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Abstract

We describe the second SIGMORPHON
shared task on unsupervised morphology: the
goal of the SIGMORPHON 2021 Shared Task
on Unsupervised Morphological Paradigm
Clustering is to cluster word types from a raw
text corpus into paradigms. To this end, we re-
lease corpora for 5 development and 9 test lan-
guages, as well as gold partial paradigms for
evaluation. We receive 14 submissions from 4
teams that follow different strategies, and the
best performing system is based on adaptor
grammars. Results vary significantly across
languages. However, all systems are outper-
formed by a supervised lemmatizer, implying
that there is still room for improvement.

1 Introduction

In recent years, most research in the area of compu-
tational morphology has focused on the application
of supervised machine learning methods to word
inflection: generating the inflected forms of a word,
often a lemma, in order to express certain grammat-
ical properties. For example, a supervised inflec-
tion system for Spanish might be provided with a
lemma disfrutar (English: to enjoy) and morpho-
logical features such as indicative, present tense &
1st person singular, and generate the corresponding
inflected form disfruto as output.

However, a supervised machine learning setup
is quite different from a human first language (L1)
acquisition setting. Young children must learn to
segment a continuous speech signal into discrete
words and perform unsupervised classification, de-
coding, and eventually, inference with incomplete
feedback on this noisy input. The task of unsu-
pervised paradigm clustering aims to replicate one
of the steps in this process—namely, the grouping
of word forms belonging to the same lexeme into
inflectional paradigms. In this unsupervised task, a
system does not know about lemmas. Furthermore,
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Figure 1: Unsupervised morphological paradigm clus-
tering consists of clustering word forms from raw text
into paradigms.

neither does it know (a) the features for which a
lemma typically inflects, nor (b) the number of dis-
tinct inflected forms which constitute the paradigm.

A successful unsupervised paradigm cluster-
ing system leverages common patterns in the lan-
guage’s inflectional morphology while simultane-
ously ignoring regular circumstantial similarities
along with derivational patterns. For example, an
accurate unsupervised system must recognize that
disfrutamos (English: we enjoy) and disfruta (En-
glish: he/she/it enjoys) are inflected variants of the
same paradigm, but that the orthographically sim-
ilar disparamos (English: we shoot), belongs to a
separate paradigm. Likewise, a successful system
for English will recognize that walk and walked
belong to the same verbal paradigm but walker
is a derived form belonging to a distinct nominal
paradigm. Such fine-grained distinctions are diffi-
cult to learn in an unsupervised manner.

This paper describes the SIGMORPHON 2021
Shared Task on Unsupervised Morphological
Paradigm Clustering. Participants are asked to sub-
mit systems which cluster words from the Bible
into inflectional paradigms.1 Participants are not
allowed to use any external resources. Four teams
submit at least one system for the shared task and

1Bible translations for five development and nine test lan-
guages were obtained from the Johns Hopkins University
Bible Corpus introduced by McCarthy et al. (2020b).
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all teams also submit a system description paper.
The shared task systems can be grouped into

two broad categories: similarity-based systems
experiment with different combinations of ortho-
graphic and embedding-based similarity metrics for
word forms combined with clustering methods like
k-means or agglomerative clustering. Grammar-
based methods instead learn grammars or rules
from the data and either apply these to clustering
directly, or first segment words into stems and af-
fixes and then cluster forms which share a stem into
paradigms. Our official baseline, described in Sec-
tion 2.3, is based on grouping together word forms
sharing a common substring of length ≥ k, where
k is a hyperparameter. Grammar-based systems ob-
tain higher average F1 scores (see Section 2.2 for
details on evaluation) across the nine test languages
than the baseline. The Edinburgh system has the
best overall performance: it outperforms the base-
line by 34.61% F1 and the second best system by
1.84% F1.

The rest of the paper is organized as follows:
Section 2 describes the task of unsupervised mor-
phological paradigm clustering in detail, including
the official baseline and all provided datasets. Sec-
tion 3 gives an overview of the participating sys-
tems. Section 4 describes the official results, and
5 presents an analysis. Finally, Section 6 contains
a discussion of where the task can move in future
iterations and concludes the paper.

2 Task Description

Unsupervised morphological paradigm clustering
consists of, given a raw text corpus, grouping words
from that corpus into their paradigms without any
additional information. Recent work in unsuper-
vised morphology has attempted to induce full
paradigms from corpora with only a subset of all
types. Kann et al. (2020) and Erdmann et al. (2020)
explore initial approaches to this task, which is
called unsupervised morphological paradigm com-
pletion, but find it to be challenging. Building
upon the SIGMORPHON 2020 Shared Task on Un-
supervised Morphological Paradigm Completion
(Kann et al., 2020), our shared task is focused on a
subset of the overall problem: sorting words into
paradigms. This can be seen as an initial step to
paradigm completion, as unobserved types do not
need to be induced, and the inflectional categories
of paradigm slots do not need to be considered.

2.1 Data
Languages The SIGMORPHON 2021 Shared
Task on Unsupervised Morphological Paradigm
Clustering features 5 development languages: Mal-
tese, Persian, Portuguese, Russian, and Swedish.
The final evaluation is done on 9 test languages:
Basque, Bulgarian, English, Finnish, German, Kan-
nada, Navajo, Spanish, and Turkish.

Our languages span 4 writing systems, and repre-
sent fusional, agglutinative, templatic, and polysyn-
thetic morphologies. The languages in the develop-
ment set are mostly suffixing, except for Maltese,
which is a templatic language. And while most of
the test languages are also predominantly suffix-
ing, Navajo employs prefixes and Basque uses both
prefixes and suffixes.

Text Corpora We provide corpora from the
Johns Hopkins University Bible Corpus (JHUBC)
(McCarthy et al., 2020b) for all development and
test languages. This is the only resource that sys-
tems are allowed to use.

Gold Partial Paradigms Along with the Bibles,
we also release a set of gold partial paradigms for
the development languages to be used for system
development. Gold data sets are also compiled for
the test languages, but these test sets are withheld
until the completion of the shared task.

In order to produce gold partial paradigms, we
first take the set of all paradigms Π for each lan-
guage from UniMorph (McCarthy et al., 2020a).
We then obtain gold partial paradigms ΠĜ =
Π

⋂
Σ, where Σ is the set of types attested in the

Bible corpus. Finally, we sample up to 1000 of the
resulting gold partial paradigms for each language,
resulting in the set ΠG according to the following
steps:

1. Group gold paradigms in ΠĜ by size, result-
ing in the set G, where gk ∈ G is the group of
paradigms with k forms in it.

2. Continually loop over all gk ∈ G and ran-
domly sample one paradigm from gk until we
have 1000 paradigms.

Because not every token in the Bible corpora is in
UniMorph, we can only evaluate on the subset of
paradigms that exist in the UniMorph database. In
practice, this means that for several languages, we
are not able to sample 1000 paradigms, cf. Tables
1 and 2. Notably, for Basque, we can only provide
12 paradigms.
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Maltese Persian Portuguese Russian Swedish
# Lines 7761 7931 31167 31102 31168

# Tokens 193257 227584 828861 727630 871707
# Types 16017 11877 31446 46202 25913

TTR .083 .052 .038 .063 .03
# Paradigms 76 64 1000 1000 1000

# Forms in paradigms 572 446 11430 6216 3596
Largest paradigm size 14 20 47 17 9

Table 1: Statistics for the development Bible corpora and the dev gold partial paradigms. TTR is the type-token
ratio in the corpus. The statistics for the paradigms reflect only those words in our partial paradigms, not the full
paradigms from Unimorph.

English Navajo Spanish Finnish Bulgarian Basque Kannada German Turkish
# Lines 7728 5058 7337 31087 31101 7958 7863 31102 30182

# Tokens 236465 104631 251581 685699 801657 195459 193213 826119 616418
# Types 7144 18799 9755 54635 37048 18376 28561 22584 59458

TTR .03 .18 .039 .08 .046 .094 .148 .027 .096
# Paradigms 1000 88 990 1000 1000 12 92 1000 1000

# Forms in paradigms 2475 214 5154 8509 5086 63 933 3628 9204
Largest paradigm size 7 13 34 31 27 25 44 15 49

Table 2: Statistics for the test Bible corpora and the test gold partial paradigms.
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Figure 2: An example matching of predicted paradigms
in blue, and a gold paradigm in green. Words in red do
not exist in the gold set, and thus cannot be evaluated.

2.2 Evaluation

As our task is entirely unsupervised, evaluation
is not straightforward: as in Kann et al. (2020),
our evaluation requires a mapping from predicted
paradigms to gold paradigms. Because our set of
gold partial paradigms does not cover all words in
the corpus, in practice we only evaluate against a
subset of the clusters predicted by systems.

For these reasons, we want an evaluation that
assesses the best matching paradigms, ignoring pre-
dicted forms that do not occur in the gold set, but
still punishing for spurious predictions that are in
the gold set. For example, Figure 2 shows two can-
didate matches for a gold partial paradigm. Each

one contains a word that does not exist in the set of
gold paradigms, and thus cannot be judged – these
words are ignored and do not affect evaluation. In
this example, the predicted P1 is a better match,
resulting in a perfect F1 score. However, our eval-
uation punishes systems for predicting a second
paradigm, P2, with words from G1, reducing the
overall precision score of this submission.

Building upon BMAcc (Jin et al., 2020), we
use best-match F1 score for evaluation. We define
a paradigm as a set of word forms f ∈ π. Du-
plicate forms within π (syncretism) are discarded.
Given a set of gold partial paradigms πg ∈ ΠG, a
set of predicted paradigms πp ∈ ΠP , a gold vo-
cabulary Σg =

⋃
πg, and a predicted vocabulary

Σp =
⋃
πp, it works according to the following

steps:

1. Redefine each predicted paradigm, remov-
ing the words that we cannot evaluate πp

′
=

πp
⋂

Σg, to form a set of pruned paradigms
Π′
P .

2. Build a complete Bipartite graph over Π′
P and

ΠG, where the edge weight between πgi and
πp

′

j is the number of true positives |πgi
⋂
πp

′

j |.

3. Compute the maximum-weight full matching
using Karp (1980), in order to find the optimal
alignment between Π′

P and ΠG

4. Assign all predicted words Σp′ and all gold
words Σg a label corresponding to the gold
paradigm, according to the matching found in
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3. Any unmatched wp
′

i ∈ Σp′ is assigned a
label corresponding to a spurious paradigm.

5. Compute the F1 score between the sets of
labeled words in Σp′ and Σg

2.3 Baseline System

We provide a straightforward baseline that con-
structs paradigms based on substring overlap be-
tween words. We construct paradigms out of words
that share a substring of length ≥ k. Since words
can share multiple substrings, it is possible that
multiple identical, redundant paradigms are cre-
ated. We reduce these to a single paradigm. Words
that do not belong to a cluster are assigned a sin-
gleton paradigm, that is, a paradigm that consists
of only that word.

We tune k on the development sets and find that
k = 5 works best on average. This means that a
word of less than 5 characters can only ever be in
one, singleton, paradigm.

3 Submitted Systems

The Boulder-Perkoff-Daniels-Palmer team
(Boulder-PDP; Perkoff et al., 2021) participates
with four submissions, resulting from experiments
with two different systems. Both systems apply
k-means clustering on vector representations of
input words. They differ in the type of vector
representations used: either orthographic or
semantic representations. Semantic skip-gram
representations are generated using word2vec
(Mikolov et al., 2013). For the orthographic
representations, each word is encoded into a vector
of fixed dimensionality equaling the word length
|wmax| for the longest word wmax in the input
corpus. They associate each character c ∈ Σ in the
alphabet of the input corpus with a real number
r ∈ [0, 1] and assign vi := r if the ith character
of the input word w is c. If |w| < |wmax|, the
remaining entries are assigned to 0.

The number of clusters is a hyperparameter of
the k-means clustering algorithm. In order to set
this hyperparameter, Perkoff et al. (2021) experi-
ment with a graph-based method. The word types
in the corpus form the nodes of a graph, where the
neighborhood of a word w consists of all words
sharing a maximal substring with w. The graph is
split into highly connected subgraphs (HCS) con-
taining n nodes, where the number of edges that
need to be cut in order to split the graph into two

disconnected components is > n/2 (Hartuv and
Shamir, 2000). The number of HCSs is then taken
to be the cluster number. In practice, however,
the graph-clustering step proves to be prohibitively
slow and results for test languages are submitted
using fixed numbers of clusters of size 500, 1000,
1500 and 1900. In experiments on the dev lan-
guages, they find that the orthographic representa-
tions outperform the semantic representations for
all languages, and thus submit four systems utiliz-
ing orthographic representations.

The Boulder-Gerlach-Wiemerslage-Kann team
(Boulder-GWK; Gerlach et al., 2021) submits
two systems based on an unsupervised lemmati-
zation system originally proposed by Rosa and
Zabokrtský (2019). Their approach is based on ag-
glomerative hierarchical clustering of word types,
where the distance between word types is computed
as a combination of a string distance metric and
the cosine distance of fastText embeddings (Bo-
janowski et al., 2017). Their choice of fastText
embeddings is due to the limited size of the shared
task datasets. Two variants of edit distance are com-
pared to quantify string distance: (1) Jaro-Winkler
edit distance (Winkler, 1990) resembles regular
edit distance of strings but emphasizes similarity
at the start of strings which is likely to bias the
system toward languages expressing inflection via
suffixation. (2) A weighted variant of edit distance,
where costs for insertions, deletions and substitu-
tions are derived from a character-based language
model trained on the shared task data.

The CU–UBC (Yang et al., 2021) team provides
systems that built upon the official shared task base-
line – given the pseudo-paradigms found by the
baseline, they extract inflection rules of multiple
types. Comparing pairs of words in each paradigm,
they learn both continuous and discontinuous char-
acter sequences that transform the first word into
the second, following work on supervised inflec-
tional morphology, such as Durrett and DeNero
(2013); Hulden et al. (2014). Rules are sorted by
frequency to separate genuine inflectional patterns
from noise. Starting from a random seed word,
paradigms are constructed by iteratively applying
the most frequent rules. Generated paradigms are
further tested for paradigm coherence using met-
rics such as graph degree calculation and fastText
embedding similarity.

The Edinburgh team (McCurdy et al., 2021)
submits a system based on adaptor grammars (John-
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English Navajo Spanish Finnish Bulgarian Basque Kannada German Turkish Average

Boulder-PDP-1
Rec 28.93 32.71 23.90 18.43 20.55 28.57 25.19 25.50 15.70 24.39
Prec 29.27 34.15 24.68 18.81 20.75 29.51 35.18 25.64 15.90 25.99
F1 29.10 33.41 24.29 18.62 20.65 29.03 29.36 25.57 15.80 25.09

Boulder-PDP-2
Rec 36.57 36.92 28.52 23.38 26.37 30.16 25.83 33.21 19.53 28.94
Prec 37.00 38.54 29.45 23.86 26.63 31.15 36.08 33.40 19.79 30.65
F1 36.78 37.71 28.98 23.62 26.50 30.65 30.11 33.31 19.66 29.70

Boulder-PDP-3
Rec 42.79 37.85 29.41 26.01 28.73 26.98 25.94 38.18 21.38 30.81
Prec 43.30 39.51 30.37 26.55 29.01 27.87 36.23 38.39 21.66 32.54
F1 43.04 38.66 29.88 26.27 28.87 27.42 30.23 38.28 21.52 31.58

Boulder-PDP-4
Rec 45.45 40.19 30.64 26.60 29.79 28.57 24.54 39.86 21.65 31.92
Prec 45.99 41.95 31.63 27.15 30.08 29.51 34.28 40.08 21.93 33.62
F1 45.72 41.05 31.13 26.87 29.93 29.03 28.61 39.97 21.79 32.68

Boulder-GWK-2
Rec 28.81 10.75 19.27 22.02 30.02 19.05 18.54 31.92 20.63 22.33
Prec 66.33 65.71 69.93 67.36 71.69 35.29 62.45 78.56 64.09 64.60
F1 40.17 18.47 30.21 33.19 42.32 24.74 28.60 45.39 31.22 32.70

Boulder-GWK-1
Rec 24.53 11.21 18.30 22.69 31.18 25.40 16.93 30.98 21.16 22.49
Prec 56.47 68.57 66.41 69.41 74.46 47.06 57.04 76.26 65.74 64.60
F1 34.20 19.28 28.69 34.20 43.96 32.99 26.12 44.06 32.02 32.83

Baseline
Rec 76.69 59.81 72.18 76.73 73.02 25.40 38.48 77.62 65.82 62.86
Prec 38.76 23.02 26.56 17.86 26.50 18.60 17.22 25.35 15.60 23.28
F1 51.49 33.25 38.83 28.97 38.89 21.48 23.79 38.22 25.23 33.35

CU–UBC-5
Rec 66.95 50.93 60.52 45.96 65.08 17.46 30.33 66.57 43.25 49.67
Prec 90.40 68.55 72.70 56.47 76.85 52.38 61.26 74.40 54.05 67.45
F1 76.93 58.45 66.05 50.68 70.48 26.19 40.57 70.26 48.05 56.41

CU–UBC-6
Rec 63.76 51.867 63.62 48.75 63.84 17.46 33.12 65.05 45.81 50.36
Prec 85.99 69.375 76.49 59.67 75.99 52.38 64.24 72.39 57.52 68.23
F1 73.23 59.36 69.46 53.66 69.39 26.19 43.71 68.52 51.00 57.17

CU–UBC-7
Rec 60.36 53.74 64.05 51.51 58.18 22.22 35.37 59.32 47.74 50.28
Prec 81.42 72.33 76.98 62.58 69.23 66.67 69.77 66.13 60.17 69.47
F1 69.33 61.66 69.92 56.51 63.23 33.33 46.94 62.54 53.24 57.41

CU–UBC-3
Rec 83.39 47.66 76.48 52.06 73.14 25.40 36.33 74.28 46.50 57.25
Prec 84.38 49.76 78.97 53.14 73.87 26.23 50.75 74.70 47.10 59.88
F1 83.89 48.69 77.71 52.60 73.50 25.81 42.35 74.49 46.80 58.42

CU–UBC-4
Rec 80.69 47.66 78.35 57.29 73.77 28.57 40.73 74.06 50.93 59.12
Rec 81.64 49.76 80.89 58.48 74.50 29.51 56.89 74.47 51.59 61.97
F1 81.16 48.69 79.60 57.88 74.14 29.03 47.47 74.27 51.26 60.39

CU–UBC-1
Rec 75.96 47.66 75.73 65.35 69.07 28.57 49.52 65.08 60.58 59.73
Prec 76.86 49.76 78.19 66.71 69.92 29.51 69.16 65.44 61.36 62.99
F1 76.41 48.69 76.94 66.03 69.50 29.03 57.71 65.26 60.97 61.17

CU–UBC-2
Rec 88.16 41.59 81.90 72.68 76.58 28.57 50.91 73.98 67.37 64.64
Prec 89.21 43.41 84.56 74.18 77.34 29.51 71.11 74.39 68.24 67.99
F1 88.68 42.48 83.21 73.42 76.96 29.03 59.34 74.18 67.80 66.12

Edinburgh
Rec 89.54 41.59 82.38 59.58 80.22 31.75 58.95 78.97 72.82 66.20
Prec 90.75 43.41 85.06 60.84 83.30 32.79 82.34 79.41 73.75 70.18
F1 90.14 42.48 83.70 60.20 81.73 32.26 68.71 79.19 73.28 67.96

stanza
Rec 95.31 - 85.49 86.21 84.74 65.08 - 79.19 86.80 83.26
Prec 93.87 - 85.84 85.91 82.79 50.62 - 71.57 86.87 79.64
F1 94.59 - 85.66 86.06 83.75 56.94 - 75.19 86.84 81.29

Table 3: Results on all test languages for all systems in %; the official shared task metric is best-match F1. To
provide a more complete picture, we also show precision and recall. stanza is a supervised system.

son et al., 2007) modeling word structure. Their
work draws on parallels between the unsupervised
paradigm clustering task and unsupervised mor-
phological segmentation. Their grammars segment
word forms in the shared task corpora into a se-
quence of zero or more prefixes and a single stem
followed by zero or more suffixes.

Based on the segmented words from the raw text
data, they then determine whether the language
uses prefixes or suffixes for inflection. The final
stem for words in a predominantly suffixing lan-

guage then consists of the prefixes and stem identi-
fied by the adaptor grammar. For a predominantly
prefixing language, the final stem instead contains
all suffixes of the word form. The team notes that
this approach is unsuitable for languages which
extensively make use of both prefixes and suffixes,
such as Basque.

Finally, they group all words which share the
same stem into paradigms. However, because
sampling from an adaptor grammar is a non-
deterministic process – i.e., the system may return



77

multiple possible segmentations for a single word
form – they construct preliminary clusters by in-
cluding all forms which might share a given stem.
Then they select the cluster that maximizes a score
based on frequency of occurrence of the induced
segment in all segmentations.

4 Results and Discussion

The official results obtained by all submitted sys-
tems on the test sets are shown in Table 3.

The Edinburgh system performs best overall
with an average best-match F1 of 67.96%. In
general, grammar-based systems attain the best re-
sults, with all of the CU–UBC systems and the
Edinburgh system outperforming the baseline by at
least 23.06% F1. The Boulder-GWK and Boulder-
PDP systems, both of which perform clustering
over word representations, approach but do not ex-
ceed baseline performance. Perkoff et al. (2021)
found that clustering over word2vec embeddings
performs poorly on the development languages,
and their scores on the test set reflect clusters found
with vectors based purely on orthography. The
Boulder-GWK systems contain incomplete results,
and partial evidence suggests that their cluster-
ing method, which combines both fastText embed-
dings trained on the provided bible corpora, and
edit distance, can indeed outperform the baseline.
However, it likely cannot outperform the grammar-
based submissions.

For comparison, we also evaluate a supervised
lemmatizer from the Stanza toolkit (Qi et al., 2020).
The Stanza lemmatizer is a neural network model
trained on Universal Dependencies (UD) treebanks
(Nivre et al., 2020), which first tags for parts of
speech, and then uses these tags to generate lemmas
for a given word. Because there is no UD corpus in
the current version for Navajo nor Kannada, we do
not have scores for those languages. Stanza’s accu-
racy on our task is far lower than that reported for
lemmatization on UD data. We note, however, that
1) our data is from a different domain, 2) Biblical
language in particular can differ strongly from con-
temporary text, and 3) we evaluate on only a partial
set of types in the corpus, which could represent a
particularly challenging set of paradigms for some
languages. The Stanza lemmatizer outperforms all
systems for all languages, except for German. This
is unsurprising as it is a supervised system, though
it is interesting that the German score falls short of
that of the Edinburgh system.

naaghá neiikai naahkai
naashá nijighá nideeshaał
naayá ninádaah naniná

ninájı́daah nizhdoogaał

Table 4: A paradigm from our gold set for Navajo.

Overgeneralization/Underspecification When
acquiring language, children often overgeneralize
morphological analogies to new, ungrammatical
forms. For example, the past tense of the English
verb to know might be expressed as knowed, rather
than the irregular knew. The same behavior can
also be observed in learning algorithms at some
point during the learning process (Kirov and
Cotterell, 2018). This is reflected to some extent in
Table 3 by trade-offs between precision and recall.
A low precision, but high recall indicates that a
system is overgeneralizing: some surface forms
are erroneously assigned to too many paradigms.
In effect, these systems are hypothesizing that
a substring is productive, and thus proposing a
paradigmatic relationship between two words. For
example, the English words approach and approve
share the stem appro- with unproductive segments
as suffixes. The baseline tends to overgeneralize
due to its creation of large paradigms via a naive
grouping of words by shared n-grams.

On the other hand, several systems seem to un-
derspecify, indicated by their low recall. A low
recall, but high precision indicates that a system
does not attribute inflected forms to a paradigm
that the form does in fact belong to. This can be
caused by suppletion in systems based purely on
orthography, for example, generating the paradigm
with go and goes, but attributing went to a separate
paradigm. Underspecification is apparent in the
CU–UBC submissions that relied on discontinuous
rules (CU–UBC 5, 6, and 7). This is likely because
they filtered these systems down to far fewer rules
than their prefix/suffix systems, in order to avoid
severe overgeneralization that can result from spuri-
ous morphemes based on discontinuous substrings.
Similarly, the Boulder-GWK systems both have
reasonable precision, but very low recalls. They
report that this is due to the fact that they ignore
any words with less than a certain frequency in the
corpus due to time constraints, thus creating small
paradigms and ignoring many words completely.

Language and Typology In general, we find that
Basque and Navajo are the two most difficult test
languages. Both languages have relatively small
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Figure 3: Singleton paradigm counts for the best performing system on all test languages. Languages for which
we have more than 100 paradigms on the left, and those for which we have less than 100 paradigms on the right.
Predicted singleton paradigms are in red and blue, gold singleton paradigms are in grey.

Figure 4: The F1 score across paradigm sizes for the best performing system on all test languages. From left to
right, the graphs represent the groups of languages in increasing order of how well systems typically performed on
them. F1 scores are interpolated for paradigm sizes that do not exist in a given language.

corpora, and are typlogically agglutinative – that
is, they express inflection via the concatenation of
potentially many morpheme segments, which can
result in a large number of unique surface forms.
Both languages thus have relatively high type-token
ratios (TTR) – especially Navajo, which has the
highest TTR, cf. Table 2. It is also important to
note that both Basque and Navajo have compara-
tively small sets of paradigms against which we
evaluate. This leaves the possibility that the subset
of paradigms in the gold set are particularly chal-
lenging. However, the differences between system
scores indicates that these two languages do offer
challenges related to their morphology.

Navajo is a predominantly prefixing language
– the only one in the development and test sets –
and Basque also inflects using prefixes, though to
a lesser extent. The top two performing systems
both obtain low scores for Navajo. The CU–UBC-2
system considers only suffix rules, which results
in it being the lowest performing CU–UBC system
on Navajo. The Edinburgh submission should be
able to identify prefixes and consider the suffix to
be part of the stem in Navajo. However, the large
number of types, for a relatively small Navajo cor-

pus may cause difficulties for their algorithm that
builds clusters based on affix frequency. Notably,
the CU-UBC-7 system, which learns discontinu-
ous rules rather than rules that model strictly con-
catenative morphology, performs best on Navajo
by a large margin when compared to the best per-
forming system, which relies on strictly concate-
native grammars. It also performs best on Basque,
though by a smaller margin. Another difficulty in
Navajo morphology is that it exhibits verbal stem
alternation for expressing mood, tense, and aspect,
which creates challenges for systems that rely on
rewrite rules or string similarity, based on continu-
ous substrings. For instance, our evaluation algo-
rithm aligns a singleton predicted paradigm to the
gold paradigm in Table 4 for nearly all systems.

On Basque, most systems perform poorly. Mc-
Curdy et al. (2021), the best performing system
overall, obtains a low score for Basque, which may
be due to their system assuming that a language
inflects either via prefixation or suffixation, but not
both, as Basque does. Other systems, however,
attain similarly low scores for Basque.

The next tier of difficulty seems to comprise
Finnish, Kannada, and Turkish, on which most sys-
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tems obtain low scores. All of those languages
are suffixing, but also have an agglutinative mor-
phology. The largest paradigm of each of these 3
languages are all in the top 4 largest paradigms in
Table 2. This implies that large paradigm sizes and
large numbers of distinct inflectional morphemes –
two properties often assumed to correlate with ag-
glutinative morphology –, coupled with sparse cor-
pora to learn from, offer challenges for paradigm
clustering. Though agglutinative morphology, hav-
ing relatively unchanged morphemes across words,
might be simpler for automatic segmentation sys-
tems than morphology characterized as fusional,
our sparse data sets are likely to complicate this.

Finally, systems obtain the best results for En-
glish, followed by Spanish, and then Bulgarian.
These three languages are also strongly suffixing,
but typically express inflection with a single mor-
pheme. German appears to be a bit of an outlier,
generally exhibiting scores that lie somewhere be-
tween the highest scoring languages, and the more
difficult agglutinative languages. McCurdy et al.
(2021) hypothesize that this may be due to non-
concatenative morphology from German verbal cir-
cumfixes. This hypothesis could explain why the
Boulder-GWK system performs better on German
than other languages: it incorporates semantic in-
formation. However, the CU–UBC systems that
use discontinuous rules (systems 5, 6, and 7), and
thus should better model circumfixation, do not
produce higher German scores than the continuous
rules, including the suffix-only system.

5 Analysis: Partial Paradigm Sizes

The effect of the size of the gold partial paradigms
on F1 score for the best system is illustrated in
Figure 4. For Basque and Navajo, the F1 score
tends to drop as paradigm size increases. We see
the same trend for Finnish, Kannada, and German,
with a few exceptions, but this trend does not exist
for all languages. English resembles something
like a bell shape, other than the low scoring outlier
for the largest paradigms of size 7. Interestingly,
Spanish and Turkish attain both very high and very
low scores for larger paradigms.

An artifact of a sparse corpus is that many sin-
gleton paradigms arise. For theoretically larger
paradigms, only a single inflected form might oc-
cur in such a small corpus. Of course, this also hap-
pens naturally for certain word classes. However,
nouns, verbs, and occasionally adjectives typically

form paradigms comprising several inflected forms.
Figure 3 demonstrates that the best system tends to
overgenerate singleton paradigms. We see this to
some extent for all agglutinative languages, which
may be due to the high number of typically long,
unique forms. This is especially true for Navajo,
which has a small corpus and extremely high type–
token ratio. On the other hand, for the languages
for which the highest scores are obtained, Span-
ish and English, the system does not overgenerate
singleton paradigms. Of the large number of sin-
gleton paradigms predicted for both languages, the
vast majority are correct. For other systems not
pictured in the figure, singleton paradigms are typi-
cally undergenerated for Spanish and English. In
the case of English, this could be due to words
that share a derivational relationship. For example,
the word accomplishment might be assigned to the
paradigm for the verb accomplish, when, in fact,
their relationship is not inflectional.

6 Conclusion and Future Shared Tasks

We presented the SIGMORPHON 2021 Shared
Task on Unsupervised Morphological Paradigm
Clustering. Submissions roughly fell into two cat-
egories: similarity-based methods and grammar-
based methods, with the latter proving more
successful at the task of clustering inflectional
paradigms. The best systems significantly im-
proved over the provided n-gram baseline, roughly
doubling the F1 score – mostly through much im-
proved precision. A comparison against a super-
vised lemmatizer demonstrated that we have not yet
reached the ceiling for paradigm clustering: many
words are still either incorrectly left in singleton
paradigms or incorrectly clustered with circum-
stantially (and often derivationally) related words.
Regardless of the ground still to be covered, the
submitted results were a successful first step in au-
tomatically inducing the morphology of a language
without access to expert-annotated data.

Unsupervised morphological paradigm cluster-
ing is only the first step in a morphological learn-
ing process that more closely models human L1
acquisition. We envision future tasks expanding
on this task to include other important aspects of
morphological acquisition. Paradigm slot catego-
rization is a natural next step. To correctly cate-
gorize paradigm slots, cross-paradigmatic similari-
ties must be considered, for example, the German
words liest and schreibt are both 3rd person singular
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present indicative inflections of two different verbs.
This can occasionally be identified via string simi-
larity, but more often requires syntactic information.
Syncretism (the collapsing of multiple paradigm
slots into a single representation) further compli-
cates the task. A similar subtask involves lemma
identification, where a canonical form (Cotterell
et al., 2016b) is identified within the paradigm.

Likewise, another important task involves fill-
ing unrealized slots in paradigms by generating the
correct surface form, which can be approached sim-
ilarly to previous SIGMORPHON shared tasks on
inflection (Cotterell et al., 2016a, 2017, 2018; Mc-
Carthy et al., 2019; Vylomova et al., 2020), but will
likely be based on noisy information from the slot
categorization – all previous tasks have assumed
that the morphosyntactic information provided to
an inflector is correct. Currently, investigations into
the robustness of these systems to noise are sparse.

Another direction for this task is the expansion
to more under-resourced languages. The submit-
ted results demonstrate that the task becomes par-
ticularly difficult when the provided raw text is
small, but under-documented languages are often
the ones most in need of morphological corpora.
The JHUBC contains Bible data for more than 1500
languages, which can potentially be augmented by
other raw text corpora because morphology is rel-
atively stable across domains. Future tasks may
enable the construction of inflectional paradigms
in languages that require them to construct further
computational tools.
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