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Abstract
Human-assisting systems such as dialogue
systems must take thoughtful, appropriate ac-
tions not only for clear and unambiguous user
requests, but also for ambiguous user requests,
even if the users themselves are not aware of
their potential requirements. To construct such
a dialogue agent, we collected a corpus and
developed a model that classifies ambiguous
user requests into corresponding system ac-
tions. In order to collect a high-quality corpus,
we asked workers to input antecedent user re-
quests whose pre-defined actions could be re-
garded as thoughtful. Although multiple ac-
tions could be identified as thoughtful for a
single user request, annotating all combina-
tions of user requests and system actions is
impractical. For this reason, we fully anno-
tated only the test data and left the annotation
of the training data incomplete. In order to
train the classification model on such training
data, we applied the positive/unlabeled (PU)
learning method, which assumes that only a
part of the data is labeled with positive ex-
amples. The experimental results show that
the PU learning method achieved better perfor-
mance than the general positive/negative (PN)
learning method to classify thoughtful actions
given an ambiguous user request.

1 Introduction

Task-oriented dialogue systems satisfy user re-
quests by using pre-defined system functions
(Application Programming Interface (API) calls).
Natural language understanding, a module to
bridge user requests and system API calls, is an
important technology for spoken language appli-
cations such as smart speakers (Wu et al., 2019).

Although existing spoken dialogue systems as-
sume that users give explicit requests to the sys-
tem (Young et al., 2010), users may not always be
able to define and verbalize the content and condi-
tions of their own requests clearly (Yoshino et al.,

2017). On the other hand, human concierges or
guides can respond thoughtfully even when the
users’ requests are ambiguous. For example, when
a user says, “I love the view here,” they can re-
spond, “Shall I take a picture?” If a dialogue agent
can respond thoughtfully to a user who does not
explicitly request a specific function, but has some
potential request, the agent can provide effective
user support in many cases. We aim to develop
such a system by collecting a corpus of user re-
quests and thoughtful actions (responses) of the
dialogue agent. We also investigate whether the
system responds thoughtfully to the user requests.

The Wizard of Oz (WOZ) method, in which two
subjects are assigned to play the roles of a user
and a system, is a common method for collecting a
user-system dialogue corpus (Budzianowski et al.,
2018; Kang et al., 2019). However, in the col-
lection of thoughtful dialogues, the WOZ method
faces the following two problems. First, even hu-
mans have difficulty responding thoughtfully to
every ambiguous user request. Second, since the
system actions are constrained by its API calls,
the collected actions sometimes are infeasible. To
solve these problems, we pre-defined 70 system
actions and asked crowd workers to provide the
antecedent requests for which each action could
be regarded as thoughtful.

We built a classification model to recognize sin-
gle thoughtful system actions given the ambigu-
ous user requests. However, such ambiguous user
requests can be regarded as antecedent requests
of multiple system actions. For example, if the
function “searching for fast food” and the function
“searching for a cafe” are invoked in action to the
antecedent request “I’m hungry,” both are thought-
ful actions. Thus, we investigated whether the
ambiguous user requests have other correspond-
ing system actions in the 69 system actions other
than the pre-defined system actions. We isolated a
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Level Definition
Q1 The actual, but unexpressed request
Q2 The conscious, within-brain description of the

request
Q3 The formal statement of the request
Q4 The request as presented to the dialogue agent

Table 1: Levels of ambiguity in requests (queries)
(Taylor, 1962, 1968)

portion of collected ambiguous user requests from
the corpus and added additional annotation using
crowdsourcing. The results show that an average
of 9.55 different actions to a single user request
are regarded as thoughtful.

Since annotating completely multi-class labels
is difficult in actual data collection (Lin et al.,
2014), we left the training data as incomplete data
prepared as one-to-one user requests and system
actions. We defined a problem to train a model
on the incompletely annotated data and tested
on the completely annotated data1. In order to
train the model on the incomplete training data,
we applied the positive/unlabeled (PU) learning
method (Elkan and Noto, 2008; Cevikalp et al.,
2020), which assumes that some of the data are
annotated as positive and the rest are not. The
experimental results show that the proposed clas-
sifier based on PU learning has higher classifica-
tion performances than the conventional classifier,
which is based on general positive/negative (PN)
learning.

2 Thoughtful System Action to
Ambiguous User Request

Existing task-oriented dialogue systems assume
that user intentions are clarified and uttered in an
explicit manner; however, users often do not know
what they want to request. User requests in such
cases are ambiguous. Taylor (1962, 1968) cate-
gorizes user states in information search into four
levels according to their clarity, as shown in Table
1.

Most of the existing task-oriented dialogue sys-
tems (Madotto et al., 2018; Vanzo et al., 2019)
convert explicit user requests (Q3) into machine
readable expressions (Q4). Future dialogue sys-
tems need to take appropriate actions even in
situations such as Q1 and Q2, where the users
are not able to clearly verbalize their requests

1The dataset is available at
https://github.com/ahclab/arta_corpus.

Figure 1: Example of thoughtful dialogue

(Yoshino et al., 2017). We used crowdsourcing to
collect ambiguous user requests and link them to
appropriate system actions. This section describes
the data collection.

2.1 Corpus Collection

We assume a dialogue between a user and a di-
alogue agent on a smartphone application in the
domain of tourist information. The user can make
ambiguous requests or monologues, and the agent
responds with thoughtful actions. Figure 1 shows
an example dialogue between a user and a dia-
logue agent. The user utterance “I love the view
here!” is not verbalized as a request for a spe-
cific function. The dialogue agent responds with
a thoughtful action, “Shall I launch the camera ap-
plication?” and launches the camera application.

The WOZ method, in which two subjects are
assigned to play the roles of a user and a dia-
logue agent, is widely used to collect dialogue
samples. However, even human workers have dif-
ficulty always responding with thoughtful actions
to ambiguous user requests. In other words, the
general WOZ dialogue is not appropriate for col-
lecting such thoughtful actions. Moreover, these
thoughtful actions must be linked to a system’s
API functions because possible agent actions are
limited with its applications. In other words, we
can qualify the corpus by collecting antecedent
ambiguous user requests to defined possible agent
actions. Therefore, we collected request-action
pairs by asking crowd workers to input antecedent
ambiguous user requests for the pre-defined agent
action categories.

We defined three major functions of the dia-
logue agent: “spot search,” “restaurant search,”
and “application (app) launch.” Table 2 shows the
defined functions. Each function has its own cat-
egories. The actions of the dialogue agent in the
corpus are generated by linking them to these cat-
egories. There are 70 categories in total. The func-
tions and categories are defined heuristically ac-
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cording to Web sites for Kyoto sightseeing. “Spot
search” is a function to search for specific spots
and is presented to the user in the form of an action
such as “Shall I search for an art museum around
here?” “Restaurant search” is a function to search
for specific restaurants and is presented to the user
in the form of an action such as “Shall I search
for shaved ice around here?” “App launch” is a
function to launch a specific application and is pre-
sented to the user in the form of an action such as
“Shall I launch the camera application?”

We used crowdsourcing2 to collect a Japanese
corpus based on the pre-defined action categories
of the dialogue agent3. The statistics of the col-
lected corpus are shown in Table 4. The request
examples in the corpus are shown in Table 3. Ta-
ble 3 shows that we collected ambiguous user re-
quests where the pre-defined action could be re-
garded as thoughtful. The collected corpus con-
taining 27,230 user requests was split into training
data:validation data:test data = 24, 430 : 1, 400 :
1, 400. Each data set contains every category in
the same proportion.

2.2 Multi-Class Problem on Ambiguous User
Request

Since the user requests collected in Sec. 2.1 are
ambiguous in terms of their requests, some of the
69 unannotated actions other than the pre-defined
actions can be thoughtful. Although labeling all
combinations of user requests and system actions
as thoughtful or not is costly and impractical, a
comprehensive study is necessary to determine
real thoughtful actions. Thus, we completely an-
notated all combinations of 1,400 user requests
and system actions in the test data.

We used crowdsourcing for this additional an-
notation. The crowd workers were presented with
a pair of a user request and an unannotated action,
and asked to make a binary judgment on whether
the action was “contextually natural and thought-
ful to the user request” or not. Each pair was
judged by three workers and the final decision was
made by majority vote.

The number of added action categories that
were identified as thoughtful is shown in Table
5. 8.55 different categories on average were iden-
tified as thoughtful. The standard deviation was

2https://crowdworks.jp/
3The details of the instruction and the input form are avail-

able in Appendix A.1.

Function Category #
spot
search

amusement park, park, sports facil-
ity, experience-based facility, sou-
venir shop, zoo, aquarium, botanical
garden, tourist information center,
shopping mall, hot spring, temple,
shrine, castle, nature or landscape,
art museum, historic museum, ki-
mono rental, red leaves, cherry blos-
som, rickshaw, station, bus stop, rest
area, Wi-Fi spot, quiet place, beauti-
ful place, fun place, wide place, nice
view place

30

restaurant
search

cafe, matcha, shaved ice, Japanese
sweets, western-style sweets, curry,
obanzai (traditional Kyoto food),
tofu cuisine, bakery, fast food, noo-
dles, nabe (Japanese stew), rice bowl
or fried food, meat dishes, sushi
or fish dishes, flour-based foods,
Kyoto cuisine, Chinese, Italian,
French, child-friendly restaurant or
family restaurant, cha-kaiseki (tea-
ceremony dishes), shojin (Japanese
Buddhist vegetarian cuisine), veg-
etarian restaurant, izakaya or bar,
food court, breakfast, inexpensive
restaurant, average priced restaurant,
expensive restaurant

30

app
launch

camera, photo, weather, music,
transfer navigation, message, phone,
alarm, browser, map

10

Table 2: Functions and categories of dialogue agent. #
means the number of categories.

7.84; this indicates that the number of added cat-
egories varies greatly for each user request. Com-
paring the number of added categories for each
function, “restaurant search” has the highest aver-
age at 9.81 and “app launch” has the lowest aver-
age at 5.06. The difference is caused by the target
range of functions; “restaurant search” contains
the same intention with different slots, while “app
launch” covers different types of system roles. For
the second example showed in Table 3, “I’ve been
eating a lot of Japanese food lately, and I’m get-
ting a little bored of it,” suggesting any type of
restaurant other than Japanese can be a thoughtful
response in this dialogue context.

Table 6 shows the detailed decision ratios of
the additional annotation. The ratios that two or
three workers identified each pair of a user request
and a system action as thoughtful are 7.23 and
5.16, respectively; this indicates that one worker
identified about 60% added action categories as
not thoughtful. Fleiss’ kappa value is 0.4191; the
inter-annotator agreement is moderate.

Figure 2 shows the heatmap of the given and
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User request (collecting with crowdsourcing) System action (pre-defined)
I’m sweaty and uncomfortable. Shall I search for a hot spring around here?
I’ve been eating a lot of Japanese food lately and I’m getting
a little bored of it.

Shall I search for meat dishes around here?

Nice view. Shall I launch the camera application?

Table 3: Examples of user requests in corpus. The texts are translated from Japanese to English. User requests for
all pre-defined system actions are available in Appendix A.2.

Function Ave. length # requests
spot search 13.44 (±4.69) 11,670
restaurant search 14.08 (±4.82) 11,670
app launch 13.08 (±4.65) 3,890
all 13.66 (±4.76) 27,230

Table 4: Corpus statistics

Function # added categories
spot search 8.45 (±7.34)
restaurant search 9.81 (±7.77)
app launch 5.06 (±8.48)
all 8.55 (±7.84)

Table 5: # of added action categories

added categories. From the top left of both the
vertical and horizontal axes, each line indicates
one category in the order listed in Table 2. The
highest value corresponding to the darkest color
in Figure 2 is 20 because 20 ambiguous user re-
quests are contained for each given action in the
test data. Actions related to the same role are an-
notated in functions of “spot search” and “restau-
rant search.” One of the actions near the right-
most column is identified as thoughtful for many
contexts. This action category was “browser” in
the “app launch” function, which is expressed in
the form of “Shall I display the information about
XX?” “Spot search” and “restaurant search” also
had one action category annotated as thoughtful
action for many antecedent requests. These cate-
gories are, respectively, “tourist information cen-
ter” and “food court.”

Table 7 shows some pairs that have large values
in Fig. 2. For any combination, both actions can
be responses to the given ambiguous requests.

3 Thoughtful Action Classification

We collected pairs of ambiguous user requests
and thoughtful system action categories in Sec.
2. Using this data, we developed a model that
outputs thoughtful actions to given ambiguous
user requests. The model classifies user requests
into categories of corresponding actions. Posi-

Figure 2: Heat map of given and added categories

# Ratio (%)
0 70, 207 (72.68)
1 14, 425 (14.93)
2 6, 986 (7.23)
3 4, 982 (5.16)
all 96, 600

Table 6: Decision ratios of additional annotation. #
means the number of workers that identified each pair
of a request and an action as thoughtful. The Fleiss’
kappa value is 0.4191.

tive/negative (PN) learning is widely used for clas-
sification, where the collected ambiguous user re-
quests and the corresponding system action cate-
gories are taken as positive examples, and other
combinations are taken as negative examples.
However, as indicated in Sec. 2.2, several action
candidates can be thoughtful response actions to
one ambiguous user request. Since complete an-
notation to any possible system action is costly,
we apply positive/unlabeled (PU) learning to con-
sider the data property; one action is annotated as
a thoughtful response to one ambiguous user re-
quest, but labels of other system actions are not
explicitly decided. In this section, we describe the
classifiers we used: a baseline system based on PN
learning and the proposed system trained by the
PU learning objective.
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Pre-defined category Added category Frequency Example user request
map browser 20 Is XX within walking distance?
red leaves nature or landscape 20 I like somewhere that feels like autumn.
shaved ice cafe 20 I’m going to get heatstroke.
French expensive restaurant 20 I’m having a luxurious meal today!
Kyoto cuisine cha-kaiseki 20 I’d like to try some traditional Japanese food.

Table 7: Frequent pairs of pre-defined and additional categories. The user requests in Japanese are translated into
English.

Figure 3: User request classifier

3.1 Classifier

Figure 3 shows the overview of the classification
model. The model classifies the ambiguous user
requests into thoughtful action (positive example)
categories of the dialogue agent. We made a rep-
resentation of a user request by Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019), computed the mean vectors
of the distributed representations given by BERT,
and used them as inputs of a single-layer Multi-
Layer Perceptron (MLP).

3.2 Loss Function in PN Learning
When we simply build a classifier based on
PN learning, the following loss function
(Cevikalp et al., 2020) is used to train the
model:

Loss =

|Utrain|∑
i

|C+
xi

|∑
j=1

|C−
xi

|∑
k=1

L(rj)Rs(w
T
j xi −wT

kxi)

+κ

|Utrain|∑
i

|C|∑
j=1

Rs(yij(w
T
j xi)). (1)

Utrain is the set of user requests included in the
training data. C+

xi
and C−

xi
are, respectively, the

set of the positive example action categories asso-
ciated with the user request xi and the set of the
action categories without any annotation. rj is the
rank predicted by the model for the positive cate-
gory j and L(rj) is the weight function satisfying

the following equation:

L(r) =

r∑
j=1

1

j
. (2)

Equation (2) takes a larger value when the pre-
dicted rank is far from first place. wj is the weight
vector corresponding to category j. xi is the dis-
tributed representation corresponding to user re-
quest xi. Rs(t) is the ramp loss, which is ex-
pressed as,

Rs(t) = min(1−m,max(0, 1− t)). (3)

m is a hyperparameter that determines the classifi-
cation boundary. Let C be the set of defined cate-
gories, with |C| = 70. yij is 1 if the category j is a
positive example for user request xi and −1 if it is
not annotated. κ is a hyperparameter representing
the weight of the second term.

3.3 Loss Function in PU Learning

Although the loss function of PN learning treats
all combinations of unlabeled user requests and
system action categories as negative examples,
about 10% of these combinations should be treated
as positive examples in our corpus, as investi-
gated in Sec. 2.2. In order to consider the data
property, we apply PU learning (Elkan and Noto,
2008), which is an effective method for problems
that are difficult to annotate completely, such as
object recognition in images with various objects
(Kanehira and Harada, 2016).

We use a PU learning method proposed by
Cevikalp et al. (2020), which is based on la-
bel propagation (Zhou et al., 2005; Cevikalp et al.,
2008). This method propagates labels of anno-
tated samples to unlabeled samples using distance
on a distributed representation space. The origi-
nal method (Cevikalp et al., 2020) propagates la-
bels from the nearest neighbor samples on the dis-
tributed representation space. The method calcu-
lates the similarity score sij of the propagated la-
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bels (categories) as follows:

sij = exp

(
−d(xi,xj)

d̄
· 70
69

)
. (4)

xj is the vector of distributed representations of
the nearest neighbor user request whose category
j is a positive example. d(xi,xj) is the Euclidean
distance between xi and xj , and d̄ is the mean of
all distances. The value range of sij is 0 ≤ sij ≤
1. It takes larger values when the Euclidean dis-
tance between two distributed representations be-
comes smaller. We call this method (PU, nearest).

However, the original method is sensitive for
outliers. Thus, we propose a method to use the
mean vectors of the user requests with the same
category. This method propagates labels accord-
ing to their distance from these mean vectors. We
update the similarity score sij in Eq. (4) as fol-
lows:

sij = exp

(
−d(xi, x̄j)

d̄
· 70
69

)
. (5)

x̄j is the mean vector of distributed representa-
tions of the user requests whose category j is
a positive example. We call this method (PU,
mean). The proposed method scales the similar-
ity score sij to a range of −1 ≤ sij ≤ 1 using the
following formula:

s̃ij = −1 +
2(s−min(s))

max(s)−min(s)
. (6)

If the scaled score s̃ij is 0 ≤ s̃ij ≤ 1, we add
the category j to C+

xi
and let s̃ij be the weight of

category j as a positive category. If s̃ij is −1 ≤
s̃ij < 0, category j is assigned a negative label
and the weight is set to −s̃ij . Using the similarity
score s̃ij , we update Eq. (1) as follows:

Loss =

|Utrain|∑
i

|C+
xi

|∑
j=1

|C−
xi

|∑
k=1

s̃ij s̃ikL(rj)Rs(w
T
j xi −wT

kxi)

+κ

|Utrain|∑
i

|C|∑
j=1

s̃ijRs(yij(w
T
j xi)). (7)

In Eq. (7), s̃ij is a weight representing the contri-
bution of the propagated category to the loss func-
tion. The similarity score s̃ij of the annotated sam-
ples is set to 1.

4 Experiments

We evaluate the models developed in Sec. 3,
which classify user requests into the correspond-
ing action categories.

4.1 Model Configuration
PyTorch (Paszke et al., 2019) is used to implement
the models. We used the Japanese BERT model
(Shibata et al., 2019), which was pre-trained on
Wikipedia articles. Both BASE and LARGE
model sizes (Devlin et al., 2019) were used for the
experiments.

We used Adam (Kingma and Ba, 2015) to op-
timize the model parameters and set the learning
rate to 1e−5. For m in Eq. (3) and κ in Eq. (1), we
set m = −0.8, κ = 5 according to the literature
(Cevikalp et al., 2020). We used the distributed
representations output by BERT as the vector xi

in the label propagation. Since the parameters of
BERT are also optimized during the training, we
reran the label propagation every five epochs. We
pre-trained the model by PN learning before we
applied PU learning. Similarity score sij of (PU,
nearest) is also scaled by Eq. (6) as with (PU,
mean). The parameters of each model used in
the experiments were determined by the validation
data.

4.2 Evaluation Metrics
Accuracy (Acc.), R@5 (Recall@5), and Mean Re-
ciprocal Rank (MRR) were used as evaluation
metrics. R@5 counts the ratio of test samples,
which have at least one correct answer category
in their top five. MRR (0 < MRR ≤ 1) is calcu-
lated as follows:

MRR =
1

|Utest|

|Utest|∑
i

1

rxi

. (8)

rxi means the rank output by the classification
model for the correct answer category correspond-
ing to user request xi. Utest is the set of user re-
quests included in the test data. For all metrics, a
higher value means better performance of the clas-
sification model. The performance of each model
was calculated from the average of ten trials. For
the test data, the correct action categories were an-
notated completely, as shown in Sec. 2.2; thus,
multi-label scores were calculated for each model.

4.3 Experimental Results
The experimental results are shown in Table 8.
“PN” is the scores of the PN learning method (Sec.
3.2) and “PU” is the scores of the PU learning
methods (Sec. 3.3). “Nearest” means the label
propagation considering only the nearest neighbor
samples in the distributed representation space.
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Model Acc. (%) R@5 (%) MRR
BASE (PN) 88.33 (±0.92) 97.99 (±0.25) 0.9255 (±0.0056)
BASE (PU, Nearest) 88.29 (±0.96) 97.81 (±0.27) 0.9245 (±0.0056)
BASE (PU, Mean) †89.37 (±0.78) 97.85 (±0.26) †0.9305 (±0.0050)

LARGE (PN) 89.16 (±0.57) 98.08 (±0.22) 0.9316 (±0.0032)
LARGE (PU, Nearest) 89.06 (±0.66) 98.01 (±0.24) 0.9295 (±0.0036)
LARGE (PU, Mean) †90.13 (±0.51) 98.11 (±0.27) †0.9354 (±0.0035)

Table 8: Classification results. The results are the averages of ten trials.

Rank Pre-defined category # Misclassifications
1 browser 6.95 (±1.23)
2 average priced restaurant 6.40 (±1.50)
3 transfer navigation 4.90 (±1.02)
4 meat dishes 4.35 (±1.27)
5 park 4.30 (±1.30)

Table 9: Frequent misclassification

“Mean” means the proposed label propagation us-
ing the mean vector of each category. For each
model, a paired t-test was used to test for signifi-
cant differences in performance from the baseline
(PN). † means that p < 0.01 for a significant im-
provement in performance.

Each system achieved more than 88 points for
accuracy and 97 points for R@5. The proposed
method (PU, Mean) achieved significant improve-
ment over the baseline method (PN); even the ex-
isting PU-based method (PU, Nearest) did not see
this level of improvement. We did not observe any
improvements on R@5. This probably means that
most of the correct samples are already included
in the top five, even in the baseline. We calcu-
lated the ratio of “positive categories predicted by
the PU learning model in the first place that are
included in the positive categories predicted by
the PN learning model in the second through fifth
places” when the following conditions were satis-
fied: “the PN learning model does not predict any
positive category in the first place,” “the PN learn-
ing model predicts some positive category in the
second through fifth places,” and “the PU learning
model predicts some positive category in the first
place.” The percentage is 95.53 (±2.60)%, thus
supporting our hypothesis for R@5.

Table 9 shows the frequency of misclassifica-
tion for each action category. The number of mis-
classifications is calculated as the average of all
models. The results show that the most difficult
category was “browser,” a common response cate-
gory for any user request.

4.4 Label Propagation Performance

In order to verify the effect of label propagation
in PU learning, we evaluated the performance of
the label propagation itself in the proposed method
(PU, Mean) on the test data. Table 11 shows the re-
sults. Comparing Table 8 and Table 11, the higher
the precision of the label propagation, the higher
the performance of the model. For both models,
more than 78% of the propagated labels qualify
as thoughtful. We conclude that the label prop-
agation is able to add thoughtful action categories
as positive examples with high precision; however,
there is still room for improvement on their recalls.

Table 10 shows examples in which the label
propagation failed. “Nearest request” is the near-
est neighbor of “original request” among the re-
quests labeled with “propagated category” as a
positive example. Comparing “nearest request”
and “original request” in Table 10, the label prop-
agation is mistaken when the sentence intentions
are completely different or when the two requests
contain similar words, but the sentence intentions
are altered by negative forms or other factors.

Table 12 shows the ratios of errors in the la-
bel propagation between the functions. More than
40% of the label propagation errors happened in
the “restaurant search” category. This is because
the user request to eat is the same, but the narrow-
ing down of the requested food is subject to subtle
nuances, as shown in Table 10.

5 Related Work

We addressed the problem of building a natu-
ral language understanding system for ambiguous
user requests, which is essential for task-oriented
dialogue systems. In this section, we discuss how
our study differs from existing studies in terms
of corpora for task-oriented dialogue systems and
dealing with ambiguous user requests.
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Original request Pre-defined category Nearest request Propagated category
I got some extra income today. expensive restaurant It’s before payday. inexpensive restaurant
All the restaurants in the area
seem to be expensive.

average priced restau-
rant

I want to try expensive ingredi-
ents.

expensive restaurant

It’s too rainy to go sightseeing. fun place I wonder when it’s going to start
raining today.

weather

Table 10: Examples of wrong label propagations

Model Pre. (%) Rec. (%) F1

BASE
78.06 8.53 0.1533

(±3.35) (±1.31) (±0.0206)

LARGE
79.27 7.91 0.1435

(±4.43) (±1.10) (±0.0172)

Table 11: Label propagation performance

Original Propagated Ratio (%)

spot search
spot search 16.71 (±2.59)
restaurant search 4.06 (±1.27)
app launch 6.81 (±1.84)

restaurant search
spot search 3.43 (±1.01)
restaurant search 43.06 (±4.82)
app launch 2.70 (±0.64)

app launch
spot search 10.94 (±1.75)
restaurant search 3.24 (±1.13)
app launch 9.06 (±1.73)

Table 12: Ratios of false positive in label propagation

5.1 Task-Oriented Dialogue Corpus

Many dialogue corpora for task-oriented dia-
logue have been proposed, such as Frames
(El Asri et al., 2017), In-Car (Eric et al., 2017),
bAbI dialog (Bordes and Weston, 2016), and Mul-
tiWOZ (Budzianowski et al., 2018). These cor-
pora assume that the user requests are clear, as in
Q3 in Table 1 defined by Taylor (1962, 1968), and
do not assume that user requests are ambiguous,
as is the case in our study. The corpus collected in
our study assumes cases where the user requests
are ambiguous, such as Q1 and Q2 in Table 1.

Some dialogue corpora are proposed to treat
user requests that are not always clear: OpenDi-
alKG (Moon et al., 2019), ReDial (Li et al., 2018),
and RCG (Kang et al., 2019). They assume that
the system makes recommendations even if the
user does not have a specific request, in partic-
ular, dialogue domains such as movies or music.
In our study, we focus on conversational utterance
and monologue during sightseeing, which can be
a trigger of thoughtful actions from the system.

5.2 Disambiguation for User Requests

User query disambiguation is also a conven-
tional and important research issue in infor-
mation retrieval (Di Marco and Navigli, 2013;
Wang and Agichtein, 2010; Lee et al., 2002;
Towell and Voorhees, 1998). These studies
mainly focus on problems of lexical variation,
polysemy, and keyword estimation. In con-
trast, our study focuses on cases where the user
intentions are unclear.

An interactive system to shape user inten-
tion is another research trend (Hixon et al., 2012;
Guo et al., 2017). Such systems clarify user re-
quests by interacting with the user with clarifica-
tion questions. Bapna et al. (2017) collected a cor-
pus and modeled the process with pre-defined dia-
logue acts. These studies assume that the user has
a clear goal request, while our system assumes that
the user’s intention is not clear. In the corpus col-
lected by Cohen and Lane (2012), which assumes
a car navigation dialogue agent, the agent responds
to user requests classified as Q1, such as suggest-
ing a stop at a gas station when the user is running
out of gasoline. Our study collected a variation of
ambiguous user utterances to cover several situa-
tions in sightseeing.

Ohtake et al. (2009); Yoshino et al. (2017) tack-
led sightseeing dialogue domains. The corpus col-
lected by Ohtake et al. (2009) consisted of dia-
logues by a tourist and guide for making a one-
day plan to sightsee in Kyoto. However, it was
difficult for the developed system to make particu-
lar recommendations for conversational utterances
or monologues. Yoshino et al. (2017) developed
a dialogue agent that presented information with
a proactive dialogue strategy. Although the situ-
ation is similar to our task, their agent does not
have clear natural language understanding (NLU)
systems to bridge the user requests to a particular
system action.
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6 Conclusion

We collected a dialogue corpus that bridges am-
biguous user requests to thoughtful system ac-
tions while focusing on system action functions
(API calls). We asked crowd workers to input an-
tecedent user requests for which pre-defined dia-
logue agent actions could be regarded as thought-
ful. We also constructed test data as a multi-
class classification problem, assuming cases in
which multiple action candidates are qualified as
thoughtful for the ambiguous user requests. Fur-
thermore, using the collected corpus, we devel-
oped classifiers that classify ambiguous user re-
quests into corresponding categories of thoughtful
system actions. The proposed PU learning method
achieved high accuracy on the test data, even when
the model was trained on incomplete training data
as the multi-class classification task.

As future work, we will study the model archi-
tecture to improve classification performance. It is
particularly necessary to improve the performance
of the label propagation. We will also investigate
the features of user requests that are difficult to
classify.
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madan, and Milica Gašić. 2018. MultiWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Hakan Cevikalp, Burak Benligiray, and Omer Nezih
Gerek. 2020. Semi-supervised robust deep neural
networks for multi-label image classification. Pat-
tern Recognition, 100:107164.

Hakan Cevikalp, Jakob Verbeek, Frédéric Jurie, and
Alexander Klaser. 2008. Semi-supervised dimen-
sionality reduction using pairwise equivalence con-

straints. In 3rd International Conference on Com-
puter Vision Theory and Applications (VISAPP’08),
pages 489–496.

David Cohen and Ian Lane. 2012. A simulation-based
framework for spoken language understanding and
action selection in situated interaction. In NAACL-
HLT Workshop on Future directions and needs in
the Spoken Dialog Community: Tools and Data (SD-
CTD 2012), pages 33–36, Montréal, Canada. Asso-
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A Appendix

A.1 Instruction and Input Form

Figure 4: Instruction and input form for corpus collection. The actual form is in Japanese; the figure is translated
into English.

Figure 4 shows an example of an instruction and input form for the corpus collection. Since the user
requests (utterances) to be collected in our study need to be ambiguous, a bad example is an utterance
with a clear request, such as, “Search for rest areas around here.” Each worker was asked to input user
requests for ten different categories.

A.2 Additional Examples of User Requests
Table 13 shows examples of user requests for all pre-defined system actions.
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User request (collecting with crowdsourcing) System action (pre-defined)
Is there a place where we can have fun as a family for a day? Shall I search for an amusement park around here?
I want to take a nap on the grass. Shall I search for a park around here?
I want to move my body as much as I can. Shall I search for a sports facility around here?
I’d like to do something more than just watch. Shall I search for an experience-based facility around here?
I want a Kyoto-style key chain. Shall I search for a souvenir shop around here?
Where can I see pandas? Shall I search for a zoo around here?
I haven’t seen any penguins lately. Shall I search for an aquarium around here?
I want to relax in nature. Shall I search for a botanical garden around here?
I don’t know where to go. Shall I search for a tourist information center around here?
It’s suddenly getting cold. I need a jacket. Shall I search for a shopping mall around here?
I’m sweaty and uncomfortable. Shall I search for a hot spring around here?
I’m interested in historical places. Shall I search for a temple around here?
This year has not been a good one. Shall I search for a shrine around here?
I wonder if there are any famous buildings. Shall I search for a castle around here?
I need some healing. Shall I search for nature or landscapes around here?
It’s autumn and it’s nice to experience art. Shall I search for an art museum around here?
Is there a tourist spot where I can study as well? Shall I search for an historic museum around here?
I’d love to walk around a place like here wearing a kimono. Shall I search for a kimono rental shop around here?
I’d like to see some autumnal scenery. Shall I search for red leaves around here?
I want to feel spring. Shall I search for cherry blossoms around here?
I want to go on an interesting ride. Shall I search for a rickshaw around here?
It would be faster to go by train. Shall I search for a station around here?
It takes time on foot. Shall I search for a bus stop around here?
I’d like to sit down and relax. Shall I search for a rest area around here?
I’m having trouble getting good reception. Shall I search for a WiFi spot around here?
I want to relax. Shall I search for a quiet place around here?
I’d like to take a picture to remember the day. Shall I search for a beautiful place around here?
I wonder if there are any places where children can play. Shall I search for a fun place around here?
I want to feel liberated. Shall I search for a wide place around here?
I want to see the night view. Shall I search for a place with a nice view around here?
I’m thirsty. Shall I search for a cafe around here?
I bought some delicious Japanese sweets! Shall I search for matcha around here?
It’s so hot, I’m sweating all over. Shall I search for shaved ice around here?
I’m getting bored with cake. Shall I search for Japanese sweets around here?
I feel like having a 3 o’clock snack. Shall I search for western-style sweets around here?
I want something spicy! Shall I search for curry around here?
I’d like to eat something homey. Shall I search for obanzai around here?
I want to eat something healthy. Shall I search for tofu cuisine around here?
I want to buy some breakfast for tomorrow. Shall I search for a bakery around here?
I think it’s time for a snack. Shall I search for fast food around here?
I’m not really in the mood for rice. Shall I search for noodles around here?
It’s cold today, so I’d like to eat something that will warm me up. Shall I search for nabe around here?
I want to eat a heavy meal. Shall I search for rice bowls or fried food around here?
I’ve been eating a lot of Japanese food lately, and I’m getting a little bored
of it.

Shall I search for meat dishes around here?

I think I’ve been eating a lot of meat lately. Shall I search for sushi or fish dishes around here?
Let’s have a nice meal together. Shall I search for flour-based foods around here?
I want to eat something typical of Kyoto. Shall I search for Kyoto cuisine around here?
My daughter wants to eat fried rice. Shall I search for Chinese food around here?
I’m not in the mood for Japanese or Chinese food today. Shall I search for Italian food around here?
It’s a special day. Shall I search for French food around here?
The kids are hungry and whining. Shall I search for a child-friendly restaurant or family restaurant around here?
I wonder if there is a calm restaurant. Shall I search for cha-kaiseki around here?
I want to lose weight. Shall I search for shojin around here?
I hear the vegetables are delicious around here. Shall I search for a vegetarian restaurant around here?
It’s nice to have a night out drinking in Kyoto! Shall I search for an izakaya or bar around here?
There are so many things I want to eat, it’s hard to decide. Shall I search for a food court around here?
When I travel, I get hungry from the morning. Shall I search for breakfast around here?
I don’t have much money right now. Shall I search for an inexpensive restaurant around here?
I’d like a reasonably priced restaurant. Shall I search for an average priced restaurant around here?
I’d like to have a luxurious meal. Shall I search for an expensive restaurant around here?
Nice view. Shall I launch the camera application?
What did I photograph today? Shall I launch the photo application?
I hope it’s sunny tomorrow. Shall I launch the weather application?
I want to get excited. Shall I launch the music application?
I’m worried about catching the next train. Shall I launch the transfer navigation application?
I have to tell my friends my hotel room number. Shall I launch the message application?
I wonder if XX is back yet. Shall I call XX?
The appointment is at XX. Shall I set an alarm for XX o’clock?
I wonder what events are going on at XX right now. Shall I display the information about XX?
How do we get to XX? Shall I search for a route to XX?

Table 13: User requests for all pre-defined system actions. The texts are translated from Japanese to English.


