
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 445–456
July 29–31, 2021. ©2021 Association for Computational Linguistics

445

Domain-independent User Simulation with Transformers for
Task-oriented Dialogue Systems

Hsien-chin Lin1, Nurul Lubis1, Songbo Hu2, Carel van Niekerk1,
Christian Geishauser1, Michael Heck1, Shutong Feng1, and Milica Gašić1

1Heinrich Heine University Dusseldorf, Germany
2Department of Computer Science and Technology, University of Cambridge, UK

1{linh,lubis,niekerk,geishaus,heckmi,shutong.feng,gasic}@hhu.de
2sh2091@cam.ac.uk

Abstract

Dialogue policy optimisation via reinforce-
ment learning requires a large number of
training interactions, which makes learning
with real users time consuming and expensive.
Many set-ups therefore rely on a user simula-
tor instead of humans. These user simulators
have their own problems. While hand-coded,
rule-based user simulators have been shown
to be sufficient in small, simple domains, for
complex domains the number of rules quickly
becomes intractable. State-of-the-art data-
driven user simulators, on the other hand, are
still domain-dependent. This means that adap-
tation to each new domain requires redesign-
ing and retraining. In this work, we propose
a domain-independent transformer-based user
simulator (TUS). The structure of our TUS is
not tied to a specific domain, enabling domain
generalisation and learning of cross-domain
user behaviour from data. We compare TUS
with the state of the art using automatic as well
as human evaluations. TUS can compete with
rule-based user simulators on pre-defined do-
mains and is able to generalise to unseen do-
mains in a zero-shot fashion.

1 Introduction

Task-oriented dialogue systems are designed to
help users accomplish specific goals within a partic-
ular task such as hotel booking or finding a flight.
Solving this problem typically requires tracking
and planning (Young, 2002). In tracking, the sys-
tem keeps track of information about the user goal
from the beginning of the dialogue until the cur-
rent dialogue turn. In planning, the dialogue policy
makes decisions at each turn to maximise future re-
wards at the end of the dialogue (Levin and Pierac-
cini, 1997). The system typically needs thousands
of interactions to train a usable policy (Schatzmann
et al., 2007; Pietquin et al., 2011; Li et al., 2016; Shi
et al., 2019). The amount of interactions required

makes learning from real users time-consuming
and costly. It is therefore appealing to automati-
cally generate a large number of dialogues with a
user simulator (US)1(Eckert et al., 1997).

Rule-based USs are interpretable and have
shown success when applied in small, simple do-
mains. However, expert knowledge is required
to design their rules and the number of rules
needed for complex domains quickly becomes
intractable (Schatzmann et al., 2007). In addi-
tion, handcrafted rules are unable to capture hu-
man behaviour to its fullest extent, leading to sub-
optimal performance when interacting with real
users (Schatzmann et al., 2006).

Data-driven USs on the other hand can learn
user behaviour directly from a corpus. However,
they are still domain-dependent. This means that
in order to accommodate an unseen domain one
needs to collect and annotate a new dataset, and
retrain or even re-engineer the simulator.

We propose a transformer-based domain-
independent user simulator (TUS). Unlike existing
data-driven simulators, we design the feature repre-
sentation to be domain-independent, allowing the
simulator to easily generalise to new domains with-
out modifying or retraining the model. We utilise a
transformer architecture (Vaswani et al., 2017) so
that the input sequence can have a variable length
and dynamic order. The dynamic order takes into
account the user’s priorities and the varying input
length enables the US to incorporate system ac-
tions in a seamless manner. TUS predicts the value
of each slot and the domains of the current turn,
allowing the model to optimise its performance in
multiple granularities. By disentangling the user
behaviour from the domains, TUS can learn a more
general user policy to train the dialogue policy.

1There are approaches that attempt to learn a dialogue
policy from direct interaction with humans (Gašić et al., 2011).
Even then, USs are essential for development and evaluation.

446

We compare policies trained with our TUS to
policies trained with other USs through indirect and
direct evaluation as well as human evaluation. The
results show that policies trained with TUS outper-
form those that are trained with another data-driven
US and are on par with policies trained with the
agenda-based US (ABUS). Moreover, the policy
generalises better when evaluated with a different
US. Automatic and human evaluations on our zero-
shot study show that leave-one-domain-out TUS is
able to generalise to unseen domains while main-
taining a comparable performance to ABUS and
TUS trained on the full training data.

2 Related Work

The quality of a US has a significant impact on
the performance of a reinforcement-learning based
task-oriented dialogue system (Schatzmann et al.,
2005). One of the early models include an N-gram
user simulator proposed by Eckert et al. (1997).
It uses a 2-gram model P (au|am) to predict the
user action au according to the system action am.
Since it only has access to the latest system action,
its behaviour can be illogical if the goal changes.
Therefore, models which can take into account a
given user goal were introduced (Georgila et al.,
2006; Eshky et al., 2012). The Bayesian model
of Daubigney et al. (2012) predicts the user action
based on the user goal, and hidden Markov models
are used to model the user and the system behaviour
(Cuayáhuitl et al., 2005). The graph-based US of
Scheffler and Young (2002) combines all possible
dialogue paths in a graph. It can generate reason-
able and consistent behaviour, but is impractical to
implement, since extensive domain knowledge is
required.

The agenda-based user simulator (ABUS)
(Schatzmann et al., 2007) models the user state
as a stack-like agenda, ordered according to the
priority of the user actions. The probabilities of
updating the agenda and choosing user actions are
set manually or learned from data (Keizer et al.,
2010). Still, the stacking and popping rules are
domain-dependent and need to be designed care-
fully.

To build a data-driven model, the sequence-to-
sequence (Seq2Seq) model structure is widely used.
El Asri et al. (2016) propose a Seq2Seq semantic
level US with an encoder-decoder structure. Each
turn is fed into the encoder recurrent neural network
(RNN) and embedded as a context vector. Then

domain-independent

da
ta
-d
riv
en

int
erp
ret
ab
le

TUS
VHUS

NUS

ABUSGraph-based

Seq2Seq

Figure 1: The difference between USs. We com-
pare to which extent a model is data-driven, domain-
independent and interpretable.

this context vector is passed to the decoder RNN
to generate user actions. To add new domains, it is
necessary to modify the domain-dependent feature
representation and retrain the model.

Instead of generating semantic level output, the
neural user simulator (NUS) by Kreyssig et al.
(2018) generates responses in natural language,
thus requiring less labeling, at the expense of inter-
pretability. However, its feature representation is
still domain-dependent.

A variational hierarchical Seq2Seq user simu-
lator (VHUS) is proposed by Gür et al. (2018).
Instead of designing dialogue history features, the
model encodes the user goal and system actions
with a vector using an RNN, which alleviates the
need of heavy feature engineering. However, the
inputs are represented as one-hot encodings, which
are also dependent on the ontology. In addition, the
output generator is not constrained by the ontology
in any way, so it can generate impossible actions.

As shown in Fig. 1, ABUS and graph-based
models are domain-dependent and require signif-
icant design efforts. Data-driven models such as
Seq2Seq, NUS, and VHUS can learn from data, but
are constrained by the underlying domain. NUS
generates natural language responses, which re-
quires less labeling, but comes with reduced inter-
pretability.

Shi et al. (2019) compared different ways to
build a US and indicated that the data-driven mod-
els suffer from bias in the corpus. If some actions
are rare in the corpus, the model cannot capture
them. Thus, the dialogue policy cannot explore all
possible paths during training with the data-driven
USs. It is important to learn more general human
behaviour to reduce the impact of the corpus bias.

447

3 Problem Description

Task-oriented dialogue systems are defined by a
given ontology, which specifies the concepts that
the system can handle. The ontology can include
multiple domains. In each domain, there are in-
formable slots, which are the attributes that users
can assign values to, and requestable slots, which
are the attributes that users can query. For example,
in Fig. 2 the user goal has two domains, “hotel” and
“restaurant”. The slot Area is an informable slot
with the value North in domain “hotel” and Addr
is a requestable slot in domain “restaurant”. The
system state records the slots and values mentioned
in the dialogue history. A US for task-oriented dia-
logue systems needs to provide coherent responses
according to a given user goal G = {domain1 :
[(slot1, value1), (slot2, value2), . . .], . . . }. The
domains, slots and values are selected from the
ontology.

The user action is composed of user in-
tents, domains, slots, and values. We con-
sider user intents that appear in the MultiWOZ
dataset (Budzianowski et al., 2018). It is of course
possible to consider arbitrary intents within the
same model architecture, as long as they are de-
fined a priori2. The two possible user intents we
consider are Inform and Request. With Inform, the
user can provide information, correct the system
or confirm the system’s recommendations. When a
user goal cannot be fulfilled, the user can also ran-
domly select a value from the ontology and change
the goal. With Request, the user can request infor-
mation about certain slots.

The system action is similar to the user action,
but there exist more (system) intents. For example,
the system can provide suggestions to users with
the intent Recommendation and make reservations
for users with the intent Book. More system intents
can be found in Appendix A.

We view user simulation in a task-oriented dia-
logue as a sequence-to-sequence problem. For each
turn t, we extract the input feature vectors V t of the
input list of slots St = [s1, s2, . . .], which is com-
posed of the slots from the user goal and the system
action. The output sequence Ot = [ot1, o

t
2, . . .] is

then generated by the model, where oti shows how
the value for slot si is obtained. The input fea-
ture representation and the output target should be

2We note that intents are not normally dependent on the do-
main but rather on the kind of dialogue that is being modeled,
e.g. task-oriented or chit-chat.

User Goal
Info: Hotel-Area=North, Rest-Area=North
Reqt: Hotel-Name, Rest-Addr
Conversation
Turn 0
USR: I want to find a hotel in the north and a nearby restaurant.
 Inform(Hotel-Area=North, Rest-Area=North)
SYS: There are some good hotels in the south. Which price range do
 you prefer? Would you mind providing more information?
 Recom(Hotel-Area=South), Request(Hotel-Price),
 general-reqmore()
Turn 1
USR: No, I want one in the north and I don't care about the price range.
 Inform(Hotel-Area=North, Hotel-Price=dontcare)

Figure 2: An example dialogue with a multi-domain
goal.

domain-independent in order to generalise to un-
seen domains without redesigning and retraining.
More details can be found in Sec. 4.

By working on the semantic level during train-
ing, we retain interpretability. To interact with
real users during human evaluation, we rely on
template-based natural language generation to con-
vert the semantic-level actions into utterances, as
language generation is out of the scope of this
work.

4 Transformer-based
Domain-independent User Simulator

The TUS model structure is shown in Fig. 3.
For each turn t, the list of input feature vectors
V t = [vt1, v

t
2 . . . , v

t
nt
] is generated based on the

system actions and the user goal, where vti is the
feature vector of slot si and nt is the length of
the input list in turn t, V t. We explain the feature
representation in detail in Sec. 4.1. Inspired by
ABUS, which models the user state as a stack-like
agenda, the length of input list nt at each turn t
varies by taking into account slots mentioned in
the system’s action. For example, in Fig. 3 the
input list V 0 only contains the slots in the user
goal at the first turn. Then the system mentions a
slot not in the user goal, Hotel-Price. So in
turn 1 the length of input list V 1 is n1 = n0 + 1
because one slot is inserted into the input list
V 1. The whole input sequence to the model is
Vinput = [vCLS , v

t
1, . . . , vSEP , v

t−1
1 , . . . , vSEP],

where vCLS is the representation of [CLS] and
vSEP is the representation of [SEP].

The user policy network is a transformer
(Vaswani et al., 2017; Devlin et al., 2019). We
choose this structure because transformers are able
to handle input sequences of arbitrary lengths and
to capture the relationship between slots thanks

448

User Policy Network

Turn Turn

+
Linear

+
Linear

+
Linear

+
Linear

+
Linear

... ...

...

+
Linear

None
?
dontcare
user goal
system state
random select

general
domain 1
domain 2
domain 3
domain 4
domain 5

Hotel-AreaHotel-Area

+
Linear

Rest-Addr

0 1 0 0 0 0...0 0 100 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 ... 0 0

Rest-AddrHotel-Price

+
Linear

Pos. Pos. Pos. Pos. Pos. Pos. Pos. Pos.

LinearLinear LinearLinear

Pos. Pos. Pos. Pos. Pos. Pos. Pos. Pos. x2Transform Layer

Figure 3: The TUS model structure. The input list starts with a special token, [CLS], and comprises slot lists
from previous turns. The slot lists from each turn are separated by a token, [SEP]. The model predicts an output
vector for each slot in the last turn. Note that the order of slots in each turn is independent from each other. The
output for [CLS] represents which domains should be selected in the current turn. The user goal and dialogue
history are shown in Fig. 2 and here we give the example of the input feature vi for slot Hotel-Area.

to self-attention. The model structure includes a
linear layer and position encoding for inputs, two
transformer layers, and one linear layer for outputs.

The output list Ot = [ot1, . . . , o
t
nt
] consists

of one-hot vectors oti which determine the val-
ues of the slots si at turn t. The dimensions of
oti ∈ {0, 1}6 correspond to “none”, “don’t care”,
“?”, “from the user goal”, “from the system state”,
or “randomly selected”. More precisely, “none”
means that this slot is not mentioned in this turn,
“don’t care” signifies that the US does not care
about this slot, “?” means the US wants to request
information about this slot, “from user goal” im-
plies that the value is the same as in the user goal,
“from system state” means that the value is as men-
tioned by the system, and lastly “randomly selected”
indicates that the US wants to change its goal by
randomly selecting a value from the ontology.

The loss function for slots measures the differ-
ence between the predicted output Ot and the target
Y t at each turn t from the dataset as computed by
cross entropy (CE), i.e.,

lossslots =
1

nt

nt∑
i=1

CE(oti, y
t
i), (1)

where nt is the number of slots in the input list, oti

is the output, and yti is the target of slot si in turn t.

4.1 Domain-independent Input Features

We design the input feature representation vti of
each slot si in turn t consisting of a set of sub-
vectors, all of which are domain-independent. For
better readability, we drop the slot index i and the
turn index t, i.e. we write v for vti .

4.1.1 Basic Information Features
Inspired by the feature representation proposed in
El Asri et al. (2016), we use a feature vector vbasic
that is composed of binary sub-vectors to represent
the basic information for each slot. Each slot has
two value vectors: vsysvalue represents the value in the
system state, and vuservalue represents the value in the
user goal. Each value vector is a 4-dimensional one-
hot vector, with coordinates encoding “none”, “?”,
“don’t care” or “other values”, in this order. For ex-
ample, in turn 1 in Fig. 2, for slot Hotel-Price
vuservalue = [1, 0, 0, 0], i.e., “none”, because it is not
in the user goal, and vsysvalue = [0, 1, 0, 0], i.e., “?”,
because the system requests it.

The slot type vector vtype is a 2-dimensional vec-
tor which represents whether a slot is in the user
goal as a constraint or a request. For example,

449

in Fig. 2 for Hotel-Area vtype = [1, 0] (con-
straint), while for Hotel-Name vtype = [0, 1]
(request). A value of [0, 0] means that the slot is
not included in the user goal.

The state vector vful encodes whether or not a
constraint or informable slot has been fulfilled. The
value is set to 1 if the constraint has been fulfilled,
and to 0 otherwise. The vector vfirst similarly
encodes whether a slot is mentioned for the first
time.

The basic information feature vector vbasic is the
concatenation of these vectors, i.e.,

vbasic = vuservalue⊕v
sys
value⊕vtype⊕vful⊕vfirst (2)

4.1.2 System Action Features
The system action feature vector vsystemaction encodes
system actions in each turn. There are two kinds
of system actions, general actions and domain-
specific actions. The general actions are com-
posed only with general intents, such as “reqmore”
and “bye”. For example, general-reqmore().
The feature vector of general actions vgen is a multi-
hot encoding of whether or not a general intent
appears in the dialogue. With a total number of
ngen general intents, for each k ∈ {1, . . . , ngen},
the k-th entry of vgen is set to 1 if the k-th general
intent is part of the system act.

On the other hand, domain-specific actions are
composed with domains, slots, values, and domain-
specific intents such as “recommend” and “select”.
For example, Recom(Hotel-Area=South).
Each domain-specific action vector vspecj with the
domain-specific j-th intent, j ∈ {1, . . . , nspec},
where nspec is the total number of domain-specific
intents, is represented by a 3-dimensional one-
hot encoding that describes whether the value is
“none”, “?” or “other values”.

The final action representation vsystemaction is formed
by concatenating nspec domain-specific action rep-
resentations together with the general action repre-
sentation, i.e.,

vsystemaction = vspec0 ⊕ · · · ⊕ vspecnspec
⊕ vgen. (3)

For the slot Hotel-Area in Fig. 3, we have a
vector for each intent. For the intent “recommend”
vspec0 = [0, 0, 1], which means that “other val-
ues” (in this case South) are mentioned. For
all other domain-specific intents, the vectors are
[1, 0, 0] since no value is mentioned. In terms of
the general intents, only “reqmore” is mentioned,
so vgen[1] = 1, as “reqmore” is the first general
intent.

4.1.3 User Action Features
The output vector from the previous turn Ot−1 is
also included in the input features of the next turn
t to take into account what has been mentioned by
the US itself, i.e. for slot si in turn t, the user action
feature vuseraction = ot−1

i .

4.1.4 Domain and Slot Index Features
In some cases, multiple slots may share the same
basic feature vbasic, system action feature vsystemaction

and user action feature vuseraction. This similarity in
features of different slots makes it difficult for the
model to distinguish one slot from another, despite
the positional encoding. In particular, it is challeng-
ing for the model to learn the relationship between
turns for a given slot because the number and the
order of slots vary from one turn to the next. This
may lead to over-generation: the model selects all
slots with the same feature vector.

To counteract this issue, we introduce the index
feature vindex, which consists of the domain index
feature vdomain

index ∈ {0, 1}ld and the slot index fea-
ture vslotindex ∈ {0, 1}ls , where ld is the maximum
number of domains in a user goal and ls is the
maximum number of slots in any given domain3.

To make the index feature ontology-independent,
for a particular slot, vindex remains consistent
throughout a dialogue, but varies between dia-
logues. The order of the index in each dialogue
is determined by the order in the user goal. For
example, the “hotel” domain can be the first do-
main in one user goal of the first dialogue, and the
second domain in the next.

Then for each slot in each turn the input feature
vector v is formed by concatenating all sub-vectors:

v = vbasic ⊕ vsystemaction ⊕ vuseraction ⊕ vindex. (4)

An example of v for slot Hotel-Area is shown
in Fig. 3 based on the dialogue history in Fig. 2.
Examples of how the feature representation is con-
structed can be seen in Appendix D.

4.2 Domain Prediction

Inspired by solving downstream tasks using
BERT (Devlin et al., 2019), we utilise the output
of [CLS], oCLS , to predict which domains are
considered in turn t as a multi-label classification

3This does not need to be dependent on the number of
domains or slots, it can simply be a random identifier assigned
to each slot during one dialogue.

450

problem. The domain loss lossdomain measures
the difference between the output oCLS and the
target yCLS for each turn by binary cross entropy
(BCE). The final loss function is defined as

loss = lossslots + lossdomain. (5)

5 Experimental Setup

5.1 Supervised Training for TUS
Our model is implemented in PyTorch (Paszke
et al., 2019) and optimised using the Adam op-
timiser (Kingma and Ba, 2015) with learning rate
5× 10−4. The dimension of the input linear layer
is 100, the number of the transformer layers is 2,
and the dimension of the output linear layer is 6.
The maximum number of domains ld is 6 and the
maximum number of slots in one domain ls is 10.
During training, the dropout rate is 0.1.

We train our model4 on the MultiWOZ 2.1
dataset (Eric et al., 2020), consisting of dialogues
between two humans, one posing as a user and the
other as an operator. The dialogues in the dataset
are complex because there may be more than one
domain involved in one dialogue, even in the same
turn. During training and testing with the dataset,
the order of slots in the input list is derived from
the data, which means slot si is before slot si+1 if
the user mentioned slot si first. For inference with-
out the dataset, such as when using TUS to train
a dialogue policy, the order of slots is randomly
generated.

We measure how well a US can fit the dataset by
precision, recall, F1 score, and turn accuracy. The
turn accuracy measures how many model predic-
tions per turn are identical to the corpus, based on
the oracle dialogue history.

5.2 Training Policies with USs
User simulators are designed to train dialogue sys-
tems, thus a better user simulator should result in
a better dialogue system. We train different di-
alogue policies by proximal policy optimization
(PPO) (Schulman et al., 2017), a simple and sta-
ble reinforcement learning algorithm, with ABUS,
VHUS, and TUS as USs in the ConvLab-2 frame-
work (Zhu et al., 2020). The policies are trained
for 200 epochs, each of which consists of 1000
dialogues. The reward function gives a reward of
80 for a successful dialogue and of -1 for each dia-
logue turn, with the maximum number of dialogue

4https://gitlab.cs.uni-duesseldorf.de/
general/dsml/tus_public

turns set to 40. For failed dialogues, an additional
penalty is set to -40. Each dialogue policy is trained
on 5 random seeds. The dialogue policies are then
evaluated using all USs by cross-model evaluation
(Schatztnann et al., 2005) to demonstrate the gen-
eralisation ability of the policy trained with a par-
ticular US when evaluated with a different US.

5.3 Leave-one-domain-out Training

To evaluate the ability of TUS in handling unseen
domains, we remove one domain during supervised
learning of TUS. The leave-one-domain-out TUSs
are used to train dialogue policies with all possible
domains. For example, TUS-noHotel is trained on
the dataset without the “hotel” domain. During
policy training, the user goal is generated randomly
from all possible domains.

Some domains in MultiWOZ may share the
same slots, such as “restaurant” and “hotel” do-
mains which contain property-related slots, e.g.
“area,” “name,” and “price range.” However, the
corpus also includes domains that are quite differ-
ent from the rest, For example, the “train” domain
which contains many time-related slots such as “ar-
rival time” or “departure time”, as well as unique
slots such as “price” and “duration.” The different
properties of the domains will allow us to study the
zero-shot transfer capability of the model.

5.4 Human Evaluation

Following the setting in Kreyssig et al. (2018), we
select 2 of the 5 trained versions of each dialogue
policy for evaluation in a human trial: the version
performing best on ABUS, and the version perform-
ing best in interaction with TUS. The results of the
two versions are averaged. For each version we
collect 200 dialogues, which means there are 400
dialogues for each policy in total. Dialogue policies
trained with VHUS significantly underperform, so
we only consider policies trained with ABUS or
TUS for the human trial (see Table 1). The best
and the worst policies in the leave-one-domain-out
experiment are also included to see the upper and
lower bound of the zero-shot domain generalisation
performance.

Human evaluation is performed via DialCrowd
(Lee et al., 2018) connected to Amazon Mechanical
Turk5. Users are provided with a randomly gener-
ated user goal and are required to interact with our
systems in natural language.

5https://www.mturk.com/

https://gitlab.cs.uni-duesseldorf.de/general/dsml/tus_public
https://gitlab.cs.uni-duesseldorf.de/general/dsml/tus_public
https://www.mturk.com/

451

US for US for evaluation
training ABUS VHUS TUS avg.

ABUS 0.93 0.09 0.58 0.53
VHUS 0.62 0.11 0.37 0.36
TUS 0.79 0.10 0.69 0.53

Table 1: The success rates of policies trained on ABUS,
VHUS, and TUS when tested on various USs.

6 Experimental Results

6.1 Cross-model Evaluation

The results of our experiments are shown in Table 1.
The policy trained with TUS performs well when
evaluated with ABUS, with 10% absolute improve-
ment in the success rate over its performance on
TUS. On the other hand, while a policy trained with
ABUS performs almost perfectly when evaluated
with ABUS, the performance drops significantly,
by 35% absolute, when this policy interacts with
TUS. This signals that, in the case of ABUS, the
policy overfits to the US used for training, and
is not able to generalise well to the behaviour of
other USs. We found that VHUS is neither able
to train nor to evaluate a multi-domain policy ade-
quately. This was also observed in the experiments
by Takanobu et al. (2019). We suspect that this
is due to the fact that VHUS was designed to op-
erate on a single domain and does not generalise
well to the multi-domain scenario. To the best of
our knowledge, no other data-driven US has been
developed for the multi-domain scenario.

The success rates of policies trained with ABUS
and TUS during training, evaluated with both US,
are shown in Fig. 4. Each of the systems is trained
5 times on different random seeds. We report the
average success rate as well as the standard devia-
tion. Although the policy trained with TUS is more
unstable when evaluated on ABUS, it still shows an
improvement from the initial policy, converging at
around 79%. On the other hand, the policy trained
with ABUS and evaluated with TUS barely show
any improvements.

6.2 Impact of features and loss functions

We conduct an ablation study to investigate the
usefulness of the proposed features and loss func-
tions. The result is shown in Table. 2. First, we
measure the performance of the basic model which
uses only the basic information feature vbasic, the
system action feature vsystemaction , and the user action
feature vuseraction as the input. While this model can

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

evaluate with
TUS
ABUS

train with
TUS
ABUS

Figure 4: The success rates of policies during training
with TUS and ABUS.

method P R F1 ACC LEN

basic model 0.11 0.71 0.19 0.11 4.51
+ index feature 0.17 0.51 0.26 0.44 1.29

+ domain loss 0.17 0.54 0.26 0.46 1.22

Table 2: The TUS ablation experiments. We analyse
the impact of different settings by measuring precision
P, recall R, F1 score, turn accuracy ACC, and the av-
erage slots mentioned in the first turn user action LEN.
Humans, on average, mention 1.5 slots in the first turn.

have a high recall rate, the precision and the turn
accuracy are fairly low. We deduce that without the
index features the model cannot distinguish the dif-
ference between slots and therefore tends to select
slots of the same slot type in one turn. For example,
it provides all constraints in the first turn, which
leads to high recall and over-generation.

Analysis of the generated user actions shows that
the basic model tends to mention four or more slots
in the first turn. This is unnatural, since human
users tend to only mention one or two slots at the
beginning of a dialogue. More details about the
average slots per turn can be found in Appendix B.

After adding the index feature vindex, the recall
rate is decreased by 17% absolute, but the turn ac-
curacy is increased by 35% absolute, along with
improvements on the precision and the F1 score.
Furthermore, the average number of slots per turn
is closer to that of a real user. Although the re-
call rate with respect to the target in the data is
decreased, this is not necessarily a concern since in
dialogue there are many different plausible actions
for a given context. For example, when searching
for a restaurant, we may provide the information
of the area first, or the food type. The order of

452

US for removed ABUS TUS mean
training data(%) Attr. Hotel Rest. Taxi Train all Attr. Hotel Rest. Taxi Train all

TUS-noAttr 32.20 0.69 0.64 0.81 0.65 0.75 0.77 0.71 0.58 0.66 0.61 0.69 0.69 0.73
TUS-noTaxi 19.60 0.63 0.61 0.81 0.61 0.70 0.74 0.69 0.60 0.69 0.64 0.68 0.69 0.72
TUS-noRest 45.21 0.62 0.66 0.80 0.56 0.75 0.76 0.71 0.60 0.64 0.65 0.64 0.68 0.72
TUS-noTrain 36.95 0.64 0.65 0.78 0.67 0.62 0.73 0.67 0.54 0.63 0.64 0.58 0.64 0.68
TUS-noHotel 40.15 0.59 0.59 0.76 0.61 0.54 0.69 0.64 0.52 0.61 0.61 0.55 0.62 0.66

TUS 0 0.69 0.68 0.81 0.66 0.77 0.79 0.73 0.59 0.66 0.68 0.64 0.69 0.74

Table 3: The success rates of dialogue policies trained with leave-one-domain-out TUSs. For example, the TUS-
noAttr model is trained without the “attraction” domain. The sum of all removed data is more than 100% because
some dialogues have multiple domains. We report results on all domains.

communicating these constraints may vary.
When we include the domain loss lossdomain

during training, both the recall rate and the turn ac-
curacy improve while a similar average slot length
per turn is maintained. These results indicate that
the proposed ontology-independent index features
can help the model to distinguish one slot from the
other, which solves the over-generation problem of
the basic model. The domain loss allows for more
accurate prediction of the domain at turn level and
the value for each slot at the same time.

6.3 Zero-shot Transfer

We test the capability of the model to handle unseen
domains in a zero-shot experiment. In a leave-one-
domain-out fashion we remove dialogues involving
one particular domain when training the US. The
share of each domain in the total dialogue data
ranges from 19.60% to 45.21%. During dialogue
policy training we sample the user goal from all
domains. As presented in Table 3, removing one
domain from the training data when training the
US does not dramatically influence the policy on
the corresponding domain. The final performance
of the policies trained with leave-one-domain-out
TUSs is still reasonably comparable to the policy
trained with the full TUS. This is especially note-
worthy considering the substantial amount of data
removed during US training and the difference be-
tween each domain.

We observe that the model is able to learn about
the removed domain from the other domains, al-
though the removed domain is different from the
remaining ones. For example, the “train” domain
is very different from “attraction”, “restaurant”,
and “hotel”, and it is more complex than “taxi”,
but TUS-noTrain still performs reasonably well on
the “train” domain. This signals that the model
can do zero-shot transfer by leveraging other do-

US for success
overall

training Attr. Hotel all

ABUS 0.76 0.70 0.83 3.90
TUS 0.73 0.69 0.83 4.03
TUS-noAttr 0.75 0.54 0.81 4.01
TUS-noHotel 0.73 0.55 0.76 3.86

Table 4: The human evaluation results include success
rate and overall rating as judged by users.

main information. The worst performance on the
“train” domain happens instead when the “hotel”
domain is removed, i.e. the domain with the most
substantial amount of data.

Our results also show that that some domains are
more sensitive to data removal than others, irrespec-
tive of which domain is removed. This indicates
that some domains are more involved and simply re-
quire more training data. This result demonstrates
that TUS has the capability to handle new unseen
domains without modifying the feature representa-
tion or retraining the model. It also shows that our
model is sample-efficient.

6.4 Human Evaluation

The result of the human evaluation is shown in Ta-
ble 4. In total, 156 users participated in the human
evaluation. The number of interactions per user
ranges from 10 to 80. The success rate measures
whether the given goal is fulfilled by the system
and the overall rating grades the system’s perfor-
mance from 1 star (poor) to 5 stars (excellent). TUS
is able to achieve a comparable success rate as
ABUS, without domain-specific information, and
even scores slightly better in terms of overall rating.
We were not able to observe any statistically signif-
icant differences between ABUS and TUS in the
human evaluation. For leave-one-domain-out mod-

453

els, the performance of TUS-noAttr is similar to
that one of ABUS and TUS without a statistically
significant difference. We do however observe a sta-
tistically significant decrease in the success rate of
TUS-noHotel when compared to TUS and ABUS
(p < 0.05). This is unsurprising as the hotel do-
main accounts for 40.15% of the training data. For
both TUS-noAttr and TUS-noHotel, the success
rate on the domain “attraction” is comparable to
TUS and ABUS, but the success rate on the do-
main “hotel” is relatively low. As observed in the
simulation, removing a domain does not decrease
the success rate in the corresponding domain as the
feature representation is domain agnostic. Instead,
it impacts domains which need plenty of data to
learn.

7 Conclusion

We propose a domain-independent user simula-
tor with transformers, TUS. We design ontology-
independent input and output feature representa-
tions. TUS outperforms the data-driven VHUS and
it has a comparable performance to the rule-based
ABUS in cross-model evaluation. Human evalua-
tion confirms that TUS can compete with ABUS
even though ABUS is based on carefully designed
domain-dependent rules. Our ablation study shows
that the proposed features and loss functions are
essential to model natural user behavior from data.
Lastly, our zero-shot study shows that TUS can
handle new domains without feature modification
or model retraining, even with substantially fewer
training samples.

In future work, we would like to learn the or-
der of slots and add output language generation to
make the behaviour of TUS more human-like. Ap-
plying reinforcement learning to this model would
also be of interest.

Acknowledgments

We would like to thank Ting-Rui Chiang and Dr.
Maxine Eskenazi from Carnegie Mellon University
for their help with the human trial. This work is a
part of DYMO project which has received funding
from the European Research Council (ERC) pro-
vided under the Horizon 2020 research and innova-
tion programme (Grant agreement No. STG2018
804636). N. Lubis, C. van Niekerk, M. Heck and
S. Feng are funded by an Alexander von Hum-
boldt Sofja Kovalevskaja Award endowed by the
German Federal Ministry of Education and Re-

search. Computational infrastructure and support
were provided by the Centre for Information and
Media Technology at Heinrich Heine University
Düsseldorf. Computing resources were provided
by Google Cloud.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Heriberto Cuayáhuitl, Steve Renals, Oliver Lemon, and
Hiroshi Shimodaira. 2005. Human-computer dia-
logue simulation using hidden markov models. In
IEEE Workshop on Automatic Speech Recognition
and Understanding, 2005., pages 290–295. IEEE.

Lucie Daubigney, Matthieu Geist, Senthilkumar Chan-
dramohan, and Olivier Pietquin. 2012. A compre-
hensive reinforcement learning framework for dia-
logue management optimization. IEEE Journal of
Selected Topics in Signal Processing, 6(8):891–902.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Wieland Eckert, Esther Levin, and Roberto Pierac-
cini. 1997. User modeling for spoken dialogue sys-
tem evaluation. In 1997 IEEE Workshop on Auto-
matic Speech Recognition and Understanding Pro-
ceedings, pages 80–87. IEEE.

Layla El Asri, Jing He, and Kaheer Suleman. 2016. A
sequence-to-sequence model for user simulation in
spoken dialogue systems. Interspeech 2016, pages
1151–1155.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020.
Multiwoz 2.1: A consolidated multi-domain dia-
logue dataset with state corrections and state track-
ing baselines. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 422–
428.

Aciel Eshky, Ben Allison, and Mark Steedman. 2012.
Generative goal-driven user simulation for dialog

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/D12-1007

454

management. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 71–81, Jeju Island, Korea. Associ-
ation for Computational Linguistics.

Milica Gašić, Filip Jurčı́ček, Blaise Thomson, Kai Yu,
and Steve Young. 2011. On-line policy optimisation
of spoken dialogue systems via live interaction with
human subjects. In 2011 IEEE Workshop on Auto-
matic Speech Recognition & Understanding, pages
312–317. IEEE.

Kallirroi Georgila, James Henderson, and Oliver
Lemon. 2006. User simulation for spoken dialogue
systems: Learning and evaluation. In Ninth Interna-
tional Conference on Spoken Language Processing.

Izzeddin Gür, Dilek Hakkani-Tür, Gokhan Tür, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. In 2018 IEEE Spoken Language Technol-
ogy Workshop (SLT), pages 900–906. IEEE.

Simon Keizer, Milica Gašić, Filip Jurcicek, François
Mairesse, Blaise Thomson, Kai Yu, and Steve
Young. 2010. Parameter estimation for agenda-
based user simulation. In Proceedings of the SIG-
DIAL 2010 Conference, pages 116–123.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Florian Kreyssig, Iñigo Casanueva, Paweł
Budzianowski, and Milica Gašić. 2018. Neural user
simulation for corpus-based policy optimisation
of spoken dialogue systems. In Proceedings of
the 19th Annual SIGdial Meeting on Discourse
and Dialogue, pages 60–69, Melbourne, Australia.
Association for Computational Linguistics.

Kyusong Lee, Tiancheng Zhao, Alan W. Black, and
Maxine Eskenazi. 2018. DialCrowd: A toolkit for
easy dialog system assessment. In Proceedings of
the 19th Annual SIGdial Meeting on Discourse and
Dialogue, pages 245–248, Melbourne, Australia. As-
sociation for Computational Linguistics.

Esther Levin and Roberto Pieraccini. 1997. A stochas-
tic model of computer-human interaction for learn-
ing dialogue strategies. In Fifth European Confer-
ence on Speech Communication and Technology.

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016. A
user simulator for task-completion dialogues. arXiv
preprint arXiv:1612.05688.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Olivier Pietquin, Matthieu Geist, Senthilkumar Chan-
dramohan, and Hervé Frezza-Buet. 2011. Sample-
efficient batch reinforcement learning for dialogue
management optimization. ACM Transactions on
Speech and Language Processing (TSLP), 7(3):1–
21.

Jost Schatzmann, Kallirroi Georgila, and Steve Young.
2005. Quantitative evaluation of user simulation
techniques for spoken dialogue systems. In Proceed-
ings of the 6th SIGdial Workshop on Discourse and
Dialogue, pages 45–54.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based
user simulation for bootstrapping a POMDP dia-
logue system. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics; Companion Volume, Short Papers, pages 149–
152, Rochester, New York. Association for Compu-
tational Linguistics.

Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and
Steve Young. 2006. A survey of statistical user sim-
ulation techniques for reinforcement-learning of dia-
logue management strategies. Knowledge Engineer-
ing Review, 21(2):97–126.

Jost Schatztnann, Matthew N Stuttle, Karl Weilham-
mer, and Steve Young. 2005. Effects of the user
model on simulation-based learning of dialogue
strategies. In IEEE Workshop on Automatic Speech
Recognition and Understanding, 2005., pages 220–
225. IEEE.

Konrad Scheffler and Steve Young. 2002. Automatic
learning of dialogue strategy using dialogue simula-
tion and reinforcement learning. In Proceedings of
the second international conference on Human Lan-
guage Technology Research, pages 12–19. Citeseer.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou Yu.
2019. How to build user simulators to train rl-based
dialog systems. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1990–2000.

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang.
2019. Guided dialog policy learning: Reward es-
timation for multi-domain task-oriented dialog. In

https://www.aclweb.org/anthology/D12-1007
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5028
https://doi.org/10.18653/v1/W18-5028
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.aclweb.org/anthology/N07-2038
https://www.aclweb.org/anthology/N07-2038
https://www.aclweb.org/anthology/N07-2038
https://doi.org/10.18653/v1/D19-1010
https://doi.org/10.18653/v1/D19-1010

455

Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 100–
110, Hong Kong, China. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Steve Young. 2002. Talking to machines (statistically
speaking). In Seventh International Conference on
Spoken Language Processing.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab-
2: An Open-Source Toolkit for Building, Evaluating,
and Diagnosing Dialogue Systems. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics.

A All System Intents

All system intents in the MultiWOZ 2.1 dataset are
listed in Table 5, including 5 general intents and 9
domain-specific intents.

type intents

general welcome, reqmore, bye, thank, greet

domain-
specific

recommend, inform, request, select,
book, nobook, offerbook, offerbooked,
nooffer

Table 5: All system intents in the MultiWOZ 2.1

B Average Action Length in Each Turn

The average number of slots mentioned by TUS
in each turn when interacting with the rule-based
dialogue system is shown in Fig. 5. When the index
feature vindex and the domain loss lossdomain are
added, TUS can deal with the over-generation prob-
lem and behave more similarly to what is observed
in the corpus.

C Success Rates of
Leave-one-domain-out Training

The training success rates of dialogue policies
trained with leave-one-domain-out TUSs, which
are evaluated on TUS, are shown in Fig. 6. In com-
parison to the full TUS, the leave-one-domain-out
TUSs are more unstable, but they can achieve a
comparable success rate at the end.

turn

nu
m

be
r o

f s
lo

ts

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

basic model + index-feature + domain-loss real-user

Figure 5: The average user action length per turn when
interacting with the rule-based dialogue system. The
average action length of real users in the corpus is also
presented.

0 25 50 75 100 125 150 175 200
Epoch

0.5

0.6

0.7

su
cc

es
s_

ra
te

noHotel
noAttraction
noRestaurant
noTaxi
noTrain
all domain

Figure 6: The success rates of dialogue policies
trained with leave-one-domain-out TUSs during train-
ing, when evaluated on TUS.

D An example for the input feature
representation

The list of input feature vectors and output se-
quence are presented on Fig. 7 based on Fig. 2.

For turn 0, V 0 only includes 4 vectors from the
user goal. For turn 1, the system mentions slot
Hotel-Price, which is not in the user goal,
so the feature vector of slot Hotel-Price is
inserted into V 1, where the 1-st dimension of
vdomain
slot is 1 because domain Hotel is the first do-

main in this conversation and the 3-rd dimension
of vslotindex is 1 because it is the third slot in domain
Hotel.

In comparison between the feature vec-
tors of slot Hotel-Area in turn 0, v01 ,
and turn 1, v01 , the vsysvalue and vspec0 are
different because of the system’s domain-
specific action Recom(Hotel-Area=South).
The system also mentioned a general action,
general-reqmore(), thus vgen is changed. In

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

456

0 0 0 0 0 0...1 0 000 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 ... 0 0

0 0 0 0 0 0...1 0 000 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 ... 0 0

0 0 0 0 0 0...1 0 000 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 ... 0 0

0 0 0 0 0 0...1 0 000 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 ... 0 0

 (Hotel-Area)

 (Rest-Area)

 (Hotel-Name)

 (Rest-Addr)

0 0 0 1 0 0

0 0 0 1 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0...0 0 100 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 ... 0 0

0 1 0 0 0 0...1 0 000 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 ... 0 0

0 1 0 0 0 0...1 0 000 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 ... 0 0

0 1 0 0 0 0...1 0 000 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 ... 0 0

 (Hotel-Area)

 (Rest-Area)

 (Hotel-Name)

 (Rest-Addr)

0 0 0 1 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

Turn

Turn

0 1 0 0 0 0...1 0 001 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 ... 0 0 0 0 1 0 0 0 (Hotel-Price)

Figure 7: The input and feature representation according to Fig. 2. vCLS and vsep are ignored in this graph.

addition, this slot is first mentioned at turn 0, so
vfirst is changed from 0 to 1. Similarly, vuseraction is
also modified according to the user action. On the
other hand, vuservalue is the same because the user does
not update its goal, vtype is not changed because
the slot is still a constraint, and vful is 0 because it
has not been fulfilled yet. vdomain

index and vslotindex are
also the same through the whole conversation.

E Example Dialogue Generated by TUS

An example dialogue with a multi-domain user
goal is shown in Fig. 8. It shows that TUS is able
to switch between different domains (from turn 2 to
6), respond to the system’s requests, and generate
multi-domain actions (in turn 5).

Turn 0
USR: Inform(Hotel-Area=north, Hotel-Stars=0,
 Hotel-Parking=yes)
SYS: Inform(Hotel-Parking=yes)

Turn 1
USR: Request(Hotel-Type)
SYS: Inform(Hotel-Type=guesthouse)
Turn 2
USR: Inform(Hotel-Stars=0, Hotel-Parking=yes)
SYS: Inform(Hotel-Stars=0, Hotel-Type=guesthouse,
 Hotel-Area=north, Hotel-Parking=yes,
 Hotel-Price=cheap)
Turn 3
USR: Inform(Attr-Type=college)
SYS: Inform(Attr-Choice=18),
 Recom(Attr-Name=hughes hall)
Turn 4
USR: Request(Taxi-Phone, Taxi-Car)
SYS: Request(Taxi-Leave)
Turn 5
USR: Inform(Taxi-Leave=dontcare),
 Request(Taxi-Phone, Taxi-Car, Attr-Fee)
SYS: Inform(Taxi-Car=audi, Taxi-Phone=44162528555,
 Taxi-Car=honda, Taxi-Phone=46793705737,
 Attr-Fee=free)
Turn 6
USR: Request(Attr-Post)
SYS: Inform(Attr-Post=cb23bu)
Turn 7
USR: general-bye()
SYS: general-greet()

Figure 8: A dialogue generated by TUS when interact-
ing with the rule-based policy.

