not uncommon.

The use of language recordings instead of writ-
ten documents should therefore ensure a more di-
rect and consistent encoding of languages. Record-
ings also allow us to capture intonation structure,
which is usually absent (or represented in a minimal
form) in writing systems, despite its crucial role in
conveying information (see Lambrecht, 1996 and,
more in general, information structure studies).

On the downside, speech recordings are sensi-
tive to idiolect variances, which a statistical model
should however be able to properly address by not
overfitting the training data. This is even more rel-
evant for the SIGTYP 2021 Shared Task, in that
its goal is to train a model being able to generalize
to recordings of not only different people, but also
very different genres/content.

In the following sections, I present the model I
built to tackle the multiclass classification task at
hand. In Section 2, the training and validation sets
are described. Section 3 details the training phase
of a number of models, including the ResNet-50-
based CNN one, which I chose to participate in the
SIGTYP 2021 Shared Task. Section 4 summarizes
the results of the ResNet-50-based CNN model,
while Section 5 contains some concluding remarks.

2 The training and validation sets

The training and validation sets are released by the
organizers of the Shared Task as npy files contain-
ing mel-frequency cepstral coefficients (MFCCs)
computed from audio files. The training set con-
sists of 72,000 readings of the New Testament
(each of them usually corresponding to a verse),
while the validation set consists of 8,000 instances
from different sources.

18 languages are included in the training set
(4,000 instances per language), while only 16 lan-
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Language Genus Family ID
Basque Basque Basque eus
Eastern Bru Katuic Austro-

Asiatic
bru

Hakha Chin Gur Niger-Congo cnh
English Germanic Indo-

European
eng

Hindi Indic Indo-
European

hin

Iban Malayo-
Sumbawan

Austronesian iba

Indonesian Malayo-
Sumbawan

Austronesian ind

Javanese Javanese Austronesian jav
Kabyle Berber Afro-Asiatic kab
Kannada Southern Dra-

vidian
Dravidian kan

Marathi Indic Indo-
European

mar

Portuguese Romance Indo-
European

por

Vlax Romani Romani Indo-
European

rmy

Russian Slavic Indo-
European

rus

Sundanese Malayo-
Sumbawan

Austronesian sun

Tamil Southern Dra-
vidian

Dravidian tam

Telegu South-Central Dravidian tel
Thai Kam-Tai Tai-Kadai tha

Table 1: Languages in the training dataset.

guages are in the validation set (500 instances per
language, with the languages Eastern Bru and Vlax
Romani missing). Each instance is encoded as a
2-dimensional tensor, whose shape is (39, x), with
x ∈ {x : x ∈ Z ∧ 300 < x < 2729}.

MFCCs are often used as features in ML. Ba-
sically, they allow leverage of sound frequencies,
which can offer a richer representation than that
of a pure sound waveform (see Xu et al., 2004 for
more details and their computation).

3 Method

3.1 A baseline model

A baseline can be calculated by feeding a model
directly with MFFCs. The training and valida-
tion data contain tensors whose second dimen-
sion length varies. A solution for that can be slic-
ing/padding them as to get shape (39, 501), since
about 80% of the training instances have a shape of
(39, x), with x ∈ {x : x ∈ Z ∧ 300 < x < 502}.

A model is trained with three RNN layers and
two densely connected layers, the last of which
outputs the final probabilities for each label (see
Appendix A). The RMSProp optimizer with learn-
ing rate 0.00001 is chosen. The first dimension of

each input tensor can be interpreted as representing
time steps or a sequence. Each time step (except
the first one) receives the output of the previous
time step:

ht = tanh(Wxt + Uht−1 + b), (1)

yt = tanh(V ht + c). (2)

At each time step, the relevant input vector xt is
multiplied by its weights and then added to the
product of the (hidden) vector of the previous time
step and its weights (b and c are the bias vectors,
tanh the activation function, and yt the output vec-
tor).

The RNN model performs poorly (see Figure 1),
since it cannot generalize at all. This is due not
only to the model architecture, but also to the data
mismatch between the sets, the validation data con-
taining very different kinds of speech recordings. I
therefore added part of the validation data (60%)
to the training set and trained a new model with
the same RNN architecture and hyperparameters.
Figure 2 shows that this model returns very sim-
ilar results: it also overfits the training data, the
validation accuracy invariably remaining around
0.1.

Figure 1: Performance of the baseline model.

3.2 A CNN approach
MFFCs can be used to create spectrograms, which
allow transfer of a sound waveform into the image
domain. Spectrograms return a visual representa-
tion of the unfolding of a sound wave through time,
and have proved to provide promising results in a
variety of ML tasks (see, for example, Chourasia
et al., 2021 and Reddy et al., 2021).



138

Figure 2: Performance of the baseline model with train-
ing set augmented with some validation data.

Using the default arguments of the function
specshow (among which are sr = 22050, i.e.,
sample rate, and hop_length = 512) within
the Python package librosa, the MFFCs are con-
verted into images of shape (640, 480) (Figure 3
shows an example of a spectrogram).

Figure 3: Spectrogram of a Hakha Chin instance.

The conversion allows one to take advantage of
CNN architectures. In order to deal with the high
variance of the model, 60% of the validation set is
made part of the training set by stratified sampling:
300 instances of each language (i.e., 16× 300) are
randomly selected and added to the training set.

Two CNN architectures have been compared us-
ing the same dataset described above: a 3-layer
CNN3 and ResNet-50 (He et al. 2016). Despite its
moderately deep architecture (see Figure B), the
3-layer CNN model (with RMSProp optimizer and

33 refers only to the CNN layers.

learning rate 0.001) quickly overfits the training
data (Figure 4) and therefore, like the RNN model,
proves to be inadequate for the task at hand.

Figure 4: Performance of the 3-layer CNN model.

ResNet-50 is an extremely deep CNN architec-
ture, which tries to overcome the degradation prob-
lem using residual learning. An input x is added to
an output, so that a function H(x) is redefined as

H(x) = F (x) + x, (3)

which is hypothesized to make learning eas-
ier (He et al., 2016, p. 2). In Figure 5,
one residual unit of ResNet-50 is shown: the
layer conv2_block1_out is added to the
layer conv2_block2_3_bn within the layer
conv2_block2_add, as the same shape of the
two layers shows (120, 160, 256).

Figure 5: Detail of the ResNet-50 model.

There exist many ResNet architectures, such as
ResNet-34, ResNet-50, and ResNet-101, each of
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Language Precision Recall F1
Eastern Bru 0.00 0.00 0.00
Hakha Chin 0.86 0.85 0.86
English 0.68 0.34 0.46
Basque 0.77 0.94 0.85
Hindi 0.92 0.68 0.78
Iban 0.95 1.00 0.98
Indonesian 0.78 0.64 0.70
Javanese 0.41 0.80 0.54
Kabyle 0.57 0.81 0.67
Kannada 0.92 0.73 0.82
Marathi 0.85 0.99 0.92
Portuguese 0.56 0.54 0.55
Vlax Romani 0.00 0.00 0.00
Russian 0.94 0.85 0.90
Sundanese 0.15 0.06 0.09
Tamil 0.84 0.77 0.80
Telegu 0.72 0.91 0.80
Thai 0.86 0.71 0.78

Table 2: Precision, recall, and F1 scores calculated on
the validation set (ResNet-50-based model).

which is called after the number of the CNN layers
and fully connected layers it contains. ResNet-
50 has 50 of them, and according to the results
reported by Xu et al. (2004), it performed better
than ResNet-34, but worse than ResNet-101 and
ResNet-134, in an ImageNet classification task (in
reference to top-one and top-five error rates).

The ResNet-50 architecture has been employed
to fit the training data of the SIGTYP 2021 Shared
Task, without, however, transfer learning, in that
the original weights were computed on completely
different kind of data, and therefore are unlikely to
be any useful. Of course, experimenting with differ-
ent ResNet and non-ResNet architectures, as well
as with different sets of hyperparameters, would
be useful; the sizes of the architectures and the
amount of training time needed to do that, however,
made me focus only on ResNet-50, which turned
out to return good results without requiring much
optimization.

In order to accommodate the data of the SIG-
TYP 2021 Shared Task, the top layer was substi-
tuted with one allowing for the shape (480, 640, 3),
while the output layer was replaced by a densely
connected layer outputting an 18-dimensional vec-
tor, i.e., a probability score for each of the 18 lan-
guages. The Adam optimizer with learning rates
of 0.0001 (first 7 epochs) and 0.00001 (8th epoch)
was chosen.

4 Results and Discussion

The ResNet-50-based model provides good train-
ing and validation accuracy scores (0.98 and 0.73,

respectively). Importantly, both accuracy scores
grow during training, and both loss scores get
smaller and smaller. In Figure 6, the algorithm
seems to have converged. However, the final accu-
racy score (0.53) calculated on the test set released
by the organizers seems to suggest that some over-
fitting has occurred.

Figure 6: Performance of the ResNet-50-based CNN
model.

The confusion matrices (Appendix C and D), the
heatmaps (Appendix E and F), as well as the tables
containing precision, recall, and F1 scores (Table 2
and 3), show that the model performs well, with a
few exceptions. Sundanese is very often misclassi-
fied as Javanese. Appendix D reveals a more com-
plex picture: English, Portuguese, Russian, and
Thai are often also misclassified as Kabyle. Simi-
larly, the model often associates Telegu with Kan-
nada and Marathi. On the contrary, it can identify
Iban very well. These results require further future
investigation to ascertain whether these misclassifi-
cations can be ascribed to similarities between the
languages.

Notably, the rows for Eastern Bru and Vlax Ro-
mani are not available in the heatmaps (Appendix
E and F) because the languages are absent in both
the validation and test sets.

Tweaking the hyperparameters and especially
experimenting with deeper ResNet architectures
could probably lead to an improvement of the re-
sults.

5 Conclusions

In the present paper, a ResNet-50-based CNN
model has been presented, which was used to fit the
data of the SIGTYP 2021 Shared Task. Attempts
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Language Precision Recall F1
Eastern Bru 0.00 0.00 0.00
Hakha Chin 0.72 0.81 0.76
English 0.48 0.37 0.41
Basque 0.69 0.93 0.79
Hindi 0.80 0.53 0.63
Iban 0.97 0.97 0.97
Indonesian 0.46 0.27 0.34
Javanese 0.41 0.83 0.55
Kabyle 0.36 0.06 0.45
Kannada 0.55 0.57 0.56
Marathi 0.57 0.51 0.54
Portuguese 0.31 0.43 0.36
Vlax Romani 0.00 0.00 0.00
Russian 0.33 0.04 0.06
Sundanese 0.21 0.10 0.14
Tamil 0.71 0.53 0.61
Telegu 0.44 0.73 0.55
Thai 0.64 0.29 0.40

Table 3: Precision, recall, and F1 scores calculated on
the test set (ResNet-50-based model).

to tackle the task with relatively simple RNN and
CNN architectures were unsuccessful. ResNet-50,
however, proved to offer a robust architecture to
train linguistic data for language ID prediction. The
task at hand was challenging because the training
data differ considerably from the validation data,
and therefore any model needs strong ability to
generalize. The ResNet-50-based CNN model pro-
posed in this article shows good validation and test
accuracies (0.73 and 0.53, respectively). Notably,
Sudanese is very often misclassified as Javanese.
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A Architecture for the baseline model.

B Architecture for the 3-layer CNN
model.



142

C Confusion matrix for the validation
data (ResNet-50-based model).
bru cnh eng eus hin iba ind jav kab kan mar por rmy rus sun tam tel tha class error rate

bru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cnh 0 170 4 2 0 2 3 7 4 0 0 0 0 0 8 0 0 0 0.15
eng 0 17 69 6 6 2 7 11 40 0 3 20 0 3 0 2 9 5 0.66
eus 0 0 0 189 0 0 0 0 7 1 0 1 0 0 0 0 2 0 0.06
hin 1 0 2 6 135 2 1 10 6 1 7 5 6 4 7 2 5 0 0.33
iba 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0.00
ind 0 0 2 3 0 3 127 3 19 0 1 16 0 0 2 9 4 11 0.36
jav 0 0 1 0 0 0 2 160 1 0 0 0 0 0 36 0 0 0 0.20
kab 0 0 5 1 2 0 4 0 163 3 1 7 1 0 2 3 8 0 0.18
kan 0 0 0 6 0 0 2 1 2 147 3 0 0 0 0 3 36 0 0.27
mar 0 0 0 0 0 0 0 0 0 0 199 0 0 0 0 0 1 0 0.01
por 0 3 11 18 1 1 5 8 19 1 3 107 0 3 8 5 5 2 0.47
rmy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rus 0 0 1 0 0 0 4 0 2 0 0 18 0 171 0 1 0 3 0.14
sun 0 0 1 0 0 0 1 185 1 0 0 0 0 0 12 0 0 0 0.94
tam 0 1 1 5 3 0 1 0 9 2 7 9 0 0 3 154 2 3 0.23
tel 0 0 2 5 0 0 1 0 2 3 4 0 0 0 1 0 182 0 0.09
tha 1 6 3 6 0 0 5 3 11 1 6 8 0 0 3 4 0 143 0.28

D Confusion matrix for the test data
(ResNet-50-based model).
bru cnh eng eus hin iba ind jav kab kan mar por rmy rus sun tam tel tha class error rate

bru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cnh 1 404 19 0 4 0 1 11 20 3 1 10 0 2 16 1 5 2 0.19
eng 1 72 183 8 3 2 9 9 105 4 9 45 0 8 9 5 20 8 0.63
eus 0 0 1 463 0 3 2 0 10 1 9 4 0 0 0 1 5 1 0.07
hin 4 2 9 14 264 6 2 65 12 6 39 17 16 2 31 2 9 0 0.47
iba 0 0 0 2 2 483 0 3 0 4 4 2 0 0 0 0 0 0 0.03
ind 1 8 2 47 4 2 134 32 51 7 4 63 0 2 26 40 21 56 0.73
jav 0 0 0 0 10 0 8 416 1 0 0 6 1 0 52 0 6 0 0.17
kab 0 3 44 17 13 0 11 11 300 7 2 51 0 3 7 10 19 2 0.40
kan 0 0 0 9 0 0 1 0 2 283 40 1 0 3 0 6 154 1 0.43
mar 0 0 0 1 0 0 0 1 4 88 257 0 0 0 0 0 149 0 0.49
por 0 13 47 18 2 0 17 16 95 2 7 215 1 14 6 21 22 4 0.57
rmy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rus 0 3 23 48 17 2 27 0 84 36 0 225 0 18 0 4 11 2 0.96
sun 0 0 0 0 10 0 8 416 1 0 0 6 1 0 52 0 6 0 0.90
tam 0 20 4 9 3 0 21 20 46 15 27 19 1 1 21 267 20 6 0.47
tel 0 4 5 20 0 0 6 2 2 59 35 0 0 1 0 3 363 0 0.27
tha 0 30 47 13 0 0 47 18 93 1 19 37 0 1 22 17 9 146 0.71
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E Heatmap with validation set error
rates (ResNet-50-based model).
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F Heatmap with test set error rates
(ResNet-50-based model).


