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Abstract

In this work, we analyze the robustness of neu-
ral machine translation systems towards gram-
matical perturbations in the source. In par-
ticular, we focus on morphological inflection
related perturbations. While this has been
recently studied for English→French transla-
tion (MORPHEUS) (Tan et al., 2020), it is
unclear how this extends to Any→English
translation systems. We propose MORPHEUS-
MULTILINGUAL that utilizes UniMorph dic-
tionaries to identify morphological perturba-
tions to source that adversely affect the trans-
lation models. Along with an analysis of state-
of-the-art pretrained MT systems, we train and
analyze systems for 11 language pairs using
the multilingual TED corpus (Qi et al., 2018).
We also compare this to actual errors of non-
native speakers using Grammatical Error Cor-
rection datasets. Finally, we present a qualita-
tive and quantitative analysis of the robustness
of Any→English translation systems. Code
for our work is publicly available.1

1 Introduction

Multilingual machine translation is common-
place, with high-quality commercial systems avail-
able in over 100 languages (Johnson et al.,
2017). However, translation from and into low-
resource languages remains a challenge (Arivazha-
gan et al., 2019). Additionally, translation from
morphologically-rich languages to English (and
vice-versa) presents new challenges due to the wide
differences in morphosyntactic phenomenon of the
source and target languages. In this work, we study
the effect of noisy inputs to neural machine trans-
lation (NMT) systems. A concrete practical appli-
cation for this is the translation of text from non-
native speakers. While the brittleness of NMT sys-

* Equal contribution.
1https://github.com/murali1996/

morpheus_multilingual

tems to input noise is well-studied (Belinkov and
Bisk, 2018), most prior work has focused on trans-
lation from English (English→X) (Anastasopoulos
et al., 2019; Alam and Anastasopoulos, 2020).

With over 800 million second-language (L2)
speakers for English, it is imperative that the trans-
lation models should be robust to any potential er-
rors in the source English text. A recent work (Tan
et al., 2020) has shown that English→X translation
systems are not robust to inflectional perturbations
in the source. Inspired by this work, we aim to
quantify the impact of inflectional perturbations
for X→English translation systems. We hypothe-
size that inflectional perturbations to source tokens
shouldn’t adversely affect the translation quality.
However, morphologically-rich languages tend to
have free word order as compared to English, and
small perturbations in the word inflections can lead
to significant changes to the overall meaning of the
sentence. This is a challenge to our analysis.

We build upon Tan et al. (2020) to induce in-
flectional perturbations to source tokens using the
unimorph inflect tool (Anastasopoulos and
Neubig, 2019) along with UniMorph dictionaries
(McCarthy et al., 2020) (§2). We then present a
comprehensive evaluation of the robustness of MT
systems for languages from different language fam-
ilies (§3). To understand the impact of size of par-
allel corpora available for training, we experiment
on a spectrum of high, medium and low-resource
languages. Furthermore, to understand the impact
in real settings, we run our adversarial perturbation
algorithm on learners’ text from Grammatical Error
Correction datasets for German and Russian (§3.3).

2 Methodology

To evaluate the robustness of X→English NMT sys-
tems, we generate inflectional perturbations to the
tokens in source language text. In our methodology,

https://github.com/murali1996/morpheus_multilingual
https://github.com/murali1996/morpheus_multilingual
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we aim to identify adversarial examples that lead
to maximum degradation in the translation quality.
We build upon the recently proposed MORPHEUS

toolkit (Tan et al., 2020), that evaluated the robust-
ness of NMT systems translating from English→X.
For a given source English text, MORPHEUS works
by greedily looking for inflectional perturbations
by sequentially iterating through the tokens in input
text. For each token, it identifies inflectional edits
that lead to maximum drop in BLEU score.

We extend this approach to test X→English
translation systems. Since their toolkit2 is limited
to perturbations in English only, in this work we de-
velop our own inflectional methodology that relies
on UniMorph (McCarthy et al., 2020).

2.1 Reinflection

UniMorph project3 provides morphological data
for numerous languages under a universal schema.
The project supports over 100 languages and pro-
vides morphological inflection dictionaries for upto
three part-of-speech tags, nouns (N), adjectives
(ADJ) and verbs (V). While some UniMorph dic-
tionaries include a large number of types (or
paradigms) (German (≈15k), Russian (≈28k)),
many dictionaries are relatively small (Turkish
(≈3.5k), Estonian (<1k)). This puts a limit on
the number of tokens we can perturb via UniMorph
dictionary look-up. To overcome this limitation, we
use the unimorph inflect toolkit4 that takes
as input the lemma and the morphosyntactic de-
scription (MSD) and returns a reinflected word
form. This tool was trained using UniMorph dictio-
naries and generalizes to unseen types. An illustra-
tion of our inflectional perturbation methodology
is described in Table 1.

2.2 MORPHEUS-MULTILINGUAL

Given an input sentence, our proposed method,
MORPHEUS-MULTILINGUAL, identifies adversar-
ial inflectional perturbations to the input tokens
that leads to maximum degradation in performance
of the machine translation system. We first iter-
ate through the sentence to extract all possible in-
flectional forms for each of the constituent tokens.
Since, we are relying on UniMorph dictionaries, we
are limited to perturbing only nouns, adjectives and

2https://github.com/salesforce/morpheus
3https://unimorph.github.io/
4https://github.com/antonisa/unimorph inflect

verbs.5 Now, to construct a perturbed sentence, we
iterate through each token and uniformly sample
one inflectional form from the candidate inflections.
We repeat this process N (=50) times and compile
our pool of perturbed sentences.6

To identify the adversarial sentence, we compute
the chrF score (Popović, 2017) using the sacrebleu
toolkit (Post, 2018) and select the sentence that re-
sults in the maximum drop in chrF score (if any). In
our preliminary experiments, we found chrF to be
more reliable than BLEU (Papineni et al., 2002) for
identifying adversarial candidates. While BLEU
uses word n-grams to compare the translation out-
put with the reference, chrF uses character n-grams
instead; which helps with matching morphological
variants of words.

The original MORPHEUS toolkit follows a
slightly different algorithm to identify adversaries.
Similar to our approach, they first extract all pos-
sible inflectional forms for each of the constituent
tokens. Then, they sequentially iterate through the
tokens in the sentence, and for each token, they
select an inflectional form that results in the worst
BLEU score. Once an adversarial form is identi-
fied, they directly replace the form in the original
sentence and continue to the next token. While a
similar approach is possible in our setup, we found
their algorithm to be computationally expensive as
it prevents from performing efficient batching.

It is important to note that neither MORPHEUS-
MULTILINGUAL nor the original MORPHEUS ex-
haustively searches over all possible sentences, due
to memory and time constraints. However, our
approach in MORPHEUS-MULTILINGUAL can be
efficiently implemented and reduces the inference
time by almost a factor of 20. We experiment on
11 different language pairs, therefore, the run time
and computational costs are critical to our experi-
ments.

3 Experiments

In this section, we present a comprehensive eval-
uation of the robustness of X→English machine
translation systems. Since it is natural for NMT
models to be more robust when trained on large
amounts of parallel data, we experiment with two

5Some dictionaries might contain fewer POS tags, for
example, in German we are restricted to just nouns and verbs.

6N is a hyperparameter, and in our preliminary experi-
ments, we find N = 50 to be sufficiently high to generate
many uniquely perturbed sentences and also keep the process
computationally tractable.

https://github.com/salesforce/morpheus
https://unimorph.github.io/
https://github.com/antonisa/unimorph_inflect
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PRON VERB PART PUNCT ADV NOUN VERB AUX

Sie wissen nicht , wann Räuber kommen können
you-NOM.3PL knowledge-PRS.3PL not-NEG , when robber-NOM.PL come-NFIN can-PRS.3PL

(*) Sie wissten nicht , wann Räuber kommen können
(*) Sie wissen nicht , wann Räuber kommen könne
(*) Sie wisse nicht , wann Räuber kommen könnte

Table 1: Example inflectional perturbations on a German text.

sets of translation systems. First, we use state-of-
the-art pre-trained models for Russian→English
and German→English from fairseq (Ott et al.,
2019).7 Secondly, we use the multilingual TED
corpus (Qi et al., 2018) to train transformer-based
translation systems from scratch.8 Using the TED
corpus allows us to expand our evaluation to a
larger pool of language pairs.

3.1 WMT19 Pretrained Models
We evaluate the robustness of best-performing
systems from WMT19 news translation shared
task (Barrault et al., 2019), specifically for
Russian→English and German→English (Ott et al.,
2019). We follow the original work and use new-
stest2018 as our test set for adversarial evaluation.
Using the procedure described in §2.2, we create
adversarial versions of newstest2018 for both the
language pairs. In Table 2, we present the base-
line and adversarial results using BLEU and chrF
metrics. For both the language pairs, we notice
significant drops on both metrics. Before diving
further into the qualitative analysis of these MT
systems, we first present a broader evaluation on
MT systems trained on multilingual TED corpus.

lg Baseline Adversarial

BLEU chrF BLEU chrF NR

rus 38.33 0.63 18.50 0.47 0.81
deu 48.40 0.70 33.43 0.59 1.00

Table 2: Baseline & Adversarial results on new-
stest2018 using fairseq’s pre-trained models. NR
denotes Target-Source Noise Ratio (2).

7Due to resource constraints, we only experiment with the
single models and leave the evaluation of ensemble models
for future work.

8For the selected languages, we train an MT model with
‘transformer iwslt de en’ architecture from fairseq. We
use a sentence-piece vocab size of 8000, and train up to 80
epochs with Adam optimizer (see A.2 in Appendix for more
details)

3.2 TED corpus
The multilingual TED corpus (Qi et al., 2018) pro-
vides parallel data for over 50 language pairs, but
in our experiments we only use a subset of these
language pairs. We selected our test language pairs
(X→English) to maximize the diversity in language
families, as well as the resources available for train-
ing MT systems. Since we rely on UniMorph
and unimorph inflect for generating pertur-
bations, we only select languages that have rea-
sonably high accuracy in unimorph inflect
(>80%). Table 3 presents an overview of the cho-
sen source languages, along with the information
on language family and training resources.

We also quantify the morphological richness for
the languages listed in Table 3. As we are not
aware of any standard metric to gauge morphologi-
cal richness of a language, we use the reinflection
dictionaries to define this metric. We compute the
morphological richness using the Type-Token Ra-
tio (TTR) as follows,

TTRlg =
Ntypes(lg)
Ntokens(lg)

=
Nparadigms(lg)
Nforms(lg)

(1)

In Table 3, we report the TTRlg scores mea-
sured on UniMorph dictionaries as well as on the
UniMorph-style dictionaries constructed from TED
dev splits using unimorph inflect tool. Note
that, TTRlg, as defined here, slightly differs from
the widely known Type-Token ration used for mea-
suring lexical diversity (or richness) of a corpus.

We run MORPHEUS-MULTILINGUAL to gener-
ate adversarial sentences for the validation splits of
the TED corpus. We term a sentence adversarial if
it leads to the maximum drop in chrF score. Note
that, it is possible to have perturbed sentences that
may not lead to any drop in chrF scores. In Figure
1, we plot the fraction of perturbed sentences along
with adversarial fraction for each of the source lan-
guages. We see considerable perturbations for most
languages, with the exception of Swedish, Lithua-
nian, Ukrainian, and Estonian.
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lg Family Resource TTR

heb Semetic High (0.044, 0.191)
rus Slavic High (0.080, 0.107)
tur Turkic High (0.016, 0.048)
deu Germanic High (0.210, 0.321)
ukr Slavic High (0.103, 0.143)
ces Slavic High (0.071, 0.082)
swe Germanic Medium (0.156, 0.281)
lit Baltic Medium (0.051, 0.084)
slv Slavic Low (0.109, 0.087)
kat Kartvelian Low (0.057, ——)
est Uralic Low (0.026, 0.056)

Table 3: List of language chosen from multilingual
TED corpus. For each language, the table presents the
language family, resource level as the Type-Token ratio
(TTRlg). We measure the ratio using the types and to-
kens present in the reinflection dictionaries (UniMorph,
lexicon from TED dev)

Figure 1: Perturbation statistics for selected TED lan-
guages

In preparing our adversarial set, we retain the
original source sentence if we fail to create any per-
turbation or if none of the identified perturbations
lead to a drop in chrF score. This is to make sure the
adversarial set has the same number of sentences
as the original validation set. In Table 4, we present
the baseline and adversarial MT results. We notice
a considerable drop in performance for Hebrew,
Russian, Turkish and Georgian. As expected, the %
drops are correlated to the perturbations statistics
from Figure 1.

3.3 Translating Learner’s Text
In the previous sections (§3.1, §3.2), we have seen
the impact of noisy inputs to MT systems. While,
these results indicate a need for improving the ro-
bustness of MT systems, the above-constructed ad-

Figure 2: Schematic for preliminary evaluation on
learners’ language text. This is similar to the methodol-
ogy used in Anastasopoulos (2019).

versarial sets are however synthetic. In this section,
we evaluate the impact of morphological inflection
related errors directly on learners’ text.

To this end, we utilize two grammatical er-
ror correction (GEC) datasets, German Falko-
MERLIN-GEC (Boyd, 2018), Russian RULEC-
GEC (Rozovskaya and Roth, 2019). Both of these
datasets contain labeled error types relating to word
morphology. Evaluating the robustness on these
datasets will give us a better understanding of the
performance on actual text produced by second
language (L2) speakers.

Unfortunately, we don’t have gold English trans-
lations for the grammatically incorrect (or cor-
rected) text from GEC datasets. While there is a re-
lated prior work (Anastasopoulos et al., 2019) that
annotated Spanish translations for English GEC
data, we are not aware of any prior work that pro-
vide gold English translations for grammatically
incorrect data in non-English languages. There-
fore, we propose a pseudo-evaluation methodol-
ogy that allows for measuring robustness of MT
systems. A schematic overview of our methodol-
ogy is presented in Figure 2. We take the ungram-
matical text and use the gold GEC annotations to
correct all errors except for the morphology re-
lated errors. We now have ungrammatical text that
only contains morphology related errors and it is
similar to the perturbed outputs from MORPHEUS-
MULTILINGUAL. Since, we don’t have gold trans-
lations for the input Russian/German sentences,
we use the machine translation output of the fully
grammatical text as reference and the translation
output of partially-corrected text as hypothesis. In
Table 5, we present the results on both Russian and
German learners’ text.

Overall, we find that the pre-trained MT models
from fairseq are quite robust to noise in learn-
ers’ text. We manually inspected some examples,
and found the MT systems to sufficiently robust
to morphological perturbations and changes in the
output translation (if any) are mostly warranted.
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X→English Code # train Baseline Adversarial

BLEU chrF BLEU chrF NR

Hebrew heb 211K 40.06 0.5898 33.94 (-15%) 0.5354 (-9%) 1.56
Russian rus 208K 25.64 0.4784 11.70 (-54%) 0.3475 (-27%) 1.03
Turkish tur 182K 27.77 0.5006 18.90 (-32%) 0.4087 (-18%) 1.43
German deu 168K 34.15 0.5606 31.29 (-8%) 0.5373 (-4%) 1.82
Ukrainian ukr 108K 25.83 0.4726 25.66 (-1%) 0.4702 (-1%) 2.96
Czech ces 103K 29.35 0.5147 26.58 (-9%) 0.4889 (-5%) 2.11
Swedish swe 56K 36.93 0.5654 36.84 (-0%) 0.5646 (-0%) 3.48
Lithuanian lit 41K 18.88 0.3959 18.82 (-0%) 0.3948 (-0%) 3.42
Slovenian slv 19K 11.53 0.3259 10.48 (-9%) 0.3100 (-5%) 3.23
Georgian kat 13K 5.83 0.2462 4.92 (-16%) 0.2146 (-13%) 2.49
Estonian est 10K 6.68 0.2606 6.53 (-2%) 0.2546 (-2%) 4.72

Table 4: Results on multilingual TED corpus (Qi et al., 2018)

Dataset f-BLEU f-chrF

Russian GEC 85.77 91.56
German GEC 89.60 93.95

Table 5: Translation results on Russian and German
GEC corpora. An oracle (aka. fully robust) MT system
would give a perfect score. We adopt the faux-BLEU
terminology from Anastasopoulos (2019). f-BLEU is
identical to BLEU, except that it is computed against a
pseudo-reference instead of true reference.

Viewing these results in combination with results
on TED corpus, we believe that X→English are
robust to morphological perturbations at source as
long as they are trained on sufficiently large parallel
corpus.

4 Analysis

To better understand what makes a given MT sys-
tem to be robust to morphology related grammati-
cal perturbations in source, we present a thorough
analysis of our results and also highlight a few lim-
itations of our adversarial methodology.

Adversarial Dimensions: To quantify the im-
pact of each inflectional perturbation, we perform
a fine-grained analysis on the adversarial sentences
obtained from multilingual TED corpus. For each
perturbed token in the adversarial sentence, we
identify the part-of-speech (POS) and the feature
dimension(s) (dim) perturbed in the token. We uni-
formly distribute the % drop in sentence-level chrF
score to each (POS, dim) perturbation in the ad-
versarial sentence. This allows us to quantitatively

compare the impact of each perturbation type (POS,
dim) on the overall performance of MT model. Ad-
ditionally, as seen in Figure 1, all inflectional per-
turbations need not cause a drop in chrF (or BLEU)
scores. The adversarial sentences only capture the
worst case drop in chrF. Therefore, to analyze the
overall impact of the each perturbation (POS, dim),
we also compute the impact score on the entire set
of perturbed sentences explored by MORPHEUS-
MULTILINGUAL.

Table 8 (in Appendix) presents the results for
all the TED languages. First, the trends for adver-
sarial perturbations is quite similar to all explored
perturbations. This indicates that the adversarial
impact of a perturbation is not determined by just
the perturbation type (POS, dim) but is lexically
dependent.

Evaluation Metrics: In the results presented in
§3, we reported the performance using BLEU and
chrF metrics (following prior work (Tan et al.,
2020)). We noticed significant drops on these met-
rics, even for high-resource languages like Rus-
sian, Turkish and Hebrew, including the state-of-
the-art fairseq models. To better understand
these drops, we inspected the output translations of
adversarial source sentences. We found a number
of cases where the new translation is semantically
valid but both the metrics incorrectly score them
low (see S2 in Table 6). This is a limitation of using
surface level metrics like BLEU/chrF.

Additionally, we require the new translation to
be as close as possible to the original translation,
but this can be a strict requirement on many occa-
sions. For instance, if we changed a noun in the
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Figure 3: Correlation between Noise Ratio (NR) and
# train. The results indicate that, larger the training
data, the models are more robust towards source pertur-
bations (NR≈1).

source from its singular to plural form, it is natural
to expect a robust translation system to reflect that
change in the output translation. To account for this
behavior, we compute Target-Source Noise Ratio
(NR) metric from Anastasopoulos (2019). NR is
computed as follows,

NR(s, t, s̃, t̃) =
100− BLEU(t, t̃)

100− BLEU(s, s̃)
(2)

The ideal NR is∼1, where a change in the source
(s→ s̃) results in a proportional change in the tar-
get (t → t̃). For the adversarial experiments on
TED corpus, we compute the NR metric for each
language pair and the results are presented in Ta-
ble 4. Interestingly, while Russian sees a major
drop in BLEU/chrF score, the noise ratio is close
to 1. This indicates that the Russian MT is actu-
ally quite robust to morphological perturbations.
Furthermore, in Figure 3, we present a correlation
analysis between the size of parallel corpus avail-
able for training vs noise ratio metric. We see a
very strong negative correlation, indicating that
high-resource MT systems (e.g., heb, rus, tur)
are quite robust to inflectional perturbations, inspite
of the large drops in BLEU/chrF scores. Addition-
ally, we noticed that morphological richness of the
source language (measured via TTR in Table 3)
doesn’t play any significant role in the MT perfor-
mance under adversarial settings (e.g., rus, tur
vs deu). The scatter plot between TTR and NR for
TED translation task is presented in Figure 4.

Morphological Richness: To analyze the im-
pact of morphological richness of source, we look
deeper into the Slavic language family. We ex-

Figure 4: Correlation between Target-Source Noise Ra-
tio (NR) on TED machine translation and Type-Token
Ratio (TTRlg) of the source language (from UniMorph).
The results indicate that the morphological richness
of the source language doesn’t necessarily correlate to
NMT robustness.

perimented with four languages within the Slavic
family, Czech, Ukranian, Russian and Slovenian.
All except Slovenian are high-resource. These
languages differ significantly in their morphologi-
cal richness (TTR) with, TTRces < TTRslv <<
TTRrus << TTRukr.9 As we have already seen in
above analysis (see Figure 4), morphological rich-
ness isn’t indicative of the noise ratio (NR), and
this behavior is also true for Slavic languages. We
now check if morphological richness determines
the drop in BLEU/chrF scores? In fact, we find
that this is also not the case. We see larger % drop
for rus as compared to slv or ukr. We instead
notice that the % drop in BLEU/chrF is dependent
on the % edits we make to the validation set. The
% edits we were able to make follows the order,
δrus >> δces > δslv >> δukr (see Figure 1).

While NR is driven by size of training set, and %
drop in BLEU is driven by % edits to the validation
set. The % edits in turn depends on the size of
UniMorph dictionaries and not on morphological
richness of the language. Therefore, we conclude
that both the metrics, % drop in BLEU/chrF and
NR are dependent on the resource size (parallel
data and UniMorph dictionaries) and not on the
morphological richness of the language.

Semantic Change: In our adversarial attacks,
we aim to create a ungrammatical source via inflec-
tional edits and evaluate the robustness of systems
for these edits. While these adversarial attacks can
help us discover any significant biases in the transla-

9TTRlg measured on lexicons from TED dev splits.
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Figure 5: Elasticity score for TED languages

tion systems, they can often lead to unintended con-
sequences. Consider the example Russian sentence
S1 (s) from Table 6. The sentence is grammatically
correct, with the subject Тренер (‘Coach’) and
object игрока (‘player’) in NOM and ACC cases
respectively. If were perturb this sentence to A-
S1 (s̃), the new words Тренера (‘Coach’), and
игрок (‘player’) are now in ACC and NOM cases
respectively. Due to case assignment phenomenon
in Russian, this perturbation (s → s̃) has essen-
tially swapped the subject and object roles in the
Russian sentence. As we can see in the example,
the English translation, t̃ (A-T1) does in fact cor-
rectly capture this change. This indicates that our
attacks can sometimes lead to significant change
in the semantics of the source sentence. Handling
such cases would require deeper understanding of
each language grammar and we leave this for future
work.

Elasticity: As we have seen in discussion on
noise ratio, it is natural for MT systems to transfer
changes in source to the target. However, inspired
by (Anastasopoulos, 2019), we wanted to under-
stand how this behavior changes as we increase the
number of edits in the source sentence. For this
purpose, we first bucket all the explored perturbed
sentences based on the number of edits (or perturba-
tions) from the original source. Within each bucket,
we compute the fraction of perturbed source sen-
tences that result in same translation as the original
source. We define this fraction as the elasticity
score, i.e. whether the translation remains the same
under changes in source. Figure 5 presents the
results and we find the elasticity score dropping
quickly to zero as the # edits increase. Notably,
ukr drops quickly to zero, while rus retains rea-
sonable elasticity score for higher number of edits.

Figure 6: Boxplots for the distribution of # edits per
sentence in the adversarial TED validation set.

Aggressive edits: Our algorithm doesn’t put any
restrictions on the number of tokens that can be
perturbed in a given sentence. This can lead to ag-
gressive edits, especially in languages like Russian
that are morphologically-rich and the reinflection
lexicons are sufficiently large. As we illustrate in
Figure 6, median edits per sentence in rus is 5,
significantly higher than the next language (tur
at 1). Such aggressive edits in Russian can lead
to unrealistic sentences, and far from our intended
simulation of learners’ text. We leave the idea of
thresholding # edits to future work.

Adversarial Training: In an attempt to improve
robustness of NMT systems against morphologi-
cal perturbations, we propose training NMT mod-
els with augmenting adversarially perturbed sen-
tences. Due to computational constraints, we eval-
uate this setting only for slv. We follow the strat-
egy outlined in Section 2 to obtain adversarial per-
turbations for TED corpus training data. We ob-
serve that the adversarially trained model performs
marginally poorer (BLEU 10.30 from 10.48 when
trained without data augmentation). We hypothe-
size that this could possibly due to small training
data, and believe that this training setting can better
benefit models with already high BLEU scores. We
leave extensive evaluation and further analysis on
adversarial training to future work.

5 Conclusion

In this work, we propose MORPHEUS-
MULTILINGUAL, a tool to analyze the robustness
of X→English NMT systems under morphological
perturbations. Using this tool, we experiment
with 11 different languages selected from diverse
language families with varied training resources.
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rus

S1 Source (s) Тренер полностью поддержал игрока.
T1 Target (t) The coach fully supported the player.

A-S1 Source (s̃) Тренера полностью поддержал игрок.
A-T1 Target (t̃) The coach was fully supported by the player.

deu

S2 Source (s) Dinosaurier benutzte Tarnung, um seinen Feinden auszuweichen
T2 Target (t) Dinosaur used camouflage to evade its enemies (1.000)

A-S2 Source (s̃) Dinosaurier benutze Tarnung, um seinen Feindes auszuweichen
A-T2 Target (t̃) Dinosaur Use camouflage to dodge his enemy (0.512)

rus

S3 Source (s) У нас вообще телесные наказания не редкость.
T3 Target (t) In general, corporal punishment is not uncommon. (0.885)

A-S3 Source (s̃) У нас вообще телесных наказании не редкостях.
A-T3 Target (t̃) We don’t have corporal punishment at all. (0.405)

rus

S4 Source (s) Вот телесные наказания - спасибо, не надо.
T4 Target (t) That’s corporal punishment - thank you, you don’t have to. (0.458)

A-S4 Source (s̃) Вот телесных наказаний - спасибах, не надо.
A-T4 Target (t̃) That’s why I’m here. (0.047)

deu

S5 Source (s) Die Schießereien haben nicht aufgehört.
T5 Target (t) The shootings have not stopped. (0.852)

A-S5 Source (s̃) Die Schießereien habe nicht aufgehört.
A-T5 Target (t̃) The shootings did not stop, he said. (0.513)

rus

S6 Source (s) Всякое бывает.
T6 Target (t) Anything happens. (0.587)

A-S6 Source (s̃) Всякое будете бывать.
A-T6 Target (t̃) You’ll be everywhere. (0.037)

kat

S7 Source (s)
T7 Target (t) It ’s a real school. (0.821)

A-S7 Source (s̃)
A-T7 Target (t̃) There ’s a man who ’s friend. (0.107)

est

S8 Source (s) Ning meie laste tuleviku varastamine saab ühel päeval kuriteoks.
T8 Target (t) And our children ’s going to be the future of our own day. (0.446)

A-S8 Source (s̃) Ning meie laptegs tuleviku varastamine saab ühel päeval kuriteoks.
A-T8 Target (t̃) And our future is about the future of the future. (0.227)

est

S9 Source (s) Nad pagevad üle piiride nagu see.
T9 Target (t) They like that overdights like this. (0.318)

A-S9 Source (s̃) Nad pagevad üle piirete nagu see.
A-T9 Target (t̃) They dress it as well as well. (0.141)

rus

S10 Source (s) Мой дедушка был необычайным человеком того времени.
T10 Target (t) My grandfather was an extraordinary man at that time. (0.802)

A-S10 Source (s̃) Мой дедушка будё необычайна человеков того времи.
A-T10 Target (t̃) My grandfather is incredibly harmful. (0.335)

Table 6: Qualitative analysis. (1) semantic change, (2) issues with evaluation metrics, (3,4,5,6,7,10) good examples
for attacks, (8) poor attacks, (9) poor translation quality (s→ t)
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We evaluate NMT models trained on TED corpus
as well as pretrained models readily available as
part of fairseq library. We observe a wide
range of 0-50% drop in performances under
adversarial setting. We further supplement our
experiments with an analysis on GEC-learners
corpus for Russian and German. We qualitatively
and quantitatively analyze the perturbations
created by our methodology and presented its
strengths as well as limitations, outlining some
avenues for future research towards building more
robust NMT systems.
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A Appendix

A.1 UniMorph Example
An example from German UniMorph dictionary is
presented in Table 7.

Paradigm Form MSD

abspielen (‘play’) abgespielt (‘played’) V.PTCP;PST

abspielen (‘play’) abspielend (‘playing’) V.PTCP;PRS

abspielen (‘play’) abspielen (‘play’) V;NFIN

Table 7: Example inflections for German verb abspie-
len (‘play’) from the UniMorph dictionary.

A.2 MT training
For all the languages in TED corpus, we train
Any→English using the fairseq toolkit. Specif-
ically, we use the ‘transformer iwslt de en’ archi-
tecture, and train the model using Adam optimizer.
We use an inverse square root learning rate sched-
uler with warm-up update steps of 4000. In the
linear warm-up phase, we use an initial learning
rate of 1e-7 until a configured rate of 2e-4. We use
cross entropy criterion with label smoothing of 0.1.

A.3 Dimension Analysis
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Dimension ces deu est heb kat lit rus slv swe tur ukr

ADJ.Animacy - - - - - - 3.51(0.89) - - - -
ADJ.Case 4.31(0.81) - - - 10.67(2.59) - 4.78(0.91) - 5.05(5.05) - 6.04(1.10)
ADJ.Comparison - - - - - 7.99(0.46) - - - - -
ADJ.Gender 3.83(0.78) - - - - 6.81(-1.35) 5.30(1.00) - - - -
ADJ.Number 4.07(0.78) - - - 13.90(1.52) 6.31(-2.26) 4.67(0.94) - 5.05(5.05) 7.92(2.23) 6.25(1.29)
ADJ.Person - - - - - - - - - 8.89(2.43) -
N.Animacy - - - - - - 6.53(1.19) - - - -
N.Case 6.94(0.81) 6.39(1.26) 12.35(1.50) - 15.38(0.98) - 6.65(1.20) - 4.29(1.05) 14.39(2.37) 10.28(7.66)
N.Definiteness - - - - - - - - 8.36(1.61) - -
N.Number 5.44(0.77) 5.70(1.27) 8.10(1.33) 16.22(5.92) 14.46(0.66) - 6.12(1.22) - 4.30(1.52) 13.08(2.31) 21.20(15.96)
N.Possession - - - 12.63(4.31) - - - - - - -
V.Aspect - - - - 14.17(-0.38) - - - - - -
V.Gender - - - - - - 6.52(1.51) - - - -
V.Mood 13.17(2.78) 15.89(2.77) - - 11.11(0.58) - - 21.49(3.73) - - -
V.Number 8.23(2.72) 32.86(8.12) - 13.78(4.60) 9.02(1.33) - 6.23(1.44) 21.47(-9.47) - - -
V.Person 6.58(2.69) 6.22(1.50) - 10.86(4.99) 12.37(1.33) - 6.10(1.29) - - - -
V.Tense - - - 17.52(7.13) 13.09(1.05) - 6.59(1.61) - - - -
V.CVB.Tense - - - - - - 6.70(0.87) - - - 9.09(2.62)
V.MSDR.Aspect - - - - 14.39(4.68) - - - - - -
V.PTCP.Gender 10.28(2.75) - - - - - - - - - -
V.PTCP.Number 9.31(2.51) - - - - - - - - - -

Table 8: Fine-grained analysis of X→English translation performance w.r.t the perturbation type (POS, Morpho-
logical feature dimension). The number reported in this table indicate the average % drop in sentence level chrF for
an adversarial pertubation on a token with POS on the dimension (dim). The numbers in the parentheses indicate
average % drop for all the tested perturbations including the adversarial perturbations.


