
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,

August 5, 2021. ©2021 Association for Computational Linguistics

pages 126–130

126

Data augmentation for low-resource grapheme-to-phoneme mapping

Michael Hammond
Dept. of Linguistics

U. of Arizona
Tucson, AZ, USA

hammond@u.arizona.edu

Abstract
In this paper we explore a very simple neural
approach to mapping orthography to phonetic
transcription in a low-resource context. The
basic idea is to start from a baseline system
and focus all efforts on data augmentation. We
will see that some techniques work, but others
do not.

1 Introduction

This paper describes a submission by our team to
the 2021 edition of the SIGMORPHON Grapheme-
to-Phoneme conversion challenge. Here we demon-
strate our efforts to improve grapheme-to-phoneme
mapping for low-resource languages in a neural
context using only data augmentation techniques.

The basic problem in the low-resource condition
was to build a system that maps from graphemes
to phonemes with very limited data. Specifically,
there were 10 languages with 800 training pairs
and 100 development pairs. Each pair was a word
in its orthographic representation and a phonetic
transcription of that word (though some multi-word
sequences were also included). Systems were then
tested on 100 additional pairs for each language.
The 10 languages are given in Table 1.

To focus our efforts, we kept to a single system,
intentionally similar to one of the simple baseline
systems from the previous year’s challenge.

We undertook and tested three data augmenta-
tion techniques.

1. move as much development data to training
data as possible

2. extract substring pairs from the training data
to use as additional training data

3. train all the languages together

In the following, we first provide additional de-
tails on our base system and then outline and test

Code Language
ady Adyghe
gre Modern Greek
ice Icelandic
ita Italian
khm Khmer
lav Latvian
mlt(latn) Maltese (Latin script)
rum Romanian
slv Slovene
wel(sw) Welsh (South Wales dialect)

Table 1: Languages and codes

each of the moves above separately. We will see
that some work and some do not.

We acknowledge at the outset that we do not ex-
pect a system of this sort to “win”. Rather, we were
interested in seeing how successful a minimalist
approach might be, one that did not require major
changes in system architecture or training. This
minimalist approach entailed that the system not
require a lot of detailed manipulation and so we
started with a “canned” system. This approach also
entailed that training be something that could be
accomplished with modest resources and time. All
configurations below were run on a Lambda Labs
Tensorbook with a single GPU.1 No training run
took more than 10 minutes.

2 General architecture

The general architecture of the model is inspired by
one of the 2020 baseline systems (Gorman et al.,
2020): a sequence-to-sequence neural net with a
two-level LSTM encoder and a two-level LSTM
decoder. The system we used is adapted from the
OpenNMT base (Klein et al., 2017).

There is a 200-element embedding layer in both
1RTX 3080 Max-Q.

127

encoder and decoder. Each LSTM layer has 300
nodes. The systems are connected by a 5-head
attention mechanism (Luong et al., 2015). Training
proceeds in 24,000 steps and the learning rate starts
at 1.0 and decays at a rate of 0.8 every 1,000 steps
starting at step 10,000. Optimization is stochastic
gradient descent, the batch size is 64, the dropout
rate is 0.5.

We spent a fair amount of time tuning the system
to these settings for optimal performance with this
general architecture on these data. We do not detail
these efforts as this is just a normal part of working
with neural nets and not our focus here.

Precise instructions for building the docker im-
age, full configuration files, and auxiliary code files
are available at https://github.com/hammondm/
g2p2021.

3 General results

In this section, we give the general results of the full
system with all strategies in place and then in the
next sections we strip away each of our augmenta-
tion techniques to see what kind of effect each has.
In building our system, we did not have access to
the correct transcriptions for the test data provided,
so we report performance on the development data
here.

The system was subject to certain amount of
randomness because of randomization of training
data and random initial weights in the network. We
therefore report mean final accuracy scores over
multiple runs.

Our system provides accuracy scores for devel-
opment data in terms of character-level accuracy.
The general task was scored in terms of word-level
error rate, but we keep this measure for several
reasons. First, it was simply easier as this is what
the system provided as a default. Second, this is
a more granular measure that enabled us to adjust
the system more carefully. Finally, we were able
to simulate word-level accuracy in addition as de-
scribed below.

We use a Monte Carlo simulation to calculate
expected word-level accuracy based on character-
level accuracy and average transcription length for
the training data for the different languages. The
simulation works by generating 100, 000 words
with a random distribution of a specific character-
level accuracy rate and then calculating word-level
accuracy from that. Running the full system ten
times, we get the results in Table 2. Keep in mind

Character Word
94.84 75.6
94.78 75.3
94.46 74.0
94.84 75.5
94.71 75.0
94.59 74.5
94.90 75.8
94.53 74.2
94.53 74.2
94.71 75.0

Mean 94.69 74.91

Table 2: Development accuracy for 10 runs of the full
system with all languages grouped together with esti-
mated word-level accuracy

Character Word
94.60 74.6
94.71 75.0
94.35 73.8
94.48 74.0
94.48 74.0
94.50 74.2
94.59 74.5
94.71 75.0
94.80 75.4
94.59 74.5

Mean 94.58 74.5

Table 3: Development accuracy for 10 runs of the re-
duced system with all languages grouped together with
100 development pairs with estimated word-level accu-
racy

that we are reporting accuracy rather than error rate,
so the goal is to maximize these values.

4 Using development data

The default partition for each language is 800 pairs
for training and 100 pairs for development. We
shifted this to 880 pairs for training and 20 pairs
for development. The logic of this choice was
to retain what seemed like the minimum number
of development items. Running the system ten
times without this repartitioning gives the results
in Table 3.

There is a small difference in the right direction,
but it is not significant for characters (t = −1.65,
p = 0.11, unpaired) or words (t = −1.56, p =
0.13, unpaired). It may be that with a larger sample
of runs, the difference becomes more stable.

https://github.com/hammondm/g2p2021
https://github.com/hammondm/g2p2021

128

Code Items added
ady 4
gre 223
ice 58
ita 194
khm 39
lav 100
mlt latn 62
rum 119
slv 127
wel sw 7

Table 4: Number of substrings added for each language

5 Using substrings

This method involves finding peripheral letters that
map unambiguously to some symbol and then find-
ing plausible splitting points within words to create
partial words that can be added to the training data.

Let’s exemplify this with Welsh. First, we iden-
tify all word-final letters that always correspond to
the same symbol in the transcription. For exam-
ple, the letter c always corresponds to a word-final
[k]. Similarly, we identify word-initial characters
with the same property. For example, in these data,
the word-initial letter t always corresponds to [t].2

We then search for any word in training that has
the medial sequence ct where the transcription has
[kt]. We take each half of the relevant item and add
them to the training data if that pair is not already
there. For example, the word actor [aktOr] fits the
pattern, so we can add the pairs ac-ak and tor-tOr.
to the training data. Table 4 gives the number of
items added for each language. This strategy is
a more limited version of the “slice-and-shuffle”
approach used by Ryan and Hulden (2020) in last
year’s challenge.

Note that this procedure can make errors. If there
are generalizations about the pronunciation of let-
ters that are not local, that involve elements at a
distance, this procedure can obscure those. Another
example from Welsh makes the point. There are
exceptions, but the letter y in Welsh is pronounced
two ways. In a word-final syllable, it is pronounced
[1], e.g. gwyn [gw1n] ‘white’. In a non-final sylla-
ble, it is pronounced [@], e.g. gwynion [gw@njOn]
‘white ones’. Though it doesn’t happen in the train-
ing data here, the procedure above could easily

2This is actually incorrect for the language as a whole.
Word-initial t in the digraph th corresponds to a different
sound [T].

Character Word
95.15 76.9
94.40 73.7
95.15 76.8
94.59 74.5
94.65 74.8
95.27 77.4
94.53 74.2
94.78 75.2
95.09 76.6
94.59 74.5

Mean 94.82 75.46

Table 5: 10 runs with all languages grouped together
without substrings added for each language

result in a y in a non-final syllable ending up in a
final syllable in a substring generated as above.

Table 5 shows the results of 10 runs without
these additions and simulated word error rates for
each run.

Strikingly, adding the substrings lowered per-
formance, but the difference with the full model
is not significant for either characters (t = 1.18,
p = 0.25, unpaired) or for words (t = 1.17,
p = 0.25, unpaired). This model without sub-
strings is the best-performing of all the models we
tried, so this is what was submitted.

6 Training together

The basic idea here was to leverage the entire set
of languages. Thus all languages were trained to-
gether. To distinguish them, each pair was prefixed
by its language code. Thus if we had orthogra-
phy O = 〈o1, o2, . . . , on〉 and transcription T =
〈t1, t2, . . . , tm〉 from language x, the net would be
trained on the pair O′ = 〈x, o1, o2, . . . , on〉 and
T ′ = 〈x, t1, t2, . . . , tm〉. The idea is that, while
the mappings and orthographies are distinct, there
are similarities in what letters encode what sounds
and in the possible sequences of sounds that can
occur in the transcriptions. This approach is very
similar to that of Peters et al. (2017), except that
we tag the orthography and the transcription with
the same langauge tag. Peters and Martins (2020)
took a similar approach in last years challenge, but
use embeddings prefixed at each time step.

In Table 6 we give the results for running each
language separately 5 times. Since there was a lot
less training data for each run, these models settled
faster, but we ran them the same number of steps

129

as the full models for comparison purposes.
There’s a lot of variation across runs and the

means for each language are quite different, pre-
sumably based on different levels of orthographic
transparency. The general pattern is clear that, over-
all, training together does better than training sep-
arately. Comparing run means with our baseline
system is significant (t = −6.06, p < .001, un-
paired).

This is not true in all cases however. For some
languages, individual training seems to be better
than training together. Our hypothesis is that lan-
guages that share similar orthographic systems did
better with joint training and that languages with
diverging systems suffered.

The final results show that our best system (no
substrings included, all languages together, moving
development data to training) performed reason-
ably for some languages, but did quite poorly for
others. This suggests a hybrid strategy that would
have been more successful. In addition to training
the full system here, train individual systems for
each language. For test, compare final develop-
ment results for individual languages for the jointly
trained system and the individually trained systems
and use whichever does better for each language in
testing.

7 Conclusion

To conclude, we have augmented a basic sequence-
to-sequence LSTM model with several data aug-
mentation moves. Some of these were successful:
redistributing data from development to training
and training all the languages together. Some tech-
niques were not successful though: the substring
strategy resulted in diminished performance.

Acknowledgments

Thanks to Diane Ohala for useful discussion.
Thanks to several anonymous reviewers for very
helpful feedback. All errors are my own.

References
Kyle Gorman, Lucas F.E. Ashby, Aaron Goyzueta,

Arya McCarthy, Shijie Wu, and Daniel You. 2020.
The SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. In Proceed-
ings of the 17th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 40–50. Association for Compu-
tational Linguistics.

G. Klein, Y. Kim, Y. Y. Deng, J. Senellart, and
A.M. Rush. 2017. OpenNMT: Open-source toolkit
for neural machine translation. ArXiv e-prints.
1701.02810.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421.

Ben Peters, Jon Dehdari, and Josef van Genabith.
2017. Massively multilingual neural grapheme-to-
phoneme conversion. In Proceedings of the First
Workshop on Building Linguistically Generalizable
NLP Systems, pages 19–26, Copenhagen. Associa-
tion for Computational Linguistics.

Ben Peters and André F. T. Martins. 2020. DeepSPIN
at SIGMORPHON 2020: One-size-fits-all multilin-
gual models. In Proceedings of the 17th SIGMOR-
PHON Workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages 63–
69. Association for Computational Linguistics.

Zach Ryan and Mans Hulden. 2020. Data augmen-
tation for transformer-based G2P. In Proceedings
of the 17th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 184–188. Association for Computa-
tional Linguistics.

130

language 5 separate runs Mean
ady 95.27 91.12 93.49 94.67 93.49 93.61
gre 97.25 98.35 98.35 98.90 98.90 98.35
ice 91.16 94.56 93.88 90.48 94.56 92.93
ita 93.51 94.59 94.59 94.59 94.59 94.38
khm 94.19 90.32 90.97 90.97 90.97 91.48
lav 94.00 90.67 89.33 92.00 90.67 91.33
mlt latn 91.89 94.59 91.89 92.57 93.24 92.84
rum 95.29 96.47 94.71 95.88 95.29 95.51
slv 94.01 94.61 04.61 94.61 94.01 94.37
wel sw 96.30 97.04 96.30 97.04 96.30 96.59
Mean 94.29 94.23 93.81 94.17 94.2 94.14

Table 6: 5 separate runs for each language

