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Abstract

We present the BME submission for the SIG-
MORPHON 2021 Task 0 Part 1, Generaliza-
tion Across Typologically Diverse Languages
shared task. We use an LSTM encoder-
decoder model with three step training that is
first trained on all languages, then fine-tuned
on each language families and finally fine-
tuned on individual languages. We use a differ-
ent type of data augmentation technique in the
first two steps. Our system outperformed the
only other submission. Although it remains
worse than the Transformer baseline released
by the organizers, our model is simpler and
our data augmentation techniques are easily
applicable to new languages. We perform ab-
lation studies and show that the augmentation
techniques and the three training steps often
help but sometimes have a negative effect. Our
code is publicly available1.

1 Introduction

Morphological inflection is the task of generat-
ing inflected word forms given a lemma and a set
of morphosyntactic tags. Inflection plays a key
role in natural language generation, particularly in
languages with rich morphology. The SIGMOR-
PHON Shared Tasks are yearly competitions for
inflection tasks(Cotterell et al., 2016, 2017, 2018;
McCarthy et al., 2019; Nicolai et al., 2020).

This paper describes the BME team’s submission
for Part 1 of the 2021 SIGMORPHON–UniMorph
Shared Task on Generalization in Morphological
Inflection Generation. There were only two sub-
missions to this subtask and our team outperformed
the other submission by a large margin. The task
was about type-level morphological inflection in 38

1https://github.com/szogabaha/
SIGMORPHON2021-task0
∗ The first three authors contributed equally.

typologically diverse languages from 12 language
families.

Our model builds on the work of Faruqui et al.
(2015). We use a sequence-to-sequence (seq2seq)
model with a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) encoder and a unidirectional
LSTM decoder with attention. We perform a small
hyperparameter search and we find that the most
important parameters are the choice of the embed-
ding size and the hidden size.

We use two data augmentation techniques; a sim-
ple copy mechanism, a stem modification method.
We add these methods at the first two steps of our
three-step training regime. We describe a third
data augmentation technique, a template induction
method, that did not improve the overall results in
the end so we did not use it in our submission. We
first train a single model on all languages and then
fine-tune the model on each language family and
then on each language.

Our main contributions are:

• We present the highest performing submission
for the SIGMORPHON 2021 Task0 Part 1
shared task.

• We try three data augmentation techniques.

• We use a three-step training regime mixed
with a two data augmentation techniques ap-
plied at the first two steps.

• We perform ablation studies for the augmen-
tation techniques and the training steps. We
highlight the negative results as well.

2 Related Work

Seq2seq neural networks were first popularized in
machine translation (Sutskever et al., 2014) and
since the addition of the attention mechanism (Bah-
danau et al., 2014; Luong et al., 2015) and the

https://github.com/szogabaha/SIGMORPHON2021-task0
https://github.com/szogabaha/SIGMORPHON2021-task0


Transformer (Vaswani et al., 2017), it has been the
dominant approach in the field. The first major suc-
cess of seq2seq models in morphological inflection
was the submission by Kann and Schütze (2016) to
the 2016 edition of the SIGMORPHON shared task.
This was followed by an extensive study by Faruqui
et al. (2015) on LSTM-based encoder-decoder mod-
els for morphological inflection.

We used the augmentation techniques introduced
by Neuvel and Fulop (2002). Inspired by Bergma-
nis et al. (2017) we attempted to extract different
morphological properties of the languages and used
them to generate data. Anastasopoulos and Neubig
(2019) used a two step training method that first
trains on the language family and then on the indi-
vidual languages. We use a similar procedure but
we augment the data with a different technique in
each step.

3 Data

The shared task covered 38 languages from 12 lan-
guage families. 35 of these languages were avail-
able from the beginning while 3 surprise languages,
Turkish, Vibe and Võro, were released one week
before the submission deadline. Each language
had a train and a development split of varying size.
Each sample consists of a lemma, an inflected form
and a list of morphosyntactic tags in the following
format:
vaguear vaguearás V;IND;SG;2;FUT

emunger emunjamos V;IMP;PL;1;POS

desenchufar desenchufo V;IND;SG;1;PRS

delirar deliraren V;SBJV;PL;3;FUT

The amount of data varies widely among the lan-
guages: while the language Veps has more than
100000 examples, Ludic, the most underresourced
language, has only 128 train samples. Table 1 lists
the 12 language families and the number of lan-
guages from that family. We consider some lan-
guages low resource languages if they have fewer
than 1300 samples. 8 language families had at least
one low resource language and 3 families were rep-
resented only by low resource languages. One goal
of our data augmentation techniques is to offset
this imbalance (see Section 5).

4 Model architecture

4.1 LSTM based seq2seq model
Our model is largely based on the encoder-decoder
model of Faruqui et al. (2015). We use a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)

Family Langs Low Samples

Afro-Asiatic 12 1 196550
Arnhem 1 1 214
Aymaran 1 0 100000
Arawakan 2 0 16472
Iroquoian 1 0 3801
Turkic 3 0 300371
Chukotko-Kamchatkan 2 2 1378
Tungusic 2 1 5500
Austronesian 2 1 11395
Trans-New-Guinean 1 1 918
Indo-European 12 2 685567
Uralic 5 2 279720

Table 1: List of language families and the number of
languages from each family. The third column is the
number of low resource (<1300 samples) languages in
a particular family. The forth column is the overall sam-
ple count in each family.

as our encoder and a unidirectional LSTM with
attention as our decoder.

Recall that the input for the inflection task is
a pair consisting of a lemma and a list of mor-
phosyntactic tags. We represent these pairs as a
single sequence as the LSTM’s input. For the input
lemma-tags pair izar, (V, COND, PL, 2),
we serialize it as
<SOS> i z a r <SEP> V COND PL 2 <EOS>

Similarly, we convert the target form into a se-
quence of characters:

<SOS> i z a r <EOS>

The output of our model looks like this when the
inflected word is izarı́ais:

<SOS> i z a r ı́ a i s <EOS>

The input sequence is first projected to an em-
bedding space, which then provides the input for
the encoder LSTM. The decoder is a standard uni-
directional LSTM with attention. We decode the
output in a greedy fashion and do not use beam
search. We project the final output to the output vo-
cabulary’s dimension and use the softmax function
to generate a probability distribution. The input
and the output embeddings use shared weights and
they are trained from scratch along with the rest of
the model.

4.2 Hyperparameter selection

We selected 16 languages from diverse families
for hyperparameter tuning. Most of them were
fusional or low resource because early experiments
showed that these are the harder ones to learn for



Family Lang
code Result excluded feature basemodels

Copy Stem-mod Step 1 Step 2 Step 3 IIT+DA OL
Turkic tur 99.90 99.90 99.94 99.92 97.38 99.90 99.35 97.10

Uralic
vep 99.72 54.10 99.55 99.80 99.05 99.67 99.70 91.13
lud 59.46 56.76 70.27 56.76 67.57 62.16 45.95 0.00
olo 99.72 91.15 99.84 99.78 98.26 99.72 99.66 99.48

Indo -
European

rus 98.07 94.84 98.00 97.86 95.56 97.34 97.58 70.72
kmr 98.21 86.02 98.74 98.41 97.50 98.21 98.01 5.14
deu 97.98 91.19 98.23 97.91 89.91 97.98 97.46 91.86

Table 2: The different results we achieved on the test dataset with different models, with different aug-
mentation techniques excluded and with different training steps excluded. For comparison the table show
the result of our submission (result), the given basemodel IIT+DA (Input Invariant Transformer + Data
Augment) and the models that were just trained on only one language (OL).

the model. We downsampled the larger languages
and merged the train sets. We trained 100 models
with random parameters sampled uniformly from
the parameter ranges listed in Table 3.

Parameter Type Min value Max value

num. layers int 1 3
dropout float 0.1 0.6

embedding int 32 256
hidden size int 64 1024

Table 3: Parameter ranges used for hyperparameter tun-
ing.

It turns out that only two of these hyperparam-
eters makes a significant difference, the number
of layers and the hidden size. One LSTM layer
was clearly inferior and so were LSTMs with fewer
than 400 neurons per layer. The embedding dimen-
sion and the dropout rate made less difference. We
decided to go with two configurations, a small one
with 200 dimensional embedding and the hidden
size set to 256 and a large one with the embedding
set to 150 dimensions and 900 hidden size. We
report the better one for each language based on
the development set.

4.3 Training details

We train the models end-to-end with gradient de-
scent using the Adam optimizer with 0.001 learn-
ing rate. We apply teacher forcing to the decoder
with 0.5 probability, which means that we feed the
ground truth character instead of the output of the
previous step half of the time.

5 Augmentation techniques

In this section we describe the data augmentation
techniques we used. We applied the same steps for
each language with varying effect. We performed
ablation studies (Section 7.1) on some languages to
investigate the individual effect of these techniques.

5.1 Stem modification

Neural networks tend to have difficulties with low
amounts of training data as is the case with low
resource languages. For example a model trained
on a language with 50-150 examples will learn to
output the training character sequences. In order
to avoid this we used the data hallucination tech-
nique introduced in Anastasopoulos and Neubig
(2019), who identified the “stem” based on com-
mon substrings in the inflected forms of the same
lemma. Then they replace some characters of the
stem with random characters. We use a similar
method but instead of using random characters, we
sample them according to the unigram distribution
of each language. This way we created 10000 ad-
ditional examples for each language in the training
set.

5.2 Copy

Another attempt was to help the model learn to
copy because without it the model can output
wrong characters for the stem instead of copying
it. We added a maximum number of 10000 exam-
ples to the training set where the additional data for
each language looks like:
izar izar Lang-family;Lang-code;COPY

Copy is a new tag we added just for this specific
task.



Figure 1: The results of the augmentation based on
the work of Neuvel and Fulop (2002), evaluated on un-
derresourced languages. The majority of these results
show that this kind of augmentation is not helpful.

5.3 Template based augmentation

We also experimented with a morpheme identifier
algorithm of Neuvel and Fulop (2002). The main
idea of Neuvel and Fulop (2002) is to iteratively
find “similar” substrings between inflected forms
within the same languages. Common substrings
are considered affixes and they can be used in tem-
plates to generate further examples. We first iden-
tify whether the language is more likely to use
prefixes or suffixes. We then apply the forward-
comparing or the backward-comparing method
to extract the affixes. The forward-comparing
method is explained in Algorithm 1. The backward-
comparing method is identical except it starts at the
end of the string.

We store these 3 lists in a single data structure
called “comparison”. We collect comparisons from
all the records of our source data. Afterwards we
try to merge them based on their similarities. Two
comparisons are considered similar if in all of their
three lists they only differ in ’.’ characters. If we
find such comparisons, the differing ’.’ characters
in all lists are replaced by ’?’ marks - creating a
new comparison and the source comparisons are
deleted. This merged comparison then can be con-
sidered for further merging too. We also count how
many merges happen in a comparison. The results
of this algorithm can be used to generate newer
words by using diff1 and diff2 of a comparison as
templates. Starting from the left side of the tem-
plate we generate exactly one character to replace
each ’.’ characters (this one generated character is

Algorithm 1 Forward-comparing method

Require: initialize 3 empty lists: sim, diff1, diff2
for i← 0,min {len(w1), len(w2)} do

if w1[i] equals w2[i] then
sim← w1[i]
diff1← ”.”
diff2← ”.”

else
sim← ”.”
diff1← w1[i]
diff2← w1[i]

end if
end for
sim← ‖len(w1)− len(w2)‖ ”.” characters
Append the rest of the remaining words to the
appropriate diff list
return diff1, diff2, sim

used to replace the holders in both diff1 and diff2),
and one or zero character to replace each ’?’ marks.
We tried improving our results by generating the
characters based on the frequency of the characters
of a given source. We also tried improving under re-
sourced language results by using words generated
by templates from the languages’ families.

The results with and without the template based
augmentation are compared in Figure 1. We only
include a handful of low resource languages for
clarity. Template based augmentation is useful for
some languages but it decreased the performance
for others and it was computationally expensive to
try models with and without template based aug-
mentation for all languages.

6 Experiments

We first experimented with a single large model
for all languages. This model worked reasonably
well for large languages and some of the medium
ones as well, however, its performance was quite
low on low resourced languages. To offset this, we
introduce a three-step training method.

Step 1: General training. In the first phase, we
train a model on all languages with copy augmen-
tation. This step creates a general language model.
Using copy alone considerably improves the results
on most languages. We further explore the effect
of copy in Section 7.1. We trained a small and a
large model as described in Section 4.



Step 2: Language family training. We fine-
tuned both model for each language family but
this time we also added 10000 example to each
language with using the stem modification augmen-
tation. This resulted in 24 models, one small and
one large for each of the 12 language families.

Step 3: Language specific training. We then
further fine-tune the family models on each lan-
guage of the particular family. We use template
based augmentation in this step to further increase
the number of training samples.

7 Results

Our three step model achieves 81.51% accuracy on
average with 0.627 average Levenshtein distance
between the output and the ground truth. This
results is lower than the baseline (84.57% accuracy
and 0.448 edit distance) but it is important to note
that our LSTM seq2seq model is simpler than the
Transformer baseline, while it remains competitive.
We chose our model based on the accuracy of the
development dataset. This way we submitted the
results of 7 smaller and 31 larger models.

7.1 Ablation studies
We perform a small ablation studies on two aug-
mentation technique and on each step of training
process. We picked all languages where our re-
sults were better than the baseline and retrained
the model without one of the augmentation tech-
niques or without one of the three training steps.
The results are listed in Table 2. It is clear that
copy is the most important data augmentation tech-
nique. Stem modification often has a mixed effect
on these languages. The model on Ludic, the small-
est language in the data set, is actually much better
without stem modification. The same is true about
the training steps. The overall accuracy increased
with each step but the language-specific effects are
more varied. Since testing with and without all
options is computationally too expensive for such
a large number of languages, we recommend try-
ing these options individually for language-specific
applications.

8 Conclusion

We presented the BME team’s submission for the
SIGMORPHON 2021 Task 0 Part 1 shared task.
We used a standard LSTM encoder-decoder model
with attention. We augmented the data with three
different techniques and then used a three-step

training method that first trains on all languages,
then fine-tunes on the language families and finally
fine-tunes on the individual languages. Our submis-
sion outperformed the other team by a large margin.
Although our results did not outperform the base-
line, we presented a simpler model with multiple
data augmentation techniques that do not require
any external resource or linguistic expertise.
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