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Abstract

In this paper, we study the utilization of pre-
trained language models to enable few-shot
Natural Language Generation (NLG) in task-
oriented dialog systems. We introduce a sys-
tem consisting of iterative self-training and an
extensible mini-template framework that tex-
tualizes the structured input data into semi-
natural text to fully take advantage of pre-
trained language models. We compare var-
ious representations of NLG models’ input
and output and show that transforming the
input and output to be similar to what the
language model has seen before during pre-
training improves the model’s few-shot perfor-
mance substantially. We show that neural mod-
els can be trained with as few as 300 annotated
examples while providing high fidelity, con-
siderably lowering the resource requirements
for standing up a new domain or language.
This level of data efficiency removes the need
for crowd-sourced data collection resulting in
higher quality data annotated by expert lin-
guists. In addition, model maintenance and
debugging processes will improve in this few-
shot setting. Finally, we explore distillation
and using a caching system to satisfy latency
requirements of real-world systems.

1 Introduction

Task-oriented dialog systems are commonplace in
automated systems such as voice-controlled assis-
tants, customer service agents, and website naviga-
tion helpers. Natural Language generation (NLG)
is an essential part of task-oriented dialog systems,
which converts data into natural language output to
be subsequently served to the users. Since an NLG
response directly impacts the user’s experience, it
should convey all of the information accurately,
should be contextualized with respect to the user
request, and be fluent and natural.

∗Work done while on leave from Ohio State University.

Commercial NLG systems are typically built
on rule- or template-based text generation meth-
ods (Reiter and Dale, 2000; Gatt and Krahmer,
2018; Dale, 2020). These systems often consist of
a human-authored collection of response templates
with slot value placeholders. The placeholders are
later filled with the dialog input at the runtime.
Template-based NLG modules provide inherent
fidelity, strictly controlled style and wording, and
low latency, which makes them an appealing choice.
However, template-based systems are challenging
to scale since new templates need to be authored for
different response variations; templates authored
for a prior domain are not usually reusable for fu-
ture domains; and it becomes increasingly ardu-
ous to author high-quality templates for complex
domains. More importantly, in spite of the high
amount of time and resources it usually takes to in-
still linguistic information into the templates, they
are not contextualized on the user query, and the
limited set of templates results in bounded natural-
ness of the system’s responses.

Recently, generative models (Wen et al., 2015;
Dušek and Jurcıcek, 2016; Rao et al., 2019) have
become popular for their data-driven scaling story
and superior naturalness over the typical template-
based systems (Gatt and Krahmer, 2018; Dale,
2020). However, training reliable and low-latency
generative models has typically required tens of
thousands of training samples (Balakrishnan et al.,
2019; Novikova et al., 2017). Model maintenance
with such a large dataset has proven to be chal-
lenging, as it is resource-intensive to debug and fix
responses, make stylistic changes, and add new ca-
pabilities. Therefore, it is of paramount importance
to bring up new domains and languages with as few
examples as possible while maintaining quality.

Pre-trained models like GPT2 (Radford et al.,
2019) have been recently adapted to perform few-
shot learning for task-oriented dialog (Peng et al.,
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2020; Chen et al., 2020). However, these methods
have not usually addressed production concerns
such as balancing latency and accuracy, which we
explore in this paper. Arun et al. (2020) do also con-
sider this trade-off in their data efficiency study, ul-
timately recommending several sampling and mod-
eling techniques to attain production quality with
fast, light-weight neural network models. Since
their work is the most similar to ours, we focus our
experiments on the most complex domain exam-
ined by Arun et al. (2020), the weather dataset, and
demonstrate that we can achieve production qual-
ity with approximately 8X higher data-efficiency
levels by making use of textualized inputs and itera-
tive self-training. In particular, we propose scalable
mini-templates to convert structured input into sub-
natural text that is more suitable for re-writing by
language models. We also utilize knowledge dis-
tillation and caching to make our models suitable
for production. Finally, we explore model-based
acceptability classifiers to ensure fidelity of the
generated responses, which is essential for a real-
life NLG system. Using this framework, we show
that we can bring up a new domain with realistic
complexity using only 300 annotated examples.

Our specific contributions are as follows:

1. we introduce a generalizable bottom-up tem-
plating strategy to convert structured inputs to
semi-natural text;

2. we present results of experiments with differ-
ent representations of input data and output
text including structured vs. textual and lexi-
calized vs. partially delexicalized;

3. we propose a combination of using pre-trained
language models, self-training, knowledge
distillation, and caching to train production-
grade few-shot NLG models; and

4. we release datasets, model predictions, and
human judgements to study the NLG domain
stand-up under the few-shot setting.

2 Related Work

Pre-trained language models have shown promis-
ing results for generation tasks such as translation,
summarization and data-to-text (Lewis et al., 2020;
Yang et al., 2020). As noted above, Peng et al.
(2020) and Chen et al. (2020) likewise explore pre-
trained models for few-shot NLG in task-oriented

dialog, but they do not investigate how to achieve
acceptable latency while maintaining high quality.

Using templates alongside pre-trained language
models for NLG has been recently introduced by
Kale and Rastogi (2020), where templates for sim-
ple input scenarios are concatenated to form a tem-
plate for a more complicated scenario. The tem-
plated scenario is then fed to a pre-trained language
model instead of the structured input. In contrast
to this flat approach, which creates a verbose in-
put for the models to re-write, we use an efficient
bottom-up approach with simple mini-templates
to “textualize” the individual slots and dialog acts
to semi-natural and telegraphic text. As such, we
don’t need to have various templates for simple sce-
narios and require only one rule for each new slot to
be published with the possibility of choosing from
several predefined rules. Moreover, the rules can be
reused across domains which helps with efficiency
and generalization. Also related is the approach of
Kasner and Dušek (2020), who use templates ex-
tracted from the training data in part, though their
approach is then followed by automatic editing and
reranking steps.

Self-training has been previously investigated for
NLG by Kedzie and McKeown (2019) and Qader
et al. (2019), though they do not explore using pre-
trained models with self-training. Also related are
earlier approaches that use cycle consistency be-
tween parsing and generation models for automatic
data cleaning (Nie et al., 2019; Chisholm et al.,
2017). More recently, Chang et al. (2021) have
developed a method for randomly generating new
text samples with GPT-2 then automatically pair-
ing them with data samples. By comparison, we
take a much more direct and traditional approach to
generating new text samples from unpaired inputs
in self-training (He et al., 2020), using pre-trained
models fine-tuned on the few-shot data for both
generation and reconstruction filtering.

3 Task

Our task is to convert a tree-based scenario into nat-
ural text, given the original query. An example data
item together with its transformations (Section 4)
is shown in Table 1.

3.1 Data

Our experiments were conducted using 4 task-
oriented datasets. We focused on the most chal-
lenging dataset, Conversational Weather, which is
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Query How is the weather over the next weekend?
INFORM 1[temp low[20] temp high[45] date time[colloquial[next weekend]]]

Structured CONTRAST 1[
MR INFORM 2[condition[ sun ] date time[weekday[Saturday]]]

INFORM 3[condition[ rain ] date time[weekday[Sunday]]]
]
INFORM 1[temp low[temp low 1] temp high[temp high 1] date time[colloquial

Delexicalized [next weekend]]]
Structured CONTRAST 1[
MR INFORM 2[condition[ sun ] date time[weekday[weekday 1]]]

INFORM 3[condition[ rain ] date time[weekday[weekday 2]]]
]

Textualized MR inform low temperature 20, high temperature 45, next weekend.
inform sun, on Saturday but inform rain, on Sunday.

Delexicalized inform low temperature temp low 1, high temperature temp high 1, next weekend.
Textualized MR inform sun, on weekday 1 but inform rain, on weekday 2.

INFORM 1[date time[colloquial[next weekend]]expect a low of temp low[20]
and a high of temp high[45].]

Structured CONTRAST 1[
Reference INFORM 2[it will be condition[sunny] date time[on weekday[Saturday]]]

but
INFORM 3[ it’ll condition[rain] date time[on weekday[Sunday]]]

.]
INFORM 1[date time[colloquial[next weekend]]expect a low of

temp low[temp low 1]and a high of temp high[temp high 1].]
Delexicalized CONTRAST 1[
Structured INFORM 2[it will be condition[sunny] date time[on weekday[weekday 1]]]
Reference but

INFORM 3[ it’ll condition[rain] date time[on weekday[weekday 2]]]
.]

Reference Next weekend expect a low of 20 and a high of 45. It will be sunny on Saturday but it’ll rain on Sunday.
Delexicalized Next weekend expect a low of temp low 1 and a high of temp high 1.
Reference It will be sunny on weekday 1 but it’ll rain on weekday 2.

Table 1: Representations of NLG input and output. Query, Structured MR, and Delexicalized Structured MR
are inputs to the NLG task. Textualized MR and Delexicalized Textualized MR are intermediate model inputs.
Reference is our desired output, which can be delexicalized in text format as seen in Delexicalized Reference or
annotated as seen in Structured Reference and Delexicalized Structured MR.

similar to the one introduced in Balakrishnan et al.
(2019). We also used three additional datasets for
joint training, namely the Reminder, Time, and
Alarm domains released in Arun et al. (2020).

All of the datasets use a tree structure to convey
the meaning representation (MR) that has been dis-
cussed in Balakrishnan et al. (2019). Discourse re-
lations (CONTRAST and JUSTIFY) were used in
some examples to connect a possible list of dialog
acts (REQUEST, INFORM, etc.). Many examples
contain only a few dialog acts without discourse
relations.The dialog acts contain a list of slot key
and value pairs. The synthetic user queries and
scenarios were generated by engineers, while the
annotated responses were created by human annota-
tors following guidelines written by computational
linguists. The responses were verified to be gram-
matical and correct by the linguists to ensure data
quality.

We used two test sets for the Weather domain:
(1) a challenging version which consists of data
from a wider distribution of inputs compared to

those we expect to encounter in production, and (2)
a real-world version to evaluate the performance
realistically. All of our data is simulated and cre-
ated by expert linguists, who were responsible for
adding the annotations illustrated in the references
in Table 1. The challenging test set is used to dif-
ferentiate between models and to measure model
robustness in case of possible upstream changes.
All reported numbers are against the challenging
test set unless otherwise stated. Descriptive statis-
tics of the datasets are shown in Table 2. The new
real-world test set for Weather contains 800 sam-
ples.1

3.2 Metrics

Human evaluation is used to compare the effect of
input and output structure and delexicalization on
model performance. Judgments were obtained for
493 samples out of the challenging test set. Fol-

1The textualized datasets, model outputs, and human
evaluation data can be found at https://github.com/
facebookresearch/FewShotNLG

https://github.com/facebookresearch/FewShotNLG
https://github.com/facebookresearch/FewShotNLG
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Domain Training Validation Test
Weather 25390 3078 3121

Reminder 9716 2794 1397
Time 5530 1529 790

Alarm 7163 2024 1024

Table 2: Number of examples in training, validation,
and test sets for all datasets.

lowing Arun et al. (2020), each sample was eval-
uated by two separate annotators followed by a
tie-breaker for correctness and grammaticality:

Correctness Evaluation of semantic correctness
of a response. Annotators check for missing
slots, hallucinations, and bad slot aggregation.

Grammaticality Checks for grammatical correct-
ness of a sentence, which includes complete-
ness, subject-verb agreement, word order, sen-
tence structure, etc.

In the results, we report the correctness and gram-
maticality percentage as the proportion of the test
items judged to be both correct and grammatical.

We also use Reconstruction Accuracy as an of-
fline metric to measure the effect of data reduction
and self-training on model performance. We fine-
tune BART large as a reverse model converting
responses to input scenarios. After the generation
task, the reconstruction model is used to regenerate
the scenario. For each sample, if the reconstructed
scenario is exactly the same as the original scenario,
we count that as a correct generation (Qader et al.,
2019). Note that using reconstruction in production
is prohibitive due to its high latency.

3.3 Models

The model architectures used in this study are either
LSTM-based sequence-to-sequence (S2S) models
(Bahdanau et al., 2014) or derivatives of a pre-
trained large transformer-based S2S model called
BART (Lewis et al., 2019). For BART, we use four
variants with a total of 6 to 24 encoder and decoder
layers (Section 4.3). BART uses byte pair encod-
ing as the tokenization method. For each model
fine-tuning, we use the ADAM optimizer with 300
warm-up steps. The initial learning rate of 5e-5 is
reduced by a factor of 0.5 if validation loss plateaus
for 3 epochs. Each model is trained for 100 epochs
with a batch size of 32 (across 8 GPUS) with an
early stopping strategy terminating the training if
the validation loss stops decreasing for 5 epochs.

To decrease latency, all models use a beam size
of 1.

In the LSTM-based models, we use trainable
50d GloVe embeddings. The tokenization is word
based with possibility of out of vocabulary tokens.
We use the ADAM optimizer to train the models
from random initialization. An initial learning rate
of 0.01 is used, which gets reduced by a factor of
0.1 if validation loss plateaus for 2 epochs. The loss
function is label smoothed cross entropy, where the
beta parameter is between [0.01, 1]. A batch size
of 32 is used and all models are trained for 100
epochs with early stopping after 5 epochs.2

4 Methodology

4.1 Input and Output Representation
The Meaning Representation (MR) consumed by
our NLG model is a tree consisting of discourse
relations, dialog acts, and slots (possibly nested).
An example of such input is shown in Table 1. We
hypothesize that we can utilize the power of pre-
trained models more effectively by transforming
the input to a form closer to what the models have
seen during pre-training. As such, we textualize
the input trees using mini-templates. We provide
templates for the individual nodes in the tree (i.e.,
dialog acts and slot labels). As such, we traverse
the scenario tree and textualize the input iteratively
by combining the templates for the nodes we come
across (Table 1).

As mentioned earlier, Kale and Rastogi (2020)
propose an approach of using templates for sim-
ple input scenarios to form input for more com-
plicated flat scenarios, which where subsequently
fed to a pre-trained language model. Our approach
requires less manual effort since it adopts a bottom-
up approach with simpler mini-templates to “tex-
tualize” the individual slots (possibly nested) as
shown in Figure 1. We recommend several templat-
ing schemes which enable us to add new domains
to the framework with less resources. As a guide-
line, one should choose a templating scheme for

2Since the model response is conditioned on the user query
as well as the meaning representation, there is in principle
some risk that BART could generate inappropriate (e.g., pro-
fane) outputs in response to specific user queries. While we
leave a full investigation of this issue to future work, in prac-
tice we have observed that the risk appears to be very low, as
the user’s query must be recognized as a valid intent before
the model is invoked to generate a response, and the model
learns to condition the response on the input only in limited
ways. Additionally, for task-oriented domains such as weather,
it is possible to use a limited vocabulary to further reduce any
such risk.
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Figure 1: Textualization process using configurable pre-defined templates and custom templates.

new slots that makes the textualized representa-
tion understandable for humans. While some slots
might require custom templates, our experiments
have shown that those are just a small fraction of
all slots. Our proposed templating schemes are:

• Dialog acts: We prepend the name of the in-
tended dialog act to textualize them after all
their slots have been previously textualized.

• Discourse relations: Since discourse rela-
tions always encompass dialog acts, we use a
mapping of them with discourse connectives.
For example, dialog acts inside a Contrast
relation are joined using a but, while those
inside Join are mapped to and.

• Slot values: A possible behavior for textual-
izing slots inside dialog acts is just to mention
the slot value. For example, we chose to repre-
sent weather condition using this scheme.

• Slot name and values: Slot names are
replaced by an engineer-defined string and
placed before slot values. For example, we
represent slots such as low temperature
and high temperature using this

method since just using slot values is
misleading for the models.

• Custom: Writing custom templates for com-
plex slots might be necessary to give the mod-
els a better chance to produce high-quality
responses. For example, date time and
date time range are textualized using
this method in this work.

• Default: The default behavior for textualizing
any slot which has not been assigned another
method is to remove underscores from slot
names and prepend it to its slot value. This de-
fault behavior enables us to use this system on
new domains without any change and expect
reasonable performance.

The second technique that we explore is delexi-
calizing the slot values in order to mitigate model
hallucination. During our initial experiments, we
observed that in few-shot settings, pre-trained lan-
guage models can drop some slots or fail to exactly
copy their values, which can be catastrophic in
a production system. This has been observed in
other generation tasks using pre-trained models as
well (Einolghozati et al., 2020). Therefore, we ex-
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plore delexicalization of slots when linguistically
permissible. For example, weather condition
can not be delexicalized since its different values
such as sand storm or fog will change the sur-
face form of the sentence significantly while a slot
such as weekday can be delexicalized. We also
combine the few-shot Weather samples with data
for three other domains to provide the model with
more task-oriented data.

Balakrishnan et al. (2019) have previously
shown that even with delexicalization of slot val-
ues, maintaining the tree structure in the output as
generated semantic annotations (as shown in Ta-
ble 1) is useful for rule-based correctness checking
of low-capacity LSTM-based NLG models in the
full-data setting. Our hypothesis is instead that gen-
erating plain (rather than structured) text, together
with textualizing the input structure and delexical-
ization, can help the few-shot NLG task with better
utilization of large pre-trained models. In addition,
we observe that maintaining the structure in the
output increases the sequence length and therefore
increases the latency of the models significantly.
Therefore, we perform experiments with different
variations of the input and output structures as well
as various BART sizes.

4.2 Self-Training

Annotating large quantities of high-quality data is
time and resource consuming. However, it is often
possible to automatically generate a lot of unla-
beled data using a synthetic framework. Here, we
adapt and extend the semi-supervised self-training
strategy introduced by He et al. (2020). As shown
in Figure 2, self-training consists of multiple cycles
of generation and reconstruction.

We fine-tune BART (Lewis et al., 2020), a pre-
trained seq2seq language model, for both steps. For
generation, we experiment with various ways of
textualizing the scenario tree, concatenated with
the input query, before using it as input to the gen-
eration model. The reason for the latter is that
there could be some subtleties in the original query
which would be helpful in the response generation
that are not included in the scenario tree. For ex-
ample, Yes/No-questions are not reflected in the
tree: Is it cold? and What’s the weather? have
the same scenario tree, though the former would
require a Yes/No confirmation in the result. In par-
allel, the same generation data is used to fine-tune
a reconstruction BART large model to obtain the

Model Latency (ms) Encoder x Decoder (layers)
BART large 935 12 X 12
BART base 525 6 X 6
BART 3 3 253 3 X 3
BART 5 1 114 5 X 1

LSTM 34 1 X 1
Cache 9 -

Table 3: The median inference latency of different mod-
els (1000 inferences using 16GB Quadro GP100 GPUs)
compared to cache latency.

generation input (without the input query), given
the responses. After generation in each cycle, we
use the reconstruction model to select samples with
exact reconstruction match. Finally, the selected
samples are added to the training pool for knowl-
edge distillation or the next self-training cycle.3

4.3 Knowledge Distillation

One of the biggest obstacles in real-world applica-
tion of pre-trained language models such as BART
is their prohibitive latency. We explored knowledge
distillation to mitigate this issue, here. We perform
sequence-level knowledge distillation (Kim and
Rush, 2016) from BART large to BART models
with various smaller sizes, in addition to a small
LSTM model (Table 3).

4.4 Caching

Another solution to mitigate the latency concerns
of large models for production systems is to use
caching. A median limit of 100ms for produc-
tions systems is reasonable in our view. However,
as shown in Table 3, the median inference latency
even after knowledge distillation into a small BART
model is more than 100ms. As such, we can uti-
lize a caching approach that stores model input and
output as key-value pairs. Our cache implementa-
tion is an RPC call to an indexed datastore, with a
median lookup time of 9 ms. Even with a caching
solution, knowledge distillation is essential to limit
latency of 90th and 95th percentile of the traffic.

The efficacy of using a cache is largely depen-
dent on the hit rate, which can vary by domain
complexity, the inclusion of the user query in the
model input, and the amount of delexicalization.

3As an alternative to using a reconstruction model to vali-
date the generated responses, we could use our acceptability
model (Section 4.5) to filter or rank the responses; we leave
these options for future work.
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Figure 2: Few-shot NLG process consists of several cycles of self-training followed by knowledge distillation.

4.5 Acceptability Checking

In a production neural NLG system, reliable and
low-latency filters are essential to guard against in-
correct and ungrammatical model responses. Arun
et al. (2020) proposed coupling neural models with
fall-back templates to deliver more fluent model
responses in a safe manner.4 Their suggested ac-
ceptability checking method, tree accuracy (Bal-
akrishnan et al., 2019), requires retention of the
tree-based structure that we are proposing to re-
move. We explored several recent model-based
acceptability checking mechanisms as alternatives
(Harkous et al., 2020; Anonymous, 2021). Building
an acceptability model requires collecting positive
and negative examples. We use the samples that
pass the reconstruction step of self-training as the
positive ones. The challenge lies in approximating
mistakes a model is likely to make in production,
and creating a dataset of synthetic negative exam-
ples. Anonymous (2021) use mask filling with
pre-trained models for creating synthetic incorrect
examples, which we adopt using BART.

We train two models, a production-grade convo-
lutional (DocNN) model (Jacovi et al., 2018) with
median latency of 8 ms and a high-capacity pre-
trained RoBERTa-Base model (Liu et al., 2019)
with latency 100 ms. These binary classification
models determine whether a sequence of delexical-
ized textualized input MR concatenated with the
delexicalized model output is correct at runtime.

4Note that in the case of the Weather domain, the fall-back
templates only convey simplified content, as the domain was
deemed too complex to develop satisfactory templates for all
possible combinations of dialog acts that can appear in the full
input MRs.

4.6 End-to-End Architecture
To summarize, we first transform and delexical-
ize the input and output of all samples using the
aforementioned input transformation framework.
We subsequently annotate several hundred samples
from our target domain. The annotated samples
are then added to the data from other domains for
joint-training. Next, several (usually two) cycles
of self-training (generation and reconstruction) are
carried out to auto-annotate the remaining target
domain input data. Subsequently, sequence-level
knowledge distillation from BART large to smaller
models is performed. A schematic of the training
process can be seen in Figure 2. Finally, a caching
system and a few-shot acceptability classifier are
trained to cover all production requirements.

5 Results

5.1 Input and Output Representation
Table 4 shows the correctness and grammaticality
(c&g) evaluations for various few-shot models in
comparison to the full data setting. The results vali-
date our hypothesis that transforming the structured
data into a textual form (similar to those used for
pre-training BART) increases model performance
in few-shot settings. In addition, we observe that
delexicalizing some slot values consistently boosts
the performance of the NLG models. The correct-
ness and grammaticality score is highly correlated
with automatic BLEU scores.Therefore, we recom-
mend adoption of delexed textualized input and
delexed text output for training production-quality
few-shot NLG models.

In the full data setting, retaining the tree structure
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Input representation Output representation BART large BART base BART 3 3 BART 5 1 LSTM Full BART
Lexed Structured Lexed Structured 73.0 71.2 70.2 69.2 69.6 90.2
Lexed Structured Delexed Structured 71.4 71.0 67.3 67.5 66.3 92.5
Lexed Structured Lexed Text 79.9 72.4 65.3 66.3 62.1 90.9
Lexed Structured Delexed Text 81.5 76.1 72.2 68.8 66.5 91.7
Delexed Structured Delexed Structured 77.3 72.8 67.1 71.2 74.4 90.2
Delexed Structured Delexed Text 71.8 72.0 66.7 64.7 64.9 90.2
Lexed Textualized Lexed Text 84.0 78.7 80.5 77.1 73.6 88.9
Delexed Textualized Delexed Text 85.2 80.3 78.9 79.5 78.5 88.8

Table 4: Effect of input & output representation on correctness and grammaticality (c&g%) of few-shot model re-
sponses (using 250 annotated samples). Full BART uses all annotated training data with a BART base model as the
top line. Delexed Textualized input with Delexed Text output achieves the highest performance with most few-shot
models. Lexed Structured input with Delexed Structured output reaches the highest full data performance, while
performing among the worst combinations in the few-shot setting. Generating delexed text boosts performance
consistently compared to lexed text.

helps with more accurate natural language gener-
ation (Table 4), which is in line with observations
in Balakrishnan et al. (2019). The highest c&g%
of 92.5 is achieved when input is lexed structured
and output is delexed structured: it is 2.3% higher
than performance of the model with the same lexed
structured input but with lexed structured output,
which is due to the lower possibility of halluci-
nation when the model output is delexed. In ad-
dition, this combination has higher performance
compared to the one with delexed structured input
and delexed structured output, which is possibly
due to higher utilization of BART’s encoder knowl-
edge while processing the input sequence.

Interestingly, the lexed structured input / delexed
structured output combination with the highest full
data performance performs poorly in few-shot set-
ting across the board. Indeed, its correctness and
grammaticality is more than 10.0% lower than the
delexed textualized input / delexed text output com-
bination regardless of the capacity of the model
used for knowledge distillation. This is more evi-
dence validating our hypothesis that transforming
the structured data into a textual form will result
in more utilization of the language knowledge of
pre-trained BART models.

5.2 Data Efficiency

We ran experiments at different levels of data-
efficiency using BART small5.1 and evaluated their
performance using a reconstruction model (trained
with full data). Figure 3 shows that the recon-
struction accuracy increases with more annotated
data, as expected. However, even with 250 anno-
tated samples, we achieve a reconstruction accu-
racy of 75.0% on the challenging test set, and our
low-latency few-shot correctness model improves

Figure 3: The effect of dataset size on model perfor-
mance (BART small5.1) with two self-training cycles.

this to 88.7%. Interestingly, human annotations
revealed a performance of 97.8% on the real-world
test set for a similar model, and the same correct-
ness model improves this to 98.8%. This observa-
tion suggests that even though there remains a sub-
stantial gap between few-shot and full-data perfor-
mance on the challenging set, the few-shot models
will perform satisfactorily in a real-world setting.

5.3 Self-Training

We also performed experiments to optimize the
number of self-training cycles. As shown in Fig-
ure 4, even one cycle of self-training increases the
performance of the model by 20.0%. From a pool
of 31,400 unlabeled samples, more than 13,500
are added during the first self-training cycle, 5,000
more are added in the second cycle followed by just
1,400 in the third cycle. The rate of addition de-
creases more after the third cycle. We recommend
2-3 self-training cycles considering computational
limits. For comparison, we also ran similar ex-
periments without joint training (not using other
domains) and self-training, which yields a baseline
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Figure 4: Model performance (BART small5.1 with
250 samples) as a function of the number of self-
training cycles.

Model Macro-F1 Precision (Co) Recall (InCo)
DoCNN 70.5 88.8 40.9
RoBERTa 75.1 90.9 54.2

Table 5: Correctness model metrics on 493 delexed
samples (83 incorrect) from a distilled BART small5.1
model (Co stands for Correct and InCo stands for In-
correct classes). Recall (Co) is kept fixed at 94.9%.

reconstruction accuracy of only 42.7%, more than
10% lower than with joint training.

5.4 Caching

For Weather, we expect a cache rate of about
60% with keys made through concatenation of user
query with delexicalized textualized input MR. For
BART small5.1, this bring down the median latency
to 51 ms, yielding a 64% improvement. We believe
that delexicalizing the user input has the potential
to improve the hit rate even further. This can be
done by replacing the user query words with values
that have been delexicalized in the MR.

Using this cache will not reduce the variation
of model responses because of how the cache key
is constructed. The delexicalized MR used in the
cache key will be the same for two requests only
if the MRs differ at most in the values of slots that
do not affect the model response. For example, if
two MRs differ only in the value of weekday, the
cache will get a hit. However, if anything else such
as the weather condition is different, there will
not be a hit. More importantly, since our models
are deterministic, if the model is delexicalized as
proposed here and the user query is used in the
cache key, the input to the model and the cache key
will be exactly the same removing any possibility
of reduction in response variation.

5.5 Acceptability Checking

Table 5 shows that it is possible to train correct-
ness models with fully synthetic negative data in
a few-shot setting. Complementing high-fidelity
generation models with a correctness model similar
to the one here makes it possible for few-shot NLG
models to meet high production quality bars.

We experimented with using distilled LSTM-
based models together with tree accuracy filtering
as the correctness checking mechanism, which re-
quires structured output representations, following
the recommendations in Arun et al. (2020). Our cor-
rectness models with BART small5.1 demonstrated
2.0% higher precision compared to tree accuracy
with LSTMs. More importantly, tree accuracy with
LSTMs filtered out many more examples (14.4%)
compared to the correctness models with BART
small5.1 (3.6%), making this combination less suit-
able at these levels of data efficiency (8X higher).

6 Conclusion

In this paper, we explored for the first time whether
few-shot NLG models can be productionized, en-
abling us to much more effectively scale to new
domains and languages. By using a system consist-
ing of a templating approach, pre-trained language
models, self-training, and an acceptability classifier,
we found that we can stand up domains with a few
hundred annotated samples compared to several
thousands previously, while also addressing pro-
duction latency needs via knowledge distillation
and caching. At this level of data efficiency, there
is no need for crowd-sourced data collection as ex-
pert linguists can instead annotate the data used
by the system. In addition, model maintenance—
including addition of new capabilities, debugging,
and changing response style—will become signifi-
cantly easier using the few-shot system.
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