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Abstract

In transfer learning, it is imperative to achieve
strong alignment between a pre-trained model
and a downstream task. Prior work has done
this by proposing task-specific pre-training ob-
jectives, which sacrifices the inherent scalabil-
ity of the transfer learning paradigm. We in-
stead achieve strong alignment by simultane-
ously modifying both the pre-trained model
and the formulation of the downstream task,
which is more efficient and preserves the
scalability of transfer learning. We present
GENSF (Generative Slot Filling), which lever-
ages a generative pre-trained open-domain di-
alog model for slot filling. GENSF (1) adapts
the pre-trained model by incorporating induc-
tive biases about the task and (2) adapts the
downstream task by reformulating slot filling
to better leverage the pre-trained model’s ca-
pabilities. GENSF achieves state-of-the-art re-
sults on two slot filling datasets with strong
gains in few-shot and zero-shot settings. We
achieve a 9 F1 score improvement in zero-
shot slot filling. This highlights the value
of strong alignment between the pre-trained
model and the downstream task.

1 Introduction

The advent of pre-trained language models (De-
vlin et al., 2019; Radford et al., 2019) has trans-
formed natural language processing. The domi-
nant paradigm has shifted away from designing
task-specific architectures towards transfer learn-
ing. Fine-tuning pre-trained models on downstream
datasets achieves strong performance on a vari-
ety of natural language understanding tasks (Wang
et al., 2018). Generally, prior to fine-tuning, the
pre-trained models are adapted to the specifics of
the downstream task through minor architectural
modifications (e.g., adding a classification layer)
(Chen et al., 2019; Mehri et al., 2020). By avoid-
ing major task-specific changes to the models, it

Figure 1: To achieve a stronger alignment, both the
downstream task and the pre-trained models must be
adapted. The downstream task can be adapted with
knowledge of the properties and capabilities of the pre-
trained models. Likewise, the pre-trained model can be
adapted with knowledge of the downstream task/data.

is assumed that the underlying pre-trained models
possess a degree of generality that allows transfer
to a variety of tasks. We posit that this assumption
is flawed. Consequently this paper demonstrates
the importance of incorporating inductive biases
that achieve stronger alignment between the pre-
trained model and the downstream task.

Recent work has validated the idea that stronger
alignment between pre-training and the down-
stream task results in improved performance.
Rather than fine-tuning off-the-shelf models, it
is more effective to first understand the down-
stream task and adapt the model’s architecture,
pre-training and inference algorithm accordingly.
Adapting pre-trained models in this manner is
equivalent to incorporating inductive biases
about the downstream task. For example, pre-
training on open-domain dialog data results im-
proves performance on downstream dialog tasks
(Henderson et al., 2019; Mehri et al., 2020). De-
signing task-specific pre-training objectives has
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yielded strong results in extractive question an-
swering (Glass et al., 2019), paraphrase and trans-
lation (Lewis et al., 2020) and slot filling (Hen-
derson and Vulić, 2020). This body of work at-
tains stronger alignment by significantly modify-
ing the pre-trained model through task-specific
pre-training. This necessitates a new pre-trained
model for every downstream task, and therefore
relinquishes the inherent scalability of the transfer
learning paradigm. Instead, we achieve stronger
alignment by simultaneously adapting both the pre-
trained model and the downstream task, such that
both contain inductive biases about one another.

The downstream task can be adapted to achieve
stronger alignment with the capabilities of the pre-
trained model. To effectively leverage pre-trained
models, it is important to first understand the prop-
erties and capabilities of the model derived from
the model architecture, the pre-training data and
task. Then the downstream task can be adapted to
be better aligned with the model. Adapting the task
to the model is equivalent to incorporating induc-
tive biases about the pre-trained model into the
downstream task. For example, given a pre-trained
model that was trained with a ranking objective,
it is likely to be more effective if the downstream
fine-tuning and inference algorithms are modified
to rank rather than to classify. By simultaneously
adapting both the downstream task and the pre-
trained model, we intend to achieve stronger align-
ment without sacrificing the inherent scalability
of the transfer learning paradigm (i.e., avoiding
task-specific pre-trained models).

We address the task of slot filling, a natural lan-
guage understanding task with the goal of iden-
tifying values for pre-defined attributes (slots) in
a natural language utterance. We leverage a Di-
aloGPT (Zhang et al., 2020), a generative lan-
guage model, pre-trained on open-domain dialog
data. To achieve strong alignment between the
slot filling task and DialoGPT, we (1) reformulate
slot filling as a natural language response genera-
tion task, and (2) augment the DialoGPT architec-
ture with a copy-mechanism, constrained decod-
ing and a post-processing heuristic. The resulting
model, GENSF (Generative Slot Filling), is shown
to achieve state-of-the-art results on two slot fill-
ing datasets. GENSF achieves the strongest per-
formance gains in few-shot and zero-shot settings,
highlighting the importance of stronger alignment
in the absence of abundant data. Our code is open-

sourced and can be found at https://github.

com/shikib/generative_slot_filling.

2 Related Work

Slot filling is the task of identifying values for pre-
defined attributes, or slots, in a natural language
utterance (Tur and De Mori, 2011). Slot filling is a
vital natural language understanding component of
task-oriented dialog systems (Young, 2002, 2010).
A variety of architectures have been explored for
the task of slot filling, including CNNs (Vu, 2016),
deep LSTMs (Yao et al., 2014), RNNs with exter-
nal memory (Peng et al., 2015), encoder labeler
LSTMs (Kurata et al., 2016) and joint pointer and
attention seq2seq networks (Zhao and Feng, 2018).
With the introduction of large-scale pre-trained lan-
guage models (Devlin et al., 2019; Radford et al.,
2019), strong slot filling results have been achieved
with simple architectures (Chen et al., 2019).

Several approaches have been proposed for zero-
shot slot filling. Bapna et al. (2017) leverage slot
names and descriptions to align slots across do-
mains. Shah et al. (2019) leverage examples for
zero-shot slot filling. Liu et al. (2020) achieve
strong results in zero-shot slot filling with a coarse-
to-fine approach in combination with template regu-
larization. We use the Coach+TR model (Liu et al.,
2020) as a baseline in our zero-shot experiments.

Working on the hypothesis that pre-trained lan-
guage models, such as BERT (Devlin et al., 2019),
do not effectively capture the intricacies of dia-
log, recent work has attempted to mitigate this is-
sue. Coope et al. (2020) use ConveRT (Henderson
et al., 2019), a lightweight model pre-trained on
dialog data, in combination with CNN and con-
ditional random field (CRF) to outperform BERT.
Mehri et al. (2020) achieves similar results with
ConvBERT, a model that further pre-trains BERT
on open-domain dialog data. Recently, Hender-
son and Vulić (2020) introduces a ‘pairwise cloze’
pre-training objective that uses open-domain dia-
log data to specifically pre-train for the task of slot
filling. The resulting ConVEx model achieves sig-
nificant improvements, particularly in few-shot set-
tings. A common theme in recent work is achieving
better alignment between the pre-trained models
and the downstream task, either by pre-training
on data that is closer to the domain of the down-
stream task (i.e., dialog data) (Henderson et al.,
2019; Mehri et al., 2020) or by designing custom
pre-training objectives that better model the down-

https://github.com/shikib/generative_slot_filling
https://github.com/shikib/generative_slot_filling
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stream task (Henderson and Vulić, 2020). Our pro-
posed approach shares the goal of achieving better
alignment, but we simultaneously adapt both the
pre-trained model and the downstream task, with
the goal of leveraging a generative pre-trained dia-
log model, DialoGPT, for slot filling.

3 Methods

In order to effectively leverage a pre-trained gener-
ative dialog model, DialoGPT (Zhang et al., 2020),
for the task of slot-filling, we introduce the GENSF
model which achieves stronger alignment between
the downstream task and the pre-trained model, by
simultaneously adapting the task to the model and
the model to the task. This paper first describes how
the slot filling task is reformulated as a natural lan-
guage response generation task to be better aligned
with the DialoGPT model. Next, it describes sev-
eral modifications to the DialoGPT architecture
and inference algorithm that act as inductive biases
for the slot filling task.

3.1 Slot Filling as Response Generation

Given an utterance u = {w1, w2, . . . wn}, a set of
possible slot keys s = {s1, s2, . . . sk}, and a list of
slots requested by the system r = {r1, r2, . . . rm}
(where ri ∈ s and m ≥ 0), the task of slot filling
is to assign a value to a subset of the slot keys.
Concretely, for a given slot key si, the output will
either be NULL or a contiguous span of words from
the utterance: si = {wi, . . . wi+j}.

In response generation, given a dialog con-
text consisting of a sequence of utterances: c =
{x1, x2, . . . xn} wherein each utterance xi is a se-
quence of words, the task is to generate a valid
response y = {w1, w2, . . . wm}.

Many tasks can be represented as an input to
output mapping (Raffel et al., 2019; Hosseini-Asl
et al., 2020; Peng et al., 2020), making sequence-to-
sequence a universal formulation. Trivially, slot fill-
ing can be represented as a sequence-to-sequence
task by setting the context to be the concatenation
of the utterance and the requested slots: c = {u, r}
and the target response to be the slot mappings
y = {(s1, wi:j), (s2, NULL), . . . (sk, (wj:n)}. How-
ever, this does not leverage the natural language
capabilities of pre-trained dialog models. While
this trivial formulation may suffice with sufficient
training, it will under-perform in few-shot and zero-
shot settings. To this end, this paper presents a
reformulation of slot filling that better aligns with

the natural language capabilities of DialoGPT.
We hypothesize that to some degree, large-scale

dialog pre-training can result in a model implicitly
learning to fill slots. For example, given the slot
key ‘time’, such a model should understand what
time is and should be able to generate a valid time
(e.g., ‘4:15 pm’). An effective task formulation
can leverage these implicitly learned slot filling
capabilities. An off-the-shelf pre-trained model is
likely to only be capable of filling generic slots
(e.g., time, date, price, etc.). But by reformulating
slot filling in a manner that is better aligned with
the pre-training task, it should be easier for the
model to adapt to novel slot keys.

Concretely, given a slot filling input (u, r) and
a particular slot key si, we construct a natural lan-
guage dialog context using a template-based ap-
proach: c = ‘What is the {f(r)}? [eos] {u}
[eos] Ok, the {f(si)} is’. Here, f denotes a man-
ually constructed function that maps slot keys to
a natural language phrase (e.g., first name: first
name, departure location: leaving from). Given
the constructed dialog context, the model is tasked
with completing the partial response (i.e., Ok, the
{f(si)} is) by auto-regressively generating the slot
value. During training the model would be tasked
with generating either the slot value or the phrase
not provided. With this natural language refor-
mulation, the slot filling task is being adapted to
better leverage the capabilities of the pre-trained
DialoGPT model. As this achieves better alignment
between the pre-trained model and the downstream
task, it should be more effective for zero-shot and
few-slot filling. To better illustrate the conversion
of the slot-filling input (utterance u and request
slots r), several examples are shown in Table 1.

3.2 DialoGPT for Slot Filling

In order to adapt the pre-trained DialoGPT model
to the slot filling task, we augment the architecture
and modify the inference algorithm. These adap-
tations are motivated by the observation that if the
slot value is provided, it will always be a contigu-
ous span of tokens from the utterance. As such, the
generative model can only produce: (1) ‘not pro-
vided‘ if the slot does not appear in the utterance,
(2) the end of sentence token, and (3) tokens from
the input utterance.

A copy-mechanism is incorporated into the Di-
aloGPT architecture to allow the model to ex-
plicitly generate tokens from the input utterance.
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Utterance Requested Slots Slot Key Natural Language Context

We will require an outside
table to seat 9 people on

August 23rd
None date

We will require an outside table
to seat 9 people on August 23rd

[EOS] Ok, the date is

Laurice Hoisl
first name,
last name

first name
What is the first name, last

name? [EOS] Laurice Hoisl
[EOS] Ok, the first name is

My party will be 9 people.
My name is Nancie

Waltemeyer and the time
is 7pm

None people

My party will be 9 people. My
name is Nancie Waltemeyer
and the time is 7pm [EOS]
Ok, the number of people is

Table 1: Examples of slot filling inputs reformulated as natural language dialog contexts

Given a context c = {x1, x2, . . . xn}, through
its self-attention layers, the model will produce
a hidden state representation for each token, h =
{h1, h2, . . . , hn}. A probability distribution over
the vocabulary is then obtained by passing hn
through a classification layer:

Pvocab = softmax(Whn + b) (1)

To explicitly generate tokens from the input, hn
is used to attend to h1:n to produce a probability
distribution over x1:n. The process for computing
the probability for a specific word, Pcopy(w) is as
follows:

α = softmax(hTnh1:n) (2)

Pcopy(w) =
∑

i:xi=w

αi (3)

These two probability distributions are combined
through a weighted sum. The weight assigned to
each of the distributions is predicted using hn:

pcopy = σ(Wcopyhn + bcopy) (4)

The final probability distribution is therefore:

Pfinal = (1− pcopy)Pvocab + pcopyPcopy (5)

The copy-mechanism requires training, as it in-
troduces new weights (wcopy, bcopy) and the off-
the-shelf DialoGPT model does not necessarily
produce attention weights, α, that can be used to
create an output probability distribution. As such,
to attain strong zero-shot performance we must
also modify the inference algorithm to account for

the aforementioned observation. This is done using
both constrained decoding and a post-processing
heuristic.

Constrained decoding is a modification of greedy
decoding wherein the argmax sampling is modified
to only generate (1) words that appear in the input
utterance, (2) the end of sentence token and (3) the
phrase ‘not provided’.

The slot values may consist of terms that the
model has not frequently observed during pre-
training (e.g., names, times). As such, because
the DialoGPT model leverages a subword vocabu-
lary, some subword tokens may be dropped during
generation and therefore the slot values may be
generated with typos (e.g., ‘Mocer’ vs ‘Mocher’).
A simple post-processing heuristic is applied to
mitigate this problem. If the slot value produced
by the model is not present in the utterance, the
Levenshtein distance to every contiguous span of
tokens in the utterance is computed. If the best edit
distance is within a certain threshold (0.3× len(y)),
the corresponding span is returned as the slot value.

Through these modifications, the DialoGPT
model is adapted to reflect the properties of the
slot filling task. The copy-mechanism, constrained
decoding and post-processing mechanism serve as
an inductive bias to enable the pre-trained model
to be better adapted for the downstream slot filling
task.

4 Experiments

Experiments are performed to empirically validate
the hypothesis that simultaneously adapting the
downstream task and the pre-trained model results
in stronger alignment and improved performance.
We present experiments on two datasets and as-
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Fraction Span-ConveRT Span-BERT ConVEx GenSF

1 (8198) 95.8 93.1 96.0 96.1
1/2 (4099) 94.1 91.4 94.1 94.3
1/4 (2049) 91.2 88.0 92.6 93.2
1/8 (1024) 88.5 85.3 90.6 91.8
1/16 (512) 81.1 76.6 86.4 89.7
1/32 (256) 63.8 53.6 81.8 82.1
1/64 (128) 57.6 42.2 76.0 76.1
1/128 (64) 40.5 30.6 71.7 72.2

Table 2: F1 scores across all slots for the evaluation on the RESTAURANTS-8K test data with varying proportions
of the training set. Numbers in brackets denote the training set sizes. The best scores (statistically significant by
t-test to p < 0.05) are shown in boldface.

sess GENSF in full-data, few-shot and zero-shot
settings. An ablation study is performed to char-
acterize the source of the performance gains and
demonstrate the importance of simultaneous adap-
tation.

4.1 Datasets
Experiments are carried out on RESTAURANTS-
8K (Coope et al., 2020) and the DSTC8 datasets
(Rastogi et al., 2020). RESTAURANTS-8K consists
of 8,198 utterances from a commercial restaurant
booking system and includes 5 slots (date, time,
people, first name, last name). The DSTC8 datasets
span four different domains (buses, events, homes,
rental cars) for a total of 5,569 utterances with slot
annotations extracted by Coope et al. (2020).

In both datasets, the value for a particular slot is
always a contiguous span of the utterance. Some
utterances consist of a set of slots requested by the
system prior to the user utterance. This allows an
otherwise ambiguous utterance like ‘four’ to be
interpreted as either ‘four people’ or ‘four o’clock’.

4.2 Experimental Setup
We use the pre-processing and evaluation scripts
provided by the DialoGLUE benchmark (Mehri
et al., 2020). We follow the setup of Coope et al.
(2020) and Henderson and Vulić (2020), wherein
a validation set is not used and the experiments
are therefore performed with fixed hyperparame-
ters. Throughout all the experiments, the medium
version of DialoGPT (Zhang et al., 2020) is used.
We use the AdamW optimizer (Loshchilov and
Hutter, 2017) with a learning rate of 5e-5. On
RESTAURANTS-8K, the models are trained for 10
epochs in the full-data setting, 20 epochs in the
few-shot settings and 40 epochs in the extreme few-
shot settings (1/32 - 1/128; or less than 256 training
examples). On the DSTC8 datasets, the models are

trained for 20 epochs in the full-data setting and 40
epochs in the few-shot setting.

The models are evaluated on the full test set,
regardless of the amount of training data, using
macro-averaged F1 score (Coope et al., 2020).

To facilitate reproducibility, the code and the
trained models will be released upon publication.

4.3 Slot Filling Results

Throughout the experiments we compare to several
models from prior work. Span-ConveRT (Coope
et al., 2020) and Span-BERT train a CNN and a
CRF on top of contextual subword embeddings pro-
duced by ConveRT (Henderson et al., 2020) and
BERT (Devlin et al., 2019), respectively. ConVEx
(Henderson and Vulić, 2020) devises a pairwise
cloze pre-training objective specifically for slot-
filling. This task-specific pre-training objective
is an example of significantly adapting the pre-
trained model to the downstream task. In contrast
to ConVEx, GENSF achieves strong alignment be-
tween the pre-trained model and the downstream
task by simultaneously adapting both the task and
the model. As such, GENSF does not need a task-
specific pre-trained model and is inherently more
scalable. The ConVEx pre-training takes 8 hours
to train on 12 GPUs, while GENSF takes less than
four hours to train on a single GTX 1080TI.

As shown in Table 2, GENSF achieves state-
of-the-art results across all experimental settings
on the RESTAURANTS-8K dataset. In the full-
data setting, GENSF slightly outperforms ConVEx.
Though the performance gain is small, this result
signifies that our model can leverage an abundance
of data. The value of strong alignment between
the downstream task and the pre-trained model is
better exemplified in the few-shot settings. Espe-
cially in the extreme few-shot settings (i.e., 1/32 -
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Setting Span-ConveRT Span-BERT ConVEx GenSF

Buses 1 Full-Data (1133) 93.5 93.3 96.0 98.1
Few-Shot (283) 84.0 77.8 86.7 90.5

Events 1 Full-Data (1498) 92.7 84.3 91.7 94.7
Few-Shot (374) 82.2 78.6 87.2 91.2

Homes 1 Full-Data (2064) 94.8 96.3 98.3 96.9
Few-Shot (516) 95.4 95.1 94.5 93.7

RentalCars 1 Full-Data (874) 94.0 92.8 92.0 93.5
Few-Shot (218) 83.0 81.4 87.4 86.7

Table 3: F1 scores across all slots for evaluation on the DSTC8 single-domain datasets in the full-data and few-
shot settings. Numbers in brackets denote training set sizes. The best scores (statistically significant by t-test, to
p < 0.05) are shown in boldface.

1/128 of the training set), GENSF strongly outper-
forms Span-ConveRT and Span-BERT, with greater
than 30 F1 score improvements. The few-shot per-
formance of both ConVEx and GENSF in these
few-shot settings underlies the value of effectively
aligning the pre-trained model and the downstream
task. However, GENSF achieves this alignment
by simultaneously incorporating inductive biases
about the model into the task rather than design-
ing a complex pre-training objective. By incorpo-
rating inductive biases into both the task and the
model, the approach outlined in this paper does
not require task-specific pre-trained models and
therefore preserves the inherent generality of the
transfer learning paradigm. Furthermore, GENSF
attains moderate improvements over ConVEx, es-
pecially in the few-shot settings, with a 3 F1 score
improvement in the 1/16th setting.

The results on the DSTC8 single-domain datasets
is shown in Table 3. Here, we evaluate on both
full-data and few-shot (25% of the training data)
settings. On average, GENSF achieves strong per-
formance improvements over prior work. In the
full-data settings the best performance is observed
on the buses and events domains, where GENSF
achieves a 2.1 and 3.0 F1 score improvement over
ConVEx, respectively. In the few-shot settings,
GENSF achieves a 4.0 F1 score improvement over
ConVEx on these domains and a 6.5 and 9.0 point
improvement over Span-ConveRT. These strong
improvements, over both Span-ConveRT and Con-
VEx, highlight the value of strong alignment be-
tween the pre-trained model and the downstream
task, particularly in the few-shot experiments.

GENSF moderately underperforms on the homes
and rental cars domains. On the homes domain,
GENSF outperforms Span-ConveRT and Span-

BERT but scores 1.4 points below ConVEx. Sim-
ilarly, on the rental cars domain, GENSF outper-
forms ConVEx and Span-BERT, but is 0.5 points
below Span-ConveRT. Though GENSF is still com-
petitive in these domains, these results nonethe-
less highlight a weakness of our model. Our use
of a generative pre-trained dialog model, specif-
ically DialoGPT (Zhang et al., 2020), was moti-
vated by the hypothesis that such models can im-
plicitly learn to identify certain slots through re-
sponse generation pre-training. This hypothesis
is empirically validated through improved perfor-
mance on RESTAURANTS-8K and the buses/events
domains of DSTC8. GENSF relies on the pre-
trained model having an implicit understanding
of the slots. This implicit understanding results
in strong performance on slots like ‘time’ or ‘first
name’, since such terms are likely to have been ob-
served during pre-training. However, this is not the
case for all slots and GENSF can underperform on
slots that are ambiguous, ill-defined or are unlikely
to have been observed during open-domain dialog
pre-training. The homes domain consists of the slot,

‘area’, which has several definitions and is there-
fore challenging for the pre-trained model to under-
stand and detect. The rental cars domain contains
the slots ‘pickup date’ and ‘dropoff date’. While
the DialoGPT model has learned to detect a ‘date’,
the distinction between these two slots is more nu-
anced and therefore may cause some amount of
confusion. As such, while GENSF is competitive
in these domains and is only outperformed by one
of the three models, these domains demonstrate
that there are limitations at present to leveraging a
generative pre-trained model. However, it is pos-
sible that by further adapting the downstream task
to the pre-trained model, for example by renaming
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these slots (e.g., ‘area’ may be renamed to ‘city’),
the performance drops may be mitigated.

Overall, GENSF achieves impressive perfor-
mance gains in both full-data and few-shot settings,
underlying the value of achieving strong alignment
between the pre-trained model and the downstream
task. Furthermore, GENSF achieves this align-
ment by simultaneously adapting both the task
and the model and without sacrificing the inher-
ent scalability of the transfer learning paradigm
or necessitating task-specific pre-training. In the
RESTAURANTS-8K and the single-domain DSTC8
datasets, GenSF achieves state-of-the-art results
and outperforms prior work. In few-shot settings,
we achieve a 30 F1 score improvement over Span-
BERT and Span-ConveRT. On average, GenSF
moderately outperforms ConVEx, with > 2.0 F1

score improvements in the few-shot settings on
RESTAURANT-8K, and both the full data and few-
shot settings on two of the DSTC8 datasets. These
experiments empirically validate (1) the impor-
tance of aligning the pre-trained model and the
downstream task by simultaneously incorporat-
ing inductive biases into both the task and the
model and (2) that through response generation
pre-training, dialog models have implicitly learned
to detect certain slots, which can be leveraged by
effectively adapting the downstream task.

4.4 Zero-shot Slot Filling

For zero-shot slot filling, we must have strong align-
ment between the pre-trained model and the down-
stream task. Since the model is not fine-tuned on
the task, it is necessary to effectively align the for-
mulation of the downstream task to the capabilities
of the model. As such, zero-shot experiments val-
idate our proposed reformulation of slot filling as
natural language response generation.

For these experiments, we compare to the pub-
lished results of ConVEx (Henderson and Vulić,
2020). Furthermore, we run a Coach+TR model
(Liu et al., 2020) on the RESTAURANT-8K dataset.
Note that while ConVEx and GENSF have only
been trained on open-domain dialog, Coach+TR
trains on adjacent task-oriented domains (i.e.,
SNIPS), meaning that the zero-shot performance is
higher on slots that are domain agnostic.

The experiments used the RESTAURANTS-8K

dataset with the GENSF model. The copy-
mechanism is removed from the model, as it adds
additional weights to the model and therefore re-

Slot Metric Coach+TR ConVEx GenSF

P 1.7 2.3 13.7
First Name R 4.1 20.1 36.1

F1 2.5 4.1 19.8

P 0 1.9 10.6
Last Name R 0 16.2 19.7

F1 0 3.4 13.8

P 10.2 2.2 10.7
Date R 34.8 10.1 15.3

F1 15.7 3.6 12.6

P 47.4 5.6 27.5
Time R 27.9 23.6 46.9

F1 35.1 9.1 34.7

P 0 3.8 14.5
People R 0 13.9 18.9

F1 0 6.0 16.4

Average F1 10.7 5.2 19.5

Table 4: Zero-shot slot filling results on
RESTAURANTS-8K. All models are evaluated on
the test set without any training on the dataset.

quires training. However, the constrained decoding
and the post-processing heuristic of GENSF, allow
us to enforce that the slot values will always be a
contiguous span from the input utterance. Table
4 demonstrates that GENSF significantly outper-
forms prior work on zero-shot slot filling with a 14
F1 score improvement over ConVEx and a 9 F1

score improvement over Coach+TR. These results
further validate the hypothesis that pre-trained dia-
log models have implicitly learned to detect slots
and that this ability can be leveraged through the
proposed task reformulation.

Most noteworthy is the performance on the ‘first
name’ and ‘last name’ slots. This suggests that, to
some degree, DialoGPT (Zhang et al., 2020) can
disambiguate between a first name and a last name
when provided simultaneously (e.g., ‘my name is
Lakesha Mocher’). It should be noted that the
macro-averaged F1 score used to evaluate the mod-
els considers a slot value to be incorrect unless
it exactly predicts the ground-truth slot value. In
many cases, the GENSF model produces appropri-
ate slot values that differ from the ground-truth,
e.g., ‘wednesday’ instead of ‘next wednesday’. It
is possible that by incorporating additional induc-
tive biases about the specific formulation of the
slot values (e.g., slots should have maximal infor-
mation) into the inference algorithm, the zero-shot
performance can be further increased.
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Model Full-Data Few-Shot (1/16) Zero-Shot

GenSF 96.1 89.7 19.5

Removing Model Adaptation

– Copy-mechanism 95.6 87.8 19.5
– Constrained Decoding 95.4 89.5 0.5
– Post-processing 96.1 89.7 18.1
– All model adaptation 95.4 87.8 0.5

Removing Task Adaptation

– Natural Language Slot Names 95.3 86.6 12.2
– Natural Language Templates 94.8 88.5 0.0
– All Natural Language 95.5 88.9 0.0

Removing All Adaptation

– All Adaptation 95.8 89.2 0.0

Table 5: Ablation experiments. We remove (1) adaptations to the model, (2) adaptations to the downstream task
and (3) all adaptations proposed in this paper. The experiments are carried out on the full-data, few-shot (1/16th of
the training set) and zero-shot settings of RESTAURANTS-8K.

GENSF is shown to strongly outperform prior
work on zero-shot slot filling. This impressive per-
formance validates the proposed approach of si-
multaneously adapting both the downstream task
and the pre-trained model. Furthermore, zero-shot
performance also confirms the hypothesis that pre-
trained response generation models have implicitly
learned to understand and detect slots, thereby high-
lighting the potential of leveraging generative pre-
trained models for language understanding tasks.
Future work should explore mechanisms for re-
formulating other downstream tasks (e.g., intent
prediction, dialog state tracking) in order to lever-
age generative pre-trained models. Furthermore, it
is possible that these zero-shot results could be fur-
ther improved through two-stage pre-training (e.g.,
further pre-train with the ‘pairwise cloze’ task).

4.5 Ablation

GENSF has been shown to outperform prior work
in full-data, few-shot and zero-shot settings. To
determine the source of the improvements, we per-
form an ablation study. The ablation experiments
remove the adaptations used in GENSF and eval-
uate on RESTAURANTS-8K across full-data, few-
shot (1/16 of the training set) and zero-shot settings.
Removing all the ablation, is equivalent to training
a DialoGPT model from scratch on the task, similar
to the approach proposed by Madotto (2020).

As shown in Table 5, the various adaptations
are vital to the strong performance of GENSF. Of
the model adaptations, only the copy-mechanism is
necessary in the full-data setting, since the model

effectively learns to copy tokens from the input ut-
terance and therefore does not need constrained de-
coding and post-processing. However, constrained
decoding is necessary for the zero-shot settings,
as the zero-shot model does not leverage a copy-
mechanism. Task adaptation, especially the use of
natural language templates, is shown to be impor-
tant across all of the experimental settings. This
highlights the importance of formulating the down-
stream task in a manner that can effectively lever-
age the capabilities of the pre-trained models.

The results of the ablation study further validate
this paper’s primary hypothesis. Pre-trained mod-
els work better for downstream tasks, when the task
and the model are effectively aligned. As shown
in the results of the ablation study, removing this
adaptation results in a performance decrease.

5 Conclusion

This paper simultaneously adapts both the task and
the pre-trained model in order to achieve strong
alignment between a generative pre-trained dialog
model and the downstream slot filling task. The
resulting GENSF model achieves state-of-the-art
results on two slot filling datasets, with particu-
larly strong gains in few-shot and zero-shot settings.
The empirical results underlie the importance of
incorporating inductive bias into both the task and
the pre-trained model. While this paper demon-
strates the value of simultaneous adaptation for
the task of slot filling, a similar paradigm could
potentially be extended to alternate tasks. Future
work should (1) explore improved mechanism for
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achieving stronger alignment between the task and
the model, (2) extend the simultaneous adaptation
strategy to other problems and (3) explore the use
of pre-trained generative models for language un-
derstanding tasks.
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