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Abstract

Traditionally, character-level transduction
problems have been solved with finite-state
models designed to encode structural and
linguistic knowledge of the underlying pro-
cess, whereas recent approaches rely on the
power and flexibility of sequence-to-sequence
models with attention. Focusing on the less
explored unsupervised learning scenario, we
compare the two model classes side by side
and find that they tend to make different types
of errors even when achieving comparable
performance. We analyze the distributions of
different error classes using two unsupervised
tasks as testbeds: converting informally
romanized text into the native script of its lan-
guage (for Russian, Arabic, and Kannada) and
translating between a pair of closely related
languages (Serbian and Bosnian). Finally, we
investigate how combining finite-state and
sequence-to-sequence models at decoding
time affects the output quantitatively and
qualitatively.1

1 Introduction and prior work

Many natural language sequence transduction tasks,
such as transliteration or grapheme-to-phoneme
conversion, call for a character-level parameteriza-
tion that reflects the linguistic knowledge of the un-
derlying generative process. Character-level trans-
duction approaches have even been shown to per-
form well for tasks that are not entirely character-
level in nature, such as translating between related
languages (Pourdamghani and Knight, 2017).

Weighted finite-state transducers (WFSTs) have
traditionally been used for such character-level
tasks (Knight and Graehl, 1998; Knight et al.,
2006). Their structured formalization makes it eas-
ier to encode additional constraints, imposed either

1Code will be published at https://github.com/
ryskina/error-analysis-sigmorphon2021

это точно ಮನ #$ಳ&$ತು

3to to4no mana belagitu

техничка и стручна настава

tehničko i stručno obrazovanje

Figure 1: Parallel examples from our test sets
for two character-level transduction tasks: con-
verting informally romanized text to its original
script (top; examples in Russian and Kannada)
and translating between closely related languages
(bottom; Bosnian–Serbian). Informal romaniza-
tion is idiosyncratic and relies on both visual (q
→ 4) and phonetic (t → t) character similarity,
while translation is more standardized but not fully
character-level due to grammatical and lexical dif-
ferences (‘nastava’ → ‘obrazovanje’) between
the languages. The lines show character alignment
between the source and target side where possible.

by the underlying linguistic process (e.g. mono-
tonic character alignment) or by the probabilis-
tic generative model (Markov assumption; Eisner,
2002). Their interpretability also facilitates the in-
troduction of useful inductive bias, which is crucial
for unsupervised training (Ravi and Knight, 2009;
Ryskina et al., 2020).

Unsupervised neural sequence-to-sequence
(seq2seq) architectures have also shown impressive
performance on tasks like machine transla-
tion (Lample et al., 2018) and style transfer (Yang
et al., 2018; He et al., 2020). These models are
substantially more powerful than WFSTs, and they
successfully learn the underlying patterns from

https://github.com/ryskina/error-analysis-sigmorphon2021
https://github.com/ryskina/error-analysis-sigmorphon2021
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monolingual data without any explicit information
about the underlying generative process.

As the strengths of the two model classes dif-
fer, so do their weaknesses: the WFSTs and the
seq2seq models are prone to different kinds of
errors. On a higher level, it is explained by the
structure–power trade-off: while the seq2seq mod-
els are better at recovering long-range dependen-
cies and their outputs look less noisy, they also
tend to insert and delete words arbitrarily because
their alignments are unconstrained. We attribute
the errors to the following aspects of the trade-off:

Language modeling capacity: the statistical
character-level n-gram language models (LMs) uti-
lized by finite-state approaches are much weaker
than the RNN language models with unlimited left
context. While a word-level LM can improve the
performance of a WFST, it would also restrict the
model’s ability to handle out-of-vocabulary words.

Controllability of learning: more structured mod-
els allow us to ensure that the model does not at-
tempt to learn patterns orthogonal to the underlying
process. For example, domain imbalance between
the monolingual corpora can cause the seq2seq
models to exhibit unwanted style transfer effects
like inserting frequent target side words arbitrarily.

Search procedure: WFSTs make it easy to per-
form exact maximum likelihood decoding via
shortest-distance algorithm (Mohri, 2009). For the
neural models trained using conventional methods,
decoding strategies that optimize for the output
likelihood (e.g. beam search with a large beam
size) have been shown to be susceptible to favoring
empty outputs (Stahlberg and Byrne, 2019) and
generating repetitions (Holtzman et al., 2020).

Prior work on leveraging the strength of the two
approaches proposes complex joint parameteriza-
tions, such as neural weighting of WFST arcs or
paths (Rastogi et al., 2016; Lin et al., 2019) or
encoding alignment constraints into the attention
layer of seq2seq models (Aharoni and Goldberg,
2017; Wu et al., 2018; Wu and Cotterell, 2019;
Makarov et al., 2017). We study whether perfor-
mance can be improved with simpler decoding-
time model combinations, reranking and product
of experts, which have been used effectively for
other model classes (Charniak and Johnson, 2005;
Hieber and Riezler, 2015), evaluating on two un-
supervised tasks: decipherment of informal roman-

ization (Ryskina et al., 2020) and related language
translation (Pourdamghani and Knight, 2017).

While there has been much error analysis for
the WFST and seq2seq approaches separately, it
largely focuses on the more common supervised
case. We perform detailed side-by-side error analy-
sis to draw high-level comparisons between finite-
state and seq2seq models and investigate if the
intuitions from prior work would transfer to the
unsupervised transduction scenario.

2 Tasks

We compare the errors made by the finite-state and
the seq2seq approaches by analyzing their perfor-
mance on two unsupervised character-level trans-
duction tasks: translating between closely related
languages written in different alphabets and con-
verting informally romanized text into its native
script. Both tasks are illustrated in Figure 1.

2.1 Informal romanization

Informal romanization is an idiosyncratic transfor-
mation that renders a non-Latin-script language in
Latin alphabet, extensively used online by speak-
ers of Arabic (Darwish, 2014), Russian (Paulsen,
2014), and many Indic languages (Sowmya et al.,
2010). Figure 1 shows examples of romanized Rus-
sian (top left) and Kannada (top right) sentences
along with their “canonicalized” representations in
Cyrillic and Kannada scripts respectively. Unlike
official romanization systems such as pinyin, this
type of transliteration is not standardized: charac-
ter substitution choices vary between users and are
based on the specific user’s perception of how sim-
ilar characters in different scripts are. Although
the substitutions are primarily phonetic (e.g. Rus-
sian n /n/ → n), i.e. based on the pronunciation
of a specific character in or out of context, users
might also rely on visual similarity between glyphs
(e.g. Russian q /

>
tSj/ → 4), especially when the

associated phoneme cannot be easily mapped to
a Latin-script grapheme (e.g. Arabic ¨ /Q/ → 3).
To capture this variation, we view the task of de-
coding informal romanization as a many-to-many
character-level decipherment problem.

The difficulty of deciphering romanization also
depends on the type of the writing system the
language traditionally uses. In alphabetic scripts,
where grapheme-to-phoneme correspondence is
mostly one-to-one, there tends to be a one-to-one
monotonic alignment between characters in the ro-
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manized and native script sequences (Figure 1, top
left). Abjads and abugidas, where graphemes corre-
spond to consonants or consonant-vowel syllables,
increasingly use many-to-one alignment in their
romanization (Figure 1, top right), which makes
learning the latent alignments, and therefore decod-
ing, more challenging. In this work, we experiment
with three languages spanning over three major
types of writing systems—Russian (alphabetic),
Arabic (abjad), and Kannada (abugida)—and com-
pare how well-suited character-level models are for
learning these varying alignment patterns.

2.2 Related language translation

As shown by Pourdamghani and Knight (2017)
and Hauer et al. (2014), character-level models can
be used effectively to translate between languages
that are closely enough related to have only small
lexical and grammatical differences, such as Ser-
bian and Bosnian (Ljubešić and Klubička, 2014).
We focus on this specific language pair and tie the
languages to specific orthographies (Cyrillic for
Serbian and Latin for Bosnian), approaching the
task as an unsupervised orthography conversion
problem. However, the transliteration framing of
the translation problem is inherently limited since
the task is not truly character-level in nature, as
shown by the alignment lines in Figure 1 (bottom).
Even the most accurate transliteration model will
not be able to capture non-cognate word transla-
tions (Serbian ‘nastava’ [nastava, ‘education, teach-

ing’] → Bosnian ‘obrazovanje’ [‘education’]) and the
resulting discrepancies in morphological inflection
(Serbian -a endings in adjectives agreeing with
feminine ‘nastava’ map to Bosnian -o represent-
ing agreement with neuter ‘obrazovanje’).

One major difference with the informal roman-
ization task is the lack of the idiosyncratic orthogra-
phy: the word spellings are now consistent across
the data. However, since the character-level ap-
proach does not fully reflect the nature of the trans-
formation, the model will still have to learn a many-
to-many cipher with highly context-dependent char-
acter substitutions.

3 Data

Table 1 details the statistics of the splits used for
all languages and tasks. Below we describe each
dataset in detail, explaining the differences in data
split sizes between languages. Additional prepro-
cessing steps applied to all datasets are described

in §3.4.2

3.1 Informal romanization

Source: de el menu:)
Filtered: de el menu<...>

Target: <...> é
	
JÖÏ



@ ø



X

Gloss: ‘This is the menu’

Figure 2: A parallel example from the LDC BOLT
Arabizi dataset, written in Latin script (source) and
converted to Arabic (target) semi-manually. Some
source-side segments (in red) are removed by an-
notators; we use the version without such segments
(filtered) for our task. The annotators also stan-
dardize spacing on the target side, which results in
difference with the source (in blue).

Arabic We use the LDC BOLT Phase 2 cor-
pus (Bies et al., 2014; Song et al., 2014) for training
and testing the Arabic transliteration models (Fig-
ure 2). The corpus consists of short SMS and chat
in Egyptian Arabic represented using Latin script
(Arabizi). The corpus is fully parallel: each mes-
sage is automatically converted into the standard-
ized dialectal Arabic orthography (CODA; Habash
et al., 2012) and then manually corrected by human
annotators. We split and preprocess the data accord-
ing to Ryskina et al. (2020), discarding the target
(native script) and source (romanized) parallel sen-
tences to create the source and target monolingual
training splits respectively.

Russian We use the romanized Russian dataset
collected by Ryskina et al. (2020), augmented with
the monolingual Cyrillic data from the Taiga cor-
pus of Shavrina and Shapovalova (2017) (Figure 3).
The romanized data is split into training, validation,
and test portions, and all validation and test sen-
tences are converted to Cyrillic by native speaker
annotators. Both the romanized and the native-
script sequences are collected from public posts and
comments on a Russian social network vk.com,
and they are on average 3 times longer than the
messages in the Arabic dataset (Table 1). However,
although both sides were scraped from the same
online platform, the relevant Taiga data is collected
primarily from political discussion groups, so there
is still a substantial domain mismatch between the
source and target sides of the data.

2Links to download the corpora and other data sources
discussed in this section can be found in Appendix A.
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Train (source) Train (target) Validation Test
Sent. Char. Sent. Char. Sent. Char. Sent. Char.

Romanized Arabic 5K 104K 49K 935K 301 8K 1K 20K
Romanized Russian 5K 319K 307K 111M 227 15K 1K 72K
Romanized Kannada 10K 1M 679K 64M 100 11K 100 10K
Serbian→Bosnian 160K 9M 136K 9M 16K 923K 100 9K
Bosnian→Serbian 136K 9M 160K 9M 16K 908K 100 10K

Table 1: Dataset splits for each task and language. The source and target train data are monolingual, and
the validation and test sentences are parallel. For the informal romanization task, the source and target
sides correspond to the Latin and the original script respectively. For the translation task, the source and
target sides correspond to source and target languages. The validation and test character statistics are
reported for the source side.

Annotated
Source: proishodit s prirodoy 4to to very very bad
Filtered: proishodit s prirodoy 4to to <...>
Target: proishodit s prirodoĭ qto-to <...>
Gloss: ‘Something very very bad is happening to

the environment’

Monolingual
Source: —
Target: �to videoroliki so s�ezda par-

tii“Edina� Rossi�”
Gloss: ‘These are the videos from the “United Rus-

sia” party congress’

Figure 3: Top: A parallel example from the roman-
ized Russian dataset. We use the filtered version
of the romanized (source) sequences, removing the
segments the annotators were unable to convert to
Cyrillic, e.g. code-switched phrases (in red). The
annotators also standardize minor spelling varia-
tion such as hyphenation (in blue). Bottom: a
monolingual Cyrillic example from the vk.com
portion of the Taiga corpus, which mostly consists
of comments in political discussion groups.

Kannada Our Kannada data (Figure 4) is taken
from the Dakshina dataset (Roark et al., 2020),
a large collection of native-script text from
Wikipedia for 12 South Asian languages. Unlike
the Russian and Arabic data, the romanized portion
of Dakshina is not scraped directly from the users’
online communication, but instead elicited from
native speakers given the native-script sequences.
Because of this, all romanized sentences in the
data are parallel: we allocate most of them to the
source side training data, discarding their original
script counterparts, and split the remaining anno-
tated ones between validation and test.

Target:

‘Not at all. Just like Žirinovskij, [they] often make 
sensible suggestions.’

‘[One] could kinda risk it [and bet] on Property’

Как бы можно рискнуть на <UNK>Отнюдь. Так же, как 
Жириновский, часто предлагает 

здравые вещи.

Kagbi mozno riskytj na Property

Kagbi mozno riskytj na <UNK>

ಮೂಲ +,-$.ನ/$0 DDR3ಯನು2 ಬಳಸಲು
Source: moola saaketnalli ddr3yannu balasalu
Gloss: ‘to use DDR3 in the source circuit’

Figure 4: A parallel example from the Kannada por-
tion of the Dakshina dataset. The Kannada script
data (target) is scraped from Wikipedia and man-
ually converted to Latin (source) by human anno-
tators. Foreign target-side characters (in red) get
preserved in the annotation but our preprocessing
replaces them with UNK on the target side.

Serbian: svako ima pravo na �ivot, slobodu
i bezbednost liqnosti.

Bosnian: svako ima pravo na život, slobodu i osobnu
sigurnost.

Gloss: ‘Everyone has the right to life, liberty and
security of person.’

Figure 5: A parallel example from the Serbian–
Cyrillic and Bosnian–Latin UDHR. The sequences
are not entirely parallel on character level due to
paraphrases and non-cognate translations (in blue).

3.2 Related language translation

Following prior work (Pourdamghani and Knight,
2017; Yang et al., 2018; He et al., 2020), we train
our unsupervised models on the monolingual data
from the Leipzig corpora (Goldhahn et al., 2012).
We reuse the non-parallel training and synthetic par-
allel validation splits of Yang et al. (2018), who gen-
erated their parallel data using the Google Trans-
lation API. Rather than using their synthetic test
set, we opt to test on natural parallel data from the
Universal Declaration of Human Rights (UDHR),
following Pourdamghani and Knight (2017).

We manually sentence-align the Serbian–
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Cyrillic and Bosnian–Latin declaration texts and
follow the preprocessing guidelines of Pour-
damghani and Knight (2017). Although we strive
to approximate the training and evaluation setup
of their work for fair comparison, there are some
discrepancies: for example, our manual alignment
of UDHR yields 100 sentence pairs compared to
104 of Pourdamghani and Knight (2017). We use
the data to train the translation models in both di-
rections, simply switching the source and target
sides from Serbian to Bosnian and vice versa.

3.3 Inductive bias

As discussed in §1, the WFST models are less pow-
erful than the seq2seq models; however, they are
also more structured, which we can use to introduce
inductive bias to aid unsupervised training. Follow-
ing Ryskina et al. (2020), we introduce informative
priors on character substitution operations (for a de-
scription of the WFST parameterization, see §4.1).
The priors reflect the visual and phonetic similar-
ity between characters in different alphabets and
are sourced from human-curated resources built
with the same concepts of similarity in mind. For
all tasks and languages, we collect phonetically
similar character pairs from the phonetic keyboard
layouts (or, in case of the translation task, from the
default Serbian keyboard layout, which is phonetic
in nature due to the dual orthography standard of
the language). We also add some visually similar
character pairs by automatically pairing all sym-
bols that occur in both source and target alphabets
(same Unicode codepoints). For Russian, which
exhibits a greater degree of visual similarity than
Arabic or Kannada, we also make use of the Uni-
code confusables list (different Unicode codepoints
but same or similar glyphs).3

It should be noted that these automatically gen-
erated informative priors also contain noise: key-
board layouts have spurious mappings because
each symbol must be assigned to exactly one key in
the QWERTY layout, and Unicode-constrained vi-
sual mappings might prevent the model from learn-
ing correspondences between punctuation symbols
(e.g. Arabic question mark ? → ?).

3.4 Preprocessing

We lowercase and segment all sequences into char-
acters as defined by Unicode codepoints, so dia-

3Links to the keyboard layouts and the confusables list can
be found in Appendix A.

critics and non-printing characters like ZWJ are
also treated as separate vocabulary items. To filter
out foreign or archaic characters and rare diacritics,
we restrict the alphabets to characters that cover
99% of the monolingual training data. After that,
we add any standard alphabetical characters and
numerals that have been filtered out back into the
source and target alphabets. All remaining filtered
characters are replaced with a special UNK symbol
in all splits except for the target-side test.

4 Methods

We perform our analysis using the finite-state and
seq2seq models from prior work and experiment
with two joint decoding strategies, reranking and
product of experts. Implementation details and
hyperparameters are described in Appendix B.

4.1 Base models

Our finite-state model is the WFST cascade in-
troduced by Ryskina et al. (2020). The model is
composed of a character-level n-gram language
model and a script conversion transducer (emis-
sion model), which supports one-to-one character
substitutions, insertions, and deletions. Charac-
ter operation weights in the emission model are
parameterized with multinomial distributions, and
similar character mappings (§3.3) are used to cre-
ate Dirichlet priors on the emission parameters.
To avoid marginalizing over sequences of infinite
length, a fixed limit is set on the delay of any path
(the difference between the cumulative number of
insertions and deletions at any timestep). Ryskina
et al. (2020) train the WFST using stochastic step-
wise EM (Liang and Klein, 2009), marginalizing
over all possible target sequences and their align-
ments with the given source sequence. To speed
up training, we modify their training procedure
towards ‘hard EM’: given a source sequence, we
predict the most probable target sequence under
the model, marginalize over alignments and then
update the parameters. Although the unsupervised
WFST training is still slow, the stepwise training
procedure is designed to converge using fewer data
points, so we choose to train the WFST model
only on the 1,000 shortest source-side training se-
quences (500 for Kannada).

Our default seq2seq model is the unsupervised
neural machine translation (UNMT) model of Lam-
ple et al. (2018, 2019) in the parameterization
of He et al. (2020). The model consists of an
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Arabic Russian Kannada
CER WER BLEU CER WER BLEU CER WER BLEU

WFST .405 .86 2.3 .202 .58 14.8 .359 .71 12.5
Seq2Seq .571 .85 4.0 .229 .38 48.3 .559 .79 11.3

Reranked WFST .398 .85 2.8 .195 .57 16.1 .358 .71 12.5
Reranked Seq2Seq .538 .82 4.6 .216 .39 45.6 .545 .78 12.6
Product of experts .470 .88 2.5 .178 .50 22.9 .543 .93 7.0

Table 2: Character and word error rates (lower is better) and BLEU scores (higher is better) for the
romanization decipherment task. Bold indicates best per column. Model combinations mostly interpolate
between the base models’ scores, although reranking yields minor improvements in character-level and
word-level metrics for the WFST and seq2seq respectively. Note: base model results are not intended as a
direct comparison between the WFST and seq2seq, since they are trained on different amounts of data.

srp→bos bos→srp
CER WER BLEU CER WER BLEU

WFST .314 .50 25.3 .319 .52 25.5
Seq2Seq .375 .49 34.5 .395 .49 36.3

Reranked WFST .314 .49 26.3 .317 .50 28.1
Reranked Seq2Seq .376 .48 35.1 .401 .47 37.0
Product of experts .329 .54 24.4 .352 .66 20.6

(Pourdamghani and Knight, 2017) — — 42.3 — — 39.2
(He et al., 2020) .657 .81 5.6 .693 .83 4.7

Table 3: Character and word error rates (lower is better) and BLEU scores (higher is better) for the related
language translation task. Bold indicates best per column. The WFST and the seq2seq have comparable
CER and WER despite the WFST being trained on up to 160x less source-side data (§4.1). While none
of our models achieve the scores reported by Pourdamghani and Knight (2017), they all substantially
outperform the subword-level model of He et al. (2020). Note: base model results are not intended as a
direct comparison between the WFST and seq2seq, since they are trained on different amounts of data.

LSTM (Hochreiter and Schmidhuber, 1997) en-
coder and decoder with attention, trained to map
sentences from each domain into a shared latent
space. Using a combined objective, the UNMT
model is trained to denoise, translate in both direc-
tions, and discriminate between the latent represen-
tation of sequences from different domains. Since
the sufficient amount of balanced data is crucial
for the UNMT performance, we train the seq2seq
model on all available data on both source and tar-
get sides. Additionally, the seq2seq model decides
on early stopping by evaluating on a small parallel
validation set, which our WFST model does not
have access to.

The WFST model treats the target and source
training data differently, using the former to train
the language model and the latter for learning the
emission parameters, while the UNMT model is

trained to translate in both directions simultane-
ously. Therefore, we reuse the same seq2seq model
for both directions of the translation task, but train
a separate finite-state model for each direction.

4.2 Model combinations

The simplest way to combine two independently
trained models is reranking: using one model to
produce a list of candidates and rescoring them ac-
cording to another model. To generate candidates
with a WFST, we apply the n–shortest paths algo-
rithm (Mohri and Riley, 2002). It should be noted
that the n–best list might contain duplicates since
each path represents a specific source–target char-
acter alignment. The length constraints encoded in
the WFST also restrict its capacity as a reranker:
beam search in the UNMT model may produce
hypotheses too short or long to have a non-zero
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Input svako ima pravo da slobodno uqestvuje u kulturnom �ivotu zajednice, da u�iva
u umetnosti i da uqestvuje u nauqnom napretku i u dobrobiti koja otuda
proistiqe.

Ground truth svako ima pravo da slobodno sudjeluje u kulturnom životu zajednice, da uživa u umjetnosti i da
učestvuje u znanstvenom napretku i u njegovim koristima.

WFST svako ima pravo da slobodno učestvuje u kulturnom životu s jednice , da uživa u m etnosti i da
učestvuje u naučnom napretku i u dobrobiti koja otuda pr ističe .

Reranked WFST svako ima pravo da slobodno učestvuje u kulturnom životu s jednice , da uživa u m etnosti i da
učestvuje u naučnom napretku i u dobrobiti koja otuda pr ističe .

Seq2Seq svako ima pravo da slobodno učestvuje u kulturnom životu zajednice , da
učestvuje u naučnom napretku i u dobrobiti koja otuda proističe .

Reranked Seq2Seq svako ima pravo da slobodno učestvuje u kulturnom životu zajednice , da uživa u umjetnosti i da
učestvuje u naučnom napretku i u dobrobiti koja otuda proističe

Product of experts svako ima pravo da slobodno učestvuje u kulturnom za u sajednice , da živa u umjetnosti i da
učestvuje u naučnom napretku i u dobro j i koja otuda proisti

Subword Seq2Seq sami ima pravo da slobodno utiče na srpskom nivou vlasti da razgovaraju u bosne i da djeluje u
med̄unarodnom turizmu i na buducnosti koja muža decisno .

Table 4: Different model outputs for a srp→bos translation example. Prediction errors are highlighted
in red. Correctly transliterated segments that do not match the ground truth (e.g. due to paraphrasing)
are shown in yellow. Here the WFST errors are substitutions or deletions of individual characters, while
the seq2seq drops entire words from the input (§5 #4). The latter problem is solved by reranking with a
WFST for this example. The seq2seq model with subword tokenization (He et al., 2020) produces mostly
hallucinated output (§5 #2). Example outputs for all other datasets can be found in the Appendix.

probability under the WFST.
Our second approach is a product-of-experts-

style joint decoding strategy (Hinton, 2002):
we perform beam search on the WFST lattice,
reweighting the arcs with the output distribution of
the seq2seq decoder at the corresponding timestep.
For each partial hypothesis, we keep track of the
WFST state s and the partial input and output se-
quences x1:k and y1:t.4 When traversing an arc
with input label i ∈ {xk+1, ε} and output label o,
we multiply the arc weight by the probability of
the neural model outputting o as the next character:
pseq2seq(yt+1 = o|x, y1:t). Transitions with o = ε
(i.e. deletions) are not rescored by the seq2seq. We
group hypotheses by their consumed input length
k and select n best extensions at each timestep.

4.3 Additional baselines

For the translation task, we also compare to prior
unsupervised approaches of different granularity:
the deep generative style transfer model of He et al.
(2020) and the character- and word-level WFST
decipherment model of Pourdamghani and Knight
(2017). The former is trained on the same training
set tokenized into subword units (Sennrich et al.,
2016), and we evaluate it on our UDHR test set
for fair comparison. While the train and test data

4Due to insertions and deletions in the emission model, k
and t might differ; epsilon symbols are not counted.

of Pourdamghani and Knight (2017) also use the
same respective sources, we cannot account for
tokenization differences that could affect the scores
reported by the authors.

5 Results and analysis

Tables 2 and 3 present our evaluation of the two
base models and three decoding-time model com-
binations on the romanization decipherment and
related language translation tasks respectively. For
each experiment, we report character error rate,
word error rate, and BLEU (see Appendix C). The
results for the base models support what we show
later in this section: the seq2seq model is more
likely to recover words correctly (higher BLEU,
lower WER), while the WFST is more faithful on
character level and avoids word-level substitution
errors (lower CER). Example predictions can be
found in Table 4 and in the Appendix.

Our further qualitative and quantitative findings
are summarized in the following high-level take-
aways:

#1: Model combinations still suffer from search
issues. We would expect the combined decod-
ing to discourage all errors common under one
model but not the other, improving the performance
by leveraging the strengths of both model classes.
However, as Tables 2 and 3 show, they instead
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WFST Seq2Seq

Figure 6: Highest-density sub-
matrices of the two base mod-
els’ character confusion matrices,
computed in the Russian roman-
ization task. White cells repre-
sent zero elements. The WFST
confusion matrix (left) is notice-
ably sparser than the seq2seq one
(right), indicating more repetitive
errors. # symbol stands for UNK.

mostly interpolate between the scores of the two
base models. In the reranking experiments, we find
that this is often due to the same base model er-
ror (e.g. the seq2seq model hallucinating a word
mid-sentence) repeating across all the hypotheses
in the final beam. This suggests that successful
reranking would require a much larger beam size
or a diversity-promoting search mechanism.

Interestingly, we observe that although adding
a reranker on top of a decoder does improve per-
formance slightly, the gain is only in terms of the
metrics that the base decoder is already strong at—
character-level for reranked WFST and word-level
for reranked seq2seq—at the expense of the other
scores. Overall, none of our decoding strategies
achieves best results across the board, and no model
combination substantially outperforms both base
models in any metric.

#2: Character tokenization boosts performance
of the neural model. In the past, UNMT-style
models have been applied to various unsupervised
sequence transduction problems. However, since
these models were designed to operate on word or
subword level, prior work assumes the same tok-
enization is necessary. We show that for the tasks
allowing character-level framing, such models in
fact respond extremely well to character input.

Table 3 compares the UNMT model trained on
characters with the seq2seq style transfer model
of He et al. (2020) trained on subword units. The
original paper shows improvement over the UNMT
baseline in the same setting, but simply switching
to character-level tokenization without any other
changes results in a 30 BLEU points gain for ei-
ther direction. This suggests that the tokenization
choice could act as an inductive bias for seq2seq
models, and character-level framing could be use-
ful even for tasks that are not truly character-level.

This observation also aligns with the findings of
the recent work on language modeling complex-
ity (Park et al., 2021; Mielke et al., 2019). For
many languages, including several Slavic ones re-
lated to the Serbian–Bosnian pair, a character-level
language model yields lower surprisal than the one
trained on BPE units, suggesting that the effect
might also be explained by the character tokeniza-
tion making the language easier to language-model.

#3: WFST model makes more repetitive errors.
Although two of our evaluation metrics, CER and
WER, are based on edit distance, they do not dis-
tinguish between the different types of edits (sub-
stitutions, insertions and deletions). Breaking them
down by the edit operation, we find that while both
models favor substitutions on both word and char-
acter levels, insertions and deletions are more fre-
quent under the neural model (43% vs. 30% of all
edits on the Russian romanization task). We also
find that the character substitution choices of the
neural model are more context-dependent: while
the total counts of substitution errors for the two
models are comparable, the WFST is more likely
to repeat the same few substitutions per character
type. This is illustrated by Figure 6, which visual-
izes the most populated submatrices of the confu-
sion matrices for the same task as heatmaps. The
WFST confusion matrix is noticeably more sparse,
with the same few substitutions occurring much
more frequently than others: for example, WFST
often mistakes � for a and rarely for other char-
acters, while the neural model’s substitutions of
� are distributed closer to uniform. This suggests
that the WFST errors might be easier to correct
with rule-based postprocessing. Interestingly, we
did not observe the same effect for the translation
task, likely due to a more constrained nature of the
orthography conversion.
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Figure 7: Character error rate per
word for the WFST (left) and seq2seq
(right) bos→srp translation outputs.
The predictions are segmented us-
ing Moses tokenizer (Koehn et al.,
2007) and aligned to ground truth
with word-level edit distance. The in-
creased frequency of CER=1 for the
seq2seq model as compared to the
WFST indicates that it replaces entire
words more often.

#4: Neural model is more sensitive to data dis-
tribution shifts. The language model aiming to
replicate its training data distribution could cause
the output to deviate from the input significantly.
This could be an artifact of a domain shift, such as
in Russian, where the LM training data came from
a political discussion forum: the seq2seq model fre-
quently predicts unrelated domain-specific proper
names in place of very common Russian words, e.g.
�izn~ [žizn, ‘life’] → Z�ganov [Zjuganov, ‘Zyuganov

(politician’s last name)’] or �to [èto, ‘this’] → Edina�
Rossi� [Edinaja Rossija, ‘United Russia (political party)’],
presumably distracted by the shared first character
in the romanized version. To quantify the effect of
a mismatch between the train and test data distri-
butions in this case, we inspect the most common
word-level substitutions under each decoding strat-
egy, looking at all substitution errors covered by the
1,000 most frequent substitution ‘types’ (ground
truth–prediction word pairs) under the respective
decoder. We find that 25% of the seq2seq substitu-
tion errors fall into this category, as compared to
merely 3% for the WFST—notable given the rela-
tive proportion of in-vocabulary words in the mod-
els’ outputs (89% for UNMT vs. 65% for WFST).

Comparing the error rate distribution across out-
put words for the translation task also supports this
observation. As can be seen from Figure 7, the
seq2seq model is likely to either predict the word
correctly (CER of 0) or entirely wrong (CER of
1), while the the WFST more often predicts the
word partially correctly—examples in Table 4 illus-
trate this as well. We also see this in the Kannada
outputs: WFST typically gets all the consonants
right but makes mistakes in the vowels, while the
seq2seq tends to replace the entire word.

6 Conclusion

We perform comparative error analysis in finite-
state and seq2seq models and their combinations
for two unsupervised character-level tasks, infor-
mal romanization decipherment and related lan-
guage translation. We find that the two model types
tend towards different errors: seq2seq models are
more prone to word-level errors caused by distribu-
tional shifts while WFSTs produce more character-
level noise despite the hard alignment constraints.

Despite none of our simple decoding-time com-
binations substantially outperforming the base mod-
els, we believe that combining neural and finite-
state models to harness their complementary ad-
vantages is a promising research direction. Such
combinations might involve biasing seq2seq mod-
els towards WFST-like behavior via pretraining or
directly encoding constraints such as hard align-
ment or monotonicity into their parameterization
(Wu et al., 2018; Wu and Cotterell, 2019). Al-
though recent work has shown that the Transformer
can learn to perform character-level transduction
without such biases in a supervised setting (Wu
et al., 2021), exploiting the structured nature of the
task could be crucial for making up for the lack of
large parallel corpora in low-data and/or unsuper-
vised scenarios. We hope that our analysis provides
insight into leveraging the strengths of the two ap-
proaches for modeling character-level phenomena
in the absence of parallel data.
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A Data download links

The romanized Russian and Arabic data and pre-
processing scripts can be downloaded here. This
repository also contains the relevant portion of the
Taiga dataset, which can be downloaded in full at
this link. The romanized Kannada data was down-
loaded from the Dakshina dataset.

The scripts to download the Serbian and Bosnian
Leipzig corpora data can be found here. The
UDHR texts were collected from the corresponding
pages: Serbian, Bosnian.

The keyboard layouts used to construct the
phonetic priors are collected from the following
sources: Arabic 1, Arabic 2, Russian, Kannada,
Serbian. The Unicode confusables list used for the
Russian visual prior can be found here.

B Implementation

WFST We reuse the unsupervised WFST imple-
mentation of Ryskina et al. (2020),5 which utilizes
the OpenFst (Allauzen et al., 2007) and Open-
Grm (Roark et al., 2012) libraries. We use the
default hyperparameter settings described by the
authors (see Appendix B in the original paper). We
keep the hyperparameters unchanged for the trans-
lation experiment and set the maximum delay value
to 2 for both translation directions.

UNMT We use the PyTorch UNMT implementa-
tion of He et al. (2020)6 which incorporates im-
provements introduced by Lample et al. (2019)
such as the addition of a max-pooling layer. We
use a single-layer LSTM (Hochreiter and Schmid-
huber, 1997) with hidden state size 512 for both
the encoder and the decoder and embedding dimen-
sion 128. For the denoising autoencoding loss, we
adopt the default noise model and hyperparameters
as described by Lample et al. (2018). The autoen-
coding loss is annealed over the first 3 epochs. We
predict the output using greedy decoding and set
the maximum output length equal to the length of
the input sequence. Patience for early stopping is
set to 10.

Model combinations Our joint decoding imple-
mentations rely on PyTorch and the Pynini finite-
state library (Gorman, 2016). In reranking, we
rescore n = 5 best hypotheses produced using

5https://github.com/ryskina/
romanization-decipherment

6https://github.com/cindyxinyiwang/
deep-latent-sequence-model

beam search and n–shortest path algorithm for the
UNMT and WFST respectively. Product of experts
decoding is also performed with beam size 5.

C Metrics

The character error rate (CER) and word error rate
(WER) as measured as the Levenshtein distance
between the hypothesis and reference divided by
reference length:

ER(h, r) =
dist(h, r)

len(r)

with both the numerator and the denominator mea-
sured in characters and words respectively.

We report BLEU-4 score (Papineni et al., 2002),
measured using the Moses toolkit script.7 For both
BLEU and WER, we split sentences into words
using the Moses tokenizer (Koehn et al., 2007).

7https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

https://github.com/ryskina/romanization-decipherment
https://tatianashavrina.github.io/taiga_site/downloads
https://tatianashavrina.github.io/taiga_site/downloads
https://github.com/google-research-datasets/dakshina
https://github.com/cindyxinyiwang/deep-latent-sequence-model
https://unicode.org/udhr/d/udhr_srp_cyrl.txt
https://unicode.org/udhr/d/udhr_bos_latn.txt
http://arabic.omaralzabir.com/
https://thomasplagwitz.com/2013/01/06/imrans-phonetic-keyboard-for-arabic/
http://winrus.com/kbd_e.htm
http://kaulonline.com/uninagari/kannada/
http://ascii-table.com/keyboard.php/450
https://www.unicode.org/Public/security/latest/confusables.txt
https://github.com/ryskina/romanization-decipherment
https://github.com/ryskina/romanization-decipherment
https://github.com/cindyxinyiwang/deep-latent-sequence-model
https://github.com/cindyxinyiwang/deep-latent-sequence-model
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Input kongress ne odobril biudjet dlya osuchestvleniye
"bor’bi s kommunizmom" v yuzhniy amerike.

Ground truth kongress ne odobril b�d�et dl�
osuwestvleni� "bor~by s kommunizmom"
v ��noĭ amerike.

kongress ne odobril bjudžet dlja osuščestvlenija
"bor’by s kommunizmom" v južnoj amerike.

WFST kongress ne odobril viud et dla
osusqestvleniy e "bor#bi s
kommunizmom" v uuznani amerike.

kongress ne odobril viud et dla osusčestvleniy e
"bor#bi s kommunizmom" v uuznani amerike.

Reranked WFST kongress ne odobril vid et dela
osusqestvleniy e "bor#bi s
kommunizmom" v uuznani amerike.

kongress ne odobril vid et de la osusčestvleniy e
"bor#bi s kommunizmom" v uuznani amerike.

Seq2Seq kongress ne odobril
by udivitel~no s
kommunizmom" v ��nyĭ amerike.

kongress ne odobril by udivitel’no
s kommunizmom" v južnyj amerike.

Reranked Seq2Seq kongress ne odobril b�d�et dl�
osuwestvlenie "bor~by s kommunizmom"
v ��nyĭ amerike.

kongress ne odobril bjudžet dlja osuščestvlenie
"bor’by s kommunizmom" v južnyj amerike.

Product of experts kongress ne odobril bid et dl� a
osuwestvleniy e "bor~by s
kommunizmom" v uuznnik ameri

kongress ne odobril b id et dlja a osuščestvleniy e
"bor’by s kommunizmom" v uuznnik ameri

Table 5: Different model outputs for a Russian transliteration example (left column—Cyrillic, right—
scientific transliteration). Prediction errors are shown in red. Correctly transliterated segments that do not
match the ground truth because of spelling standardization in annotation are in yellow. # stands for UNK.

Input ana h3dyy 3lek bokra 3la 8 kda

Ground truth èY» 8 úÎ«
�
èQºK. ½J
Ê« ø



Y«



Ag A

	
K @ AnA H>Edy Elyk bkrp ElY 8 kdh

WFST èY» 8


B QºK. ½Ë ù



K
 Yg A

	
K @ AnA H d yy l k bkr l> 8 kdh

Reranked WFST èY» 8


B QºK. ½Ë ù



K
 Yg A

	
K @ AnA H d yy l k bkr l> 8 kdh

Seq2Seq èY» 1 Èð


@ Qk ½Ê

	
g



@ ø



X



AK. A

	
K @ AnA b>dy >xl k Hr >wl 1 kdh

Reranked Seq2Seq èY» 1 Èð


@ Qk ½Ê

	
g



@ ø



X



AK. A

	
K @ AnA b>dy >xl k Hr >wl 1 kdh

Product of experts èY» 8 B


@ @Q» H. ½Ë ø



X A

	
K @ AnA dy l k b krA > lA 8 kdh

Table 6: Different model outputs for an Arabizi transliteration example (left column—Arabic, right—
Buckwalter transliteration). Prediction errors are highlighted in red in the romanized versions. Correctly
transliterated segments that do not match the ground truth because of spelling standardization during
annotation are highlighted in yellow.

Input kshullaka baalina avala horaatavannu adu vivarisuttade.
Ground truth

ಮೂಲ +,-$.ನ/$0 DDR3ಯನು2 ಬಳಸಲು

5ುಲ0ಕ 7,8$ನ ಅವಳ ;$ೂೕ=,ಟವನು2 ಅದು @$ವA$ಸುತBC$.

 ಕುಹೂE,0F$ 7,/$ನು G,ಳ ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕುಹೂE,0F$ 7,/$ನ G,ಳu ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕಳuಹುಳL 7,@$ಂN ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

ಕಳL 7,ಕ/$ನ2 G,E, ;$ೂೕ=,ಟI,Qನು2 ದು @$G,A$ಸುತBದ

ಕಳuಹುಳL 7,@$ಂತ ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

ks.ullaka bāl.ina aval.a hōrāt.avannu adu
vivarisuttade.

WFST

ಮೂಲ +,-$.ನ/$0 DDR3ಯನು2 ಬಳಸಲು

5ುಲ0ಕ 7,8$ನ ಅವಳ ;$ೂೕ=,ಟವನು2 ಅದು @$ವA$ಸುತBC$.

 ಕುಹೂE,0F$ 7,/$ನು G,ಳ ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕುಹೂE,0F$ 7,/$ನ G,ಳu ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕಳuಹುಳL 7,@$ಂN ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

ಕಳL 7,ಕ/$ನ2 G,E, ;$ೂೕ=,ಟI,Qನು2 ದು @$G,A$ಸುತBದ

ಕಳuಹುಳL 7,@$ಂತ ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

k uhū ll ākhe bā l inu v ā l.a
horatāvannu ādu vivarisuttade.

Reranked WFST

ಮೂಲ +,-$.ನ/$0 DDR3ಯನು2 ಬಳಸಲು

5ುಲ0ಕ 7,8$ನ ಅವಳ ;$ೂೕ=,ಟವನು2 ಅದು @$ವA$ಸುತBC$.

 ಕುಹೂE,0F$ 7,/$ನು G,ಳ ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕುಹೂE,0F$ 7,/$ನ G,ಳu ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕಳuಹುಳL 7,@$ಂN ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

ಕಳL 7,ಕ/$ನ2 G,E, ;$ೂೕ=,ಟI,Qನು2 ದು @$G,A$ಸುತBದ

ಕಳuಹುಳL 7,@$ಂತ ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

k uhū ll ākhe bā l ina v ā l. u
horatāvannu ādu vivarisuttade.

Seq2Seq

ಮೂಲ +,-$.ನ/$0 DDR3ಯನು2 ಬಳಸಲು

5ುಲ0ಕ 7,8$ನ ಅವಳ ;$ೂೕ=,ಟವನು2 ಅದು @$ವA$ಸುತBC$.

 ಕುಹೂE,0F$ 7,/$ನು G,ಳ ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕುಹೂE,0F$ 7,/$ನ G,ಳu ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕಳuಹುಳL 7,@$ಂN ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

ಕಳL 7,ಕ/$ನ2 G,E, ;$ೂೕ=,ಟI,Qನು2 ದು @$G,A$ಸುತBದ

ಕಳuಹುಳL 7,@$ಂತ ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

kal. uhul.l. a bāv i ṁg illav ē hōrāt.avannu
idu vivarisuttade.

Reranked Seq2Seq

ಮೂಲ +,-$.ನ/$0 DDR3ಯನು2 ಬಳಸಲು

5ುಲ0ಕ 7,8$ನ ಅವಳ ;$ೂೕ=,ಟವನು2 ಅದು @$ವA$ಸುತBC$.

 ಕುಹೂE,0F$ 7,/$ನು G,ಳ ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕುಹೂE,0F$ 7,/$ನ G,ಳu ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕಳuಹುಳL 7,@$ಂN ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

ಕಳL 7,ಕ/$ನ2 G,E, ;$ೂೕ=,ಟI,Qನು2 ದು @$G,A$ಸುತBದ

ಕಳuಹುಳL 7,@$ಂತ ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$. kal. uhul.l. a bāv i ṁta ill av ē hōrāt.avannu
idu vivarisuttade.

Product of experts

ಮೂಲ +,-$.ನ/$0 DDR3ಯನು2 ಬಳಸಲು

5ುಲ0ಕ 7,8$ನ ಅವಳ ;$ೂೕ=,ಟವನು2 ಅದು @$ವA$ಸುತBC$.

 ಕುಹೂE,0F$ 7,/$ನು G,ಳ ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕುಹೂE,0F$ 7,/$ನ G,ಳu ;$ೂರI,ವನು2 ಆದು @$ವA$ಸುತBC$.

ಕಳuಹುಳL 7,@$ಂN ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

ಕಳL 7,ಕ/$ನ2 G,E, ;$ೂೕ=,ಟI,Qನು2 ದು @$G,A$ಸುತBದ

ಕಳuಹುಳL 7,@$ಂತ ಇಲ0P$ೕ ;$ೂೕ=,ಟವನು2 ಇದು @$ವA$ಸುತBC$.

k al.l. a bākal inna v ālā hōrāt.a tv ānnu
du viv ā risuttada

Table 7: Different model outputs for a Kannada transliteration example (left column—Kannada, right—
ISO 15919 transliterations). The ISO romanization is generated using the Nisaba library (Johny et al.,
2021). Prediction errors are highlighted in red in the romanized versions.


