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Abstract

This paper aims at providing a comprehensive
overview of recent developments in dialogue
state tracking (DST) for task-oriented conver-
sational systems. We introduce the task, the
main datasets that have been exploited as well
as their evaluation metrics, and we analyze sev-
eral proposed approaches. We distinguish be-
tween static ontology DST models, which pre-
dict a fixed set of dialogue states, and dynamic
ontology models, which can predict dialogue
states even when the ontology changes. We
also discuss the model’s ability to track either
single or multiple domains and to scale to new
domains, both in terms of knowledge trans-
fer and zero-shot learning. We cover a period
from 2013 to 2020, showing a significant in-
crease of multiple domain methods, most of
them utilizing pre-trained language models.

1 Introduction

Task-oriented dialogue systems enable users to ac-
complish tasks, such as ticket booking, restaurant
reservation, and customer support, by interacting
in natural language. The ability to accurately track
the user’s requirements during the dialogue is cru-
cial to enable a consistent and effective dialogue
(Wu et al., 2019). Dialogue systems track such
information using a dialogue state tracker (DST)
component, where a dialogue state is represented
with slot-value pairs, each denoting a specific user’s
requirement. The accurate tracking of this infor-
mation is crucial, as downstream components, like
the dialog manager, rely on the dialogue state to
choose the next action of the system.

In recent years the performance of several natu-
ral language processing (NLP) tasks, including dia-
logue state tracking (Goldberg, 2017; Chen et al.,
2017), has been pushed forward by neural network-
based approaches. The DST task actually merges
some aspects of natural language understanding in
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dialogues, although it is more complex than the
standard slot filling task. In fact, while slot filling
involves predicting the slot-value pairs referred in
a particular turn in dialogue (Louvan and Magnini,
2020), DST involves predicting the slot-value pairs
at the dialogue level until the current turn. The com-
plexity of DST has driven research to propose vari-
ous neural approaches, including recurrent neural
networks-based (Henderson et al., 2014c; Hender-
son et al., 2014; Wen et al., 2017; Xu and Hu, 2018;
Ren et al., 2018), attention-based models (Wu et al.,
2019; Xu and Hu, 2018; Nouri and Hosseini-Asl,
2018), and the very recent transformer-based mod-
els (Heck et al., 2020; Kim et al., 2020; Zhang
et al., 2019; Lee et al., 2019; Rastogi et al., 2020;
Balaraman and Magnini, 2021; Lin et al., 2020).
In addition, the rapid progress of NLP has pro-
vided technologies to address several DST chal-
lenges, including predicting slot-values that are not
present in training data, moving from rule-based
to learning methods for dialogue state updating,
and addressing long-term dependency, a crucial as-
pect in dialogue. Furthermore, encouraged by the
considerable success in modeling single domain di-
alogues (Henderson et al., 2014c; Wen et al., 2017,
Mrksié et al., 2017a), research on DST has recently
moved toward building models that can handle mul-
tiple domains (Wu et al., 2019; Zhang et al., 2019;
Zhong et al., 2018; Heck et al., 2020), and that are
flexible enough to be adapted to new domains (Ras-
togi et al., 2020; Balaraman and Magnini, 2021;
Lin et al., 2020; Gao et al., 2019).

Although such rapid signs of progress have gen-
erated an impressive amount of research in DST,
including several datasets and experimental mate-
rial, to the best of our knowledge, such a massive
amount of recent work has been only poorly docu-
mented (Williams et al., 2016a; Chen et al., 2017),
and there is not an updated survey of the field.
This paper intends to fill such a gap, providing
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User: hello, i'm looking for a restaurant with fair prices
Dialogue Slate : Inform (price range = moderate)
Sys: There are 31 places with moderate price range. Can you please tell
me what of food you would like?

User: well | want to eat in the North, what's up that way?
Dialogue State: Inform (price range=moderate, area=north)
Sys: | have two options that fit that description, Golden Wok chinese
restaurant and The Nirala which serves Indian food. Do you have a
preference?

User: Can | have the address and phone number for the Golden
Wok chinese restaurant?
Dialogue State: Inform (price range=moderate, area=north)
request (address, phone number)

Figure 1: A sample dialogue, from the WoZ2.0 dataset,
showing the dialogue states at each user turn.

a comprehensive overview of recent developments
in dialogue state tracking applied to task-oriented
dialogue systems.

2 Dialogue State Tracking

We first introduce the notion of dialogue state, and
then describe the DST task, giving details on differ-
ent dialogue state prediction strategies.

Dialogue State. A dialogue state s; at any turn
t in a dialogue comprises the summary of the di-
alogue history until turn ¢, such that s; contains
all sufficient information for the system to choose
the next action (Williams et al., 2016b). Specifi-
cally, it captures the user goals in the conversation
in the form of (slot, value) pairs. The set of possi-
ble slots is predefined in the Ontology O, typically
domain-dependent, while the values assumed by
each slot s are provided by the user as a dialogue
goal. For example, a dialogue state at turn ¢ in
a dialogue for the RESTAURANT domain could
be s; = {(FOOD, ITALIAN), (AREA, CENTRE)}.
This dialogue state encodes the user’s goal for slots
FOOD and AREA, based on the dialogue history.
A slot s can either be of type informable or re-
questable. Informable slots are attributes that can
be provided by the user during the dialogue as con-
straints, while requestable slots are attributes that
the user may request from the system. In case
of the restaurant domain, the slots FOOD, AREA
and PRICE are informable, while the slots PHONE
and ADDRESS are requestable. Figure 1 shows the
tracking of dialogue states at each user turn for the
restaurant domain.

Dialogue State Tracker. A DST is responsible
for estimating the current dialogue state by predict-
ing the slot-value pairs at turn ¢. This prediction can
be performed in two ways: 1) turn-level prediction,
predicting the slot-values expressed at each turn

and then using an update mechanism to combine
the previous dialogue state and the current turn pre-
diction; or ii) dialogue-level prediction, predicting
the complete dialogue state at each turn.

Turn-level prediction. In turn-level prediction
the update mechanism can be either rule-based or
learned using an update function. In the rule-based
approach the model makes predictions only for the
slot-values expressed in the current turn. The dia-
logue state s;_1 from the previous turn ¢t —1 and the
current turn predictions are then combined using
rules to get the current dialogue state s;. Such rules
could either be simple, as combining s;_; and the
current turn prediction, with the current turn predic-
tion having the priority (i.e., overwriting values in
s¢—1 if the same slot is expressed in the current turn
predictions), or more complex, as using probabili-
ties of the predictions combined with rules to get
s¢. In the learning to update approach, a function
is learned to approximate the update mechanism.
It takes the previous dialogue state and the current
turn-level prediction as input, and learns how to
predict the current dialogue state. This approach
can be modelled either with two components or
with a single end-to-end model.

Dialogue level prediction. Here, at each turn ¢
of the dialogue, the model takes as input the com-
plete dialogue history and makes predictions for
the complete dialogue state s;. Since the prediction
at each turn does not consider the previous dialogue
states, this approach has the drawback that the dia-
logue state at current turns s; may not be consistent
with the preceding dialogue state s;_1.

3 DST Datasets and Evaluation Metrics

In this section we introduce the datasets that have
been used in DST in a period from 2013 to 2020,
as well as the evaluation metrics for the task.

3.1 Dialog State Tracking Challenge (DSTC)

The dialog state tracking challenge (DSTC) is a se-
ries of dialogue related challenges that serves as a
common test and evaluation suite for dialogue state
tracking (Williams and Young, 2007; Williams
et al., 2013, 2016b). The challenge was later re-
named as dialog system technology challenge to
accommodate various other dialogue related tasks.
The most widely used datasets in the context of the
DST challenge are DSTC2 and DSTC3.
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DSTC2 and DSTC3. The dialog state tracking
challenges 2 (DSTC2 - (Henderson et al., 2014a))
and 3 (DSTC3 - (Henderson et al., 2014b)) are
human-machine conversation dialogue datasets col-
lected using Amazon Mechanical Turk, respec-
tively for the restaurant and the tourist domain.

DSTC2 is a spoken dialogue dataset consisting
of automatic speech recognition (ASR) hypotheses
and turn-level semantic labels along with the tran-
scriptions. The dataset consists of 1,612 dialogues
for training, 506 dialogues for development, and
1,117 dialogues for testing. DSTC3 aims to eval-
uate DST models on their ability to track unseen
slot values and on their adaptability to a new do-
main. For this purpose, the dataset does not contain
training dialogues and consists of 2,265 dialogues
for testing. Typically, the models trained on the
DSTC2 dataset were evaluated with the DSTC3
dataset to estimate their performance.

3.2 WoZ2.0

The Wo0Z2.0 dataset was initially published as Cam-
Rest dataset with 676 dialogues (Wen et al., 2017).
Subsequently, (Mrksié et al., 2017a) updated Cam-
Rest and named it WoZ2.0. The dataset was col-
lected using a Wizard of Oz framework and con-
tains 1,200 dialogues, out of which 600 are for
the training set, 200 for the development set, and
400 for the testing set. WoZ2.0 consists of written
text conversations for the restaurant booking task.
Each turn in a dialogue was contributed by different
users, who had to review all previous turns in that
dialogue before contributing to the turn. Besides,
WoZ2.0 has been translated to Italian and German
by professional translators (Mrksic et al., 2017b).

3.3 MultiWoZ

MultiWoZ is the first widely used multi-domain
dialogue dataset for the DST task. It is collected
using Wizard-of-Oz and consists of dialogues in 7
domains: restaurant, hotel, attraction, taxi, hospital,
and police. 10,438 dialogues were released, out of
which 3,406 are single-domain dialogues and 7,032
are multi-domain dialogues (Ramadan et al., 2018).
Each of the multi-domain dialogues consists of at
least 2 up to 5 domains. MultiWoZ has seen various
versions, with several error corrections (Ramadan
et al., 2018; Budzianowski et al., 2018; Eric et al.,
2020; Zang et al., 2020).
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3.4 Schema-Guided Dataset

The schema-guided dataset (SGD) was collected
using a bootstrapping approach (Shah et al., 2018),
where a dialogue simulator interacts with a service
configuration defined by the developer to generate
dialogue outlines. The obtained dialogue outlines
are then paraphrased using crowd workers. The
SGD dataset consists of dialogues in 16 domains
for training, 16 domains for development, and 18
domains for testing (Rastogi et al., 2020). Since
a domain can be represented by multiple services,
the dataset amounts to 26 services in training, 17
services in development, and 21 services in testing.
SGD includes 16,142 dialogues for training, 2,482
for development, and 4,201 for testing. The SGD
defining feature is the inclusion of new services
both in the development (8) and testing (15) sets
(all following the same schema structure), which
are not present in the training set.

3.5 TreeDST

TreeDST is collected using a bootstrapping ap-
proach, with conversations covering 10 domains. A
dialogue simulator is used to produce a meaningful
conversational flow with a template-based utter-
ance, which is then paraphrased by crowd workers.
The dialogue states and the system acts are anno-
tated as tree-structures with hierarchical meaning
representations to incorporate semantic composi-
tionality, cross-domain knowledge sharing, and co-
reference. The dataset consists of a total of 27,280
conversations (Cheng et al., 2020), which exhibit
nested properties for the slots PEOPLE, TIME and
LOCATION that are shared across all domains. The
dataset also models certain failure situations in the
dialogue system, such as glitches (system failures),
and uncooperative user behavior.

3.6 Machine-to-Machine

Machine-to-Machine (M2M) dialogues are
collected using a bootstrapping approach (Shah
et al., 2018) based on dialogue simulators, and are
then converted into natural language by crowd
workers. The dataset consists of single domain
dialogues for restaurant reservation and movie
booking including, respectively, 2,240, 768, and
120K dialogues (Shah et al., 2018; Liu et al., 2018).

Among the datasets discussed in this study,
DSTC2 and Wo0Z2.0 are the most used datasets
for training single domain models, while MultiWoz



is widely used for multi-domain models.

3.7 Evaluation Metrics

The evaluation of dialogue state trackers is per-
formed using automated metrics, namely average
goal accuracy, joint goal accuracy, requested slots
F1 and time complexity. In the following, a brief
description of each metric is provided.

Average Goal Accuracy is the average accuracy
of predicting the correct value for a slot, computed
only on the informable slots.

Joint Goal Accuracy is the primary evaluation
metric for DST. The joint goal is the set of accu-
mulated turn level goals up to a given turn in the
dialogue. It indicates the model performance in
predicting all slots in a given turn correctly. It is
denoted by the fraction of turns in a dialogue where
all slots in a turn are predicted correctly.

Requested Slots F1 indicates the model perfor-
mance in correctly predicting if a requestable slot
is requested by the user, estimated as the macro-
averaged F1 score over for all requested slots.

Time Complexity denotes the time latency of
the model in making predictions. While this metric
is not reported for many published studies, given
that a dialogue system should respond in real-time,
this metric indicates the usability of the model in
real-world applications.

4 Static Ontology DST Models

The main distinguishing characteristic of DST mod-
els, in our opinion, is their capacity to predict di-
alogue states either from a fixed set of slot-values
(i.e., from a static ontology) or from a possible open
set of slot-values (i.e., from a dynamic ontology).
Static ontology models rely on a fixed ontology
to predict the dialogue state. This means that the
set of slot-values is predefined, and that a model
can only predict for those predefined values. These
models typically consist of an input layer that trans-
forms each input token into an embedding, of an en-
coder layer that encodes the input to a hidden state
h¢, and of an output layer that predicts the slot value
based on h;. Considering that the set of possible
slot-values is predefined, there are two approaches
used for the output layer: 1) a feed-forward layer,
which receives the input representation and pro-
duces scores equal to the # of slot-values; ii) an
output layer that receives both the input and the

slot-value representations and compares them with
each of the slot-value representations providing a
score for each slot-value. The obtained score can
then be normalized using a non-linear activation
function, either softmax, to get a probability distri-
bution over all the slot-value pairs, or sigmoid, to
get the individual probability for each slot-value
pair. Figure 2 shows the standard architecture of
the two approaches.

We now review few challenges that have been ad-
dressed in static ontology models, including delex-
icalization, data-driven DST, parameter sharing,
latency in prediction, and the use of pre-trained
language models. Performances of the systems are
all reported in Table 2.

Delexicalization. Delexicalization is an effective
approach adopted to counter imbalanced training
data for slot-values. In this regard, the slot values
in the input are replaced with labels corresponding
to slot names. For instance, I want Chinese food is
delexicalised as [ want FVALUE F.SLOT. It has to
be noted that replacing slot-values needs a seman-
tic dictionary listing the possible values for each
slot. (Henderson et al., 2014c; Henderson et al.,
2014) has proposed a word-based DST with recur-
rent neural networks that uses delexicalization on
top of an input representation based on Automatic
Speech Recognition. This allows to improve the
system robustness with respect to the user expres-
sions mentioning slot values.

Data-driven DST. Although delexicalization
showed to be effective, it requires additional man-
ual feature engineering. An alternative, data-driven
methodology, was proposed by the neural belief
tracker (NBT) (MrkSi¢ et al., 2017a). Instead of
delexicalizing the input, a separate module was
learned to represent the slot-value pairs. Then, the
slot-value representation and the input representa-
tion are passed through a binary decision maker
before applying softmax activation. Similarly, a
fully statistical NBT was proposed by (Mrksi¢ and
Vulié, 2018), where a statistical update function
replaces the rule-based update mechanism in NBT.
The experimental results showed the statistical up-
date function to outperform the rule-based update.

Parameter sharing. While the previous models
consist of a separate encoder for each slot whose
values have to be predicted, the DST efficiency
crucially depends on the number of model parame-
ters. In this direction, (Ren et al., 2018) proposed
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Metric Datasets

DSTC2 | DSTC3 | WoZ2.0 | MultiWoZ | Frames | SGD M2M | TreeDST
# Dialogues 3235 2236 1200 10438 1369 22825 | 120000 27280
# Turns 51002 35723 8824 143048 19986 | 463282 | 1661536 | 167507*
Avg. turns / dial. 15.77 15.98 7.35 13.7 14.60 20.30 13.85 6.14*
Avg. tokens / turn 8.47 10.82 11.27 13.18 12.60 9.86 9.96 7.59%
# Unique tokens 1178 1873 3562 30245 13864 | 45578 2315 7936*
# Slots 8 13 7 29 60 339 5 289
# Values 85 118 88 2180 4508 25123 92 5687

*TreeDST provides natural language only for user turns, and not for system acts. No. of turns is computed only on user turns.

Table 1: Statistics of available data sets for the dialogue state tracking task.
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Figure 2: Left: model with softmax activation to predict over all slot-values, Right: model using value representa-

tions to predict the score.

StateNet, a DST sharing the parameters for all slots,
thus reducing the number of model parameters.
StateNet combines a n-gram input feature repre-
sentation with a slot representation, and uses long
short term memory (LSTM) to encode them into a
single vector. The value representation is then com-
pared with the encoded vector to obtain the score
for each slot-value. A semantically specialised
Paragram-SL.999 (Wieting et al., 2015) was used
to encode the tokens. Compared with fully statisti-
cal NBT, SrateNet achieves high performance even
with a rule-based update function.

RNN and latency in DST. A relevant issue for
DST models is prediction time, due to the number
of dialogue states they have to consider at each dia-
logue turn. (Zhong et al., 2018) combined both a
shared representation and a slot-specific representa-
tion in the Global-Locally Self Attentive Dialogue
State Tracker (GLAD). The GLAD model consists
of an RNN-based global module, to learn global
features, and a local module that learns slot-specific
features. The representations of slot-values and
user input are then scored using a scoring module
that predicts their probability. However, GLAD
needs an RNN for each slot-value representation,
this way increasing the latency of the model. Fur-
ther improvements on latency were proposed in

GCE, Globally-Conditioned Encoder (Nouri and
Hosseini-Asl, 2018), which uses only the global
encoder, and in (Balaraman and Magnini, 2019),
proposing a Global encoder and Slot-Attentive de-
coders (G-SAT). The G-SAT model uses an RNN
to encode the user input and slot-specific feed-
forward networks to represent the slot-values.

Encoders based on pre-trained LM. The use
of pre-trained language models, such as BERT
(Bidirectional Encoder Representation from Trans-
formers) (Devlin et al., 2019), is meant to increase
the DST capacity to capture the semantics of slot
and values names. (Lee et al., 2019) proposed a
slot-utterance matching belief tracker (SUMBT)
using BERT to encode slots, user input, and slot-
values. The representations of the slots and of the
user input are combined using multi-head attention
(Vaswani et al., 2017) to obtain the input represen-
tation of the model, and then compared with the
slot-value representation to obtain the probability.

5 Dynamic Ontology DST Models

The models discussed in Section 4 rely on a fixed
slot-value set, which is assumed to be available be-
fore making the prediction. This is a severe limita-
tion to domains where compiling the slot-value set
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Figure 3: Architecture of the TRADE model using slot-
gate and copy mechanism. (Wu et al., 2019).

is costly, or the set of possible slot-values is open
(e.g., DEPARTURE_TIME, RESTAURANT_NAME,
etc.). For this reason, various studies have focused
on developing models that can track slot values
even if they are not defined in the ontology. Two
major approaches for dynamic ontology models
are: i) copy the slot value from the user input to
the output; and ii) generate the slot value as the
output. Figure 3 presents the schema of a model
using the combination of both approaches. One
significant difference between static ontology and
dynamic ontology models is that while the output
vocabulary in the static ontology is limited (i.e.,
equal to # of slot-values), in a dynamic ontology
setting the output vocabulary is much larger.

Copy and pointer networks. Copy mechanism
(Gu et al., 2016) and pointer networks (Vinyals
et al., 2015) are the main approaches in neural
networks to make predictions on the input tokens.
They both rely on the attention mechanism (Bah-
danau et al., 2015) to obtain scores over the input
tokens. (Xu and Hu, 2018) proposed an end-to-end
DST architecture based on pointer networks, show-
ing efficient tracking of unseen slot values in a data-
driven approach on the DSTC2 dataset. However,
since pointer networks can only make predictions
on the input tokens, they cannot be directly applied
for all slots and require postprocessing of predicted
values. (Wu et al., 2019) proposed a Transferable
Multi-Domain State Generator TRADE, the first
generation-based DST that incorporates the copy
mechanism with a slot-gate. Figure 3 shows the
architecture of the TRADE model. TRADE is based
on an encoder-decoder architecture consisting of
a three-way classifier that predicts over probabil-
ities ptr, none, and dontcare. If the value is not
expressed, it is predicted as none, if no constraint
then dontcare and, if the value is expressed in the
input, then ptr is predicted by the slot-gate. On

ptr prediction, the corresponding value needs to
be decoded by the decoder layer (referred as state
generator). The state generator layer is initialized
with both the domain and the slot representation,
and generates the dialogue state using a recurrent
architecture. As all the parameters are shared for all
slots and domains, TRADE enables the transfer of
knowledge from one domain to another, which has
opened research directions in zero-shot approaches
for DST with promising results.

Categorical and non-categorical slot-values.
DST models based on dynamic ontology are sup-
posed to address predictions particularly for non-
categorical slots, which admit an open set of values.
In this direction (Zhang et al., 2019) proposed a
dual-strategy approach that can predict both over
a predefined set of slot-values and can generate
values based on the input dialogue. If a given slot
is labeled as categorical (i.e., possible values for
the slot are predefined), the output layer predicts a
score over the possible slot-values, while, if the slot
is labeled as non-categorical, the span (i.e., start
and end positions) of the value is decoded from the
input tokens. (Heck et al., 2020) proposed a triple
copy strategy (TripPy) for DST. The slot-values
are predicted based on one of the following three
scenarios: i) explicitly expressed by the user; ii)
expressed by the system and referred to by the user;
and iii) expressed in an earlier dialogue turn for
another domain-slot. TripPy uses a slot gate to pre-
dict the slot status and then uses a copy mechanism
to predict the slot-value.

Function-based update. The approaches re-
ported so far for dynamic ontology either use a
rule-based update mechanism or they predict the
complete dialogue state at each turn from scratch.
A function-based update mechanism is proposed
in SOM-DST, Selectively Overwriting Memory
model (Kim et al., 2020), that tracks the dialogue
state in memory and predicts only the dialogue
state update. First, one of the four slot operations
(i.e., {CARRYOVER, DELETE, DONTCARE, UP-
DATE}) is initially predicted to decide the decoding
strategy for the slot. CARRYOVER denotes that the
slot-value from the previous dialogue state is car-
ried over, DELETE denotes that the user retracts
the slot-value and UPDATE denotes that a new
slot-value needs to be predicted and updated to the
dialogue state. Then, based on the state update
prediction, a dialogue state is decoded.
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Schema-guided models. So far, all of DST ap-
proaches focus on modeling a given ontology, with-
out considering the portability and flexibility of the
model to accommodate other datasets or domains.
Though some models, such as TRADE, SOM-DST,
DS-Picklist and TripPy (Wu et al., 2019; Kim et al.,
2020; Zhang et al., 2019; Heck et al., 2020) can
make predictions for a new domain, they are typ-
ically modeled only for the domains in a specific
dataset, and the flexibility of the model to incorpo-
rate new domains is not an inherent feature. This is
basically due to the different ontology schema used
in each dataset, which make them incompatible.
In this context, the schema-guided dataset (SGD)
(see Section 3.4), puts forth a standard schema to
be adopted for all domains. In SGD, a standard
schema structure is adopted, slots are classified as
either categorical or non-categorical, and each slot
includes a brief natural language description. Then,
a new dataset needs to follow this schema, which
would enable the model to predict dialogue states
without any change in the architecture.

Several works exploit the potential of the SGD
dataset. (Balaraman and Magnini, 2021) proposed
a Domain Aware DST DA-DST based on (Ras-
togi et al., 2020) to effectively predict slot-values
specific to each domain. DA-DST uses multiple
multi-head attention to extract both a domain- and
a slot- specific representation from the input, and
then combines them to predict the dialogue state.
(Chen et al., 2020) use a graph attention network ex-
ploiting the slot relations to learn the representation
of the ontology schema and the input simultane-
ously. (Gao et al., 2019) propose a neural reading
comprehension approach to DST. Here, for each
slot ¢ a question (g;: what is the value for slot 1?)
is formulated and treat the dialogue D; as a pas-
sage. Finally, (Le et al., 2020) propose the first
non-auto-regressive DST approach (NADST) to
learn the inter-dependencies across slots. This ap-
proach allows for a parallel decoding strategy to
considerably reduce the latency of the models in-
comparison with recurrent architectures.

6 Take-away Points

This section presents take-away points intended
to underline both limitations and improvements in
different scenarios.

1. Employing various models for each slot limits
the models’ generalization capability and the
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ability to learn an effective representation for
the input.

2. Parameter sharing among slots (even at the
encoder level alone) is effective and improves
performance for all slots.

3. When large training data is available, recur-
rent neural networks are preferred for state-
of-the-art performance. In this context, bi-
directional architectures are shown to be ad-
ditive to the models’ performance in specific
datasets.

4. The latency in recurrent architectures is an is-
sue if used for both encoder and decoder. Re-
current networks process the input one time-
step at a time, and employing multiple such
networks increases the time required for pre-
diction.

5. The attention-based copying mechanism is an
effective approach to make predictions on the
user input as slot-values. This approach is
used in most of the state-of-the-art models,
with some variations.

6. For low-resource domains using pre-trained
language models as encoders drastically im-
proves the performance.

7. Statistical update functions are shown to out-
perform rule-based update functions.

8. When the scalability of the domain and the
models flexibility is an issue, adopting the
schema-based approach enables the model to
incorporate any change in schema. This also
enables transfer learning including zero-shot
(discussed in Section 7.1).

9. The majority of recent DST models rely on
pre-trained language models to encode the
model inputs (Heck et al., 2020), which leads
to learning better representations and higher
performance.

Appendix A provides additional details of the
models discussed in this survey.

7 DST Challenges and Future Directions

The addition of new slots and new domains is in-
evitable in real-world conversational applications
when a dialogue system is deployed (Rastogi et al.,



Model | DSTC2 | WoZ2.0 | MultiWoZ (version) | SGD

Word-based DST (Henderson et al., 2014c) 0.691 - - -
Scalable Multi-domain DST (Rastogi et al., 2017) | 0.703 - - -
Pointer (Xu and Hu, 2018) 0.721 - - -
Multi-domain DST (Mrksi¢ et al., 2015) 0.750 - - -
NBT (Mrksié et al., 2017a) 0.734 0.842 - -
BERT-DST (Chao and Lane, 2019) 0.693 0.877 - -
GLAD (Zhong et al., 2018) 0.745 0.881 0.356 (1.0) -
StateNet (Ren et al., 2018) 0.755 0.889 - -
CNN-Delex (Wen et al., 2017) - 0.837 - -
FS-NBT (Mrksi¢ and Vulié, 2018) - 0.848 - -
GCE (Nouri and Hosseini-Asl, 2018) - 0.885 0.362 (2.0) -
GSAT (Balaraman and Magnini, 2019) - 0.887 - -
DST Reader (single) (Gao et al., 2019) - - 0.364 (2.1) -
TRADE (Wu et al., 2019) - - 0.456 (2.1) -
SUMBT (Lee et al., 2019) - 0.910 0.466 (2.0) -
NARDST (Le et al., 2020) - - 0.490 (2.1) -
SOM-DST (Kim et al., 2020) - - 0.525 (2.1) -
DS-Picklist (Zhang et al., 2019) - - 0.533 (2.1) -
MinTL (Lin et al., 2020) - - 0.536 (2.1)

SST (Chen et al., 2020) - - 0.552 (2.1) -
TripPy (Heck et al., 2020) - 0.927 0.553 (2.1) -
SGD-Baseline (Rastogi et al., 2020) - 0.810 0.434 (2.1) 0.254
DA-DST (Balaraman and Magnini, 2021) - 0.899 0.454 (2.1) 0.310

Table 2: Performance (joint goal accuracy) of DST systems on available datasets as reported in respective papers.

2020). Hence, approaches to train models with lim-  domains.
ited or no training data are much required and it is
a challenge in DST to exploit techniques such as

. . To effectively represent new domains and low
few and zero shot learning and data augmentation. y Tep

resource domains, pre-trained language models
7.1 Few-shot and Zero-shot Models were used to encode the user input representation
and domain/slot representations (Lee et al., 2019;
Kim et al., 2020; Heck et al., 2020; Rastogi et al.,
2020; Balaraman and Magnini, 2021). In addition,
the schema guided dataset enabled models to be
able to predict dialogue states for any domains that
adopt the proposed schema, paving the way for fur-
ther progress in zero-shot learning approaches for
DST (Rastogi et al., 2020; Balaraman and Magnini,
2021; Gao et al., 2019).

Initial DST datasets were domain specific and mod-
els actually focused on effectively tracking dia-
logue states defined for those domains (see section
4 and 5). However, the recently published multi-
domain datasets and the progress in the field of
NLP, have driven the DST community to propose
more advanced models that can track multiple do-
mains and even are flexible to be adapted to new do-
mains that are not predefined in the dataset (Mrksic¢
et al., 2015; Ramadan et al., 2018; Rastogi et al.,
2017; Zhong et al., 2018; Nouri and Hosseini-Asl, Finally, (Lin et al., 2020) used the pre-trained
2018). T5 (Raffel et al., 2020) and BART (Lewis et al.,

TRADE (see section 5) was the first model in-  2020) language model, and proposed a minimalist
vestigating zero-shot and few-shot learning ap- transfer learning approach called MinTL. Unlike
proaches on the MultiWoZ dataset, showing  other models that predict the dialogue state, MinTL
promising results on multiple domains. TRADE  generates the change in the dialogue state as a Lev-
relied on the parameter sharing across all domains  enshtein belief state. This unique approach showed
and slots to improve performance for low resource ~ more robust results in low resource domains.
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7.2 Data Augmentation and Data-efficient
Models

The high cost of data acquisition for annotated di-
alogues has pushed researchers to look for alter-
native options. Among them, data augmentation
allows generating additional training from existing
data. In addition, the cost of dialogue collection
makes models that can learn from a small amount
of data highly preferred, and the use of pre-trained
language models in DST architecture has shown
promising results. However, current models have
shown success solely on selected domains, where
the dialogue task is straightforward.

Reinforced data augmentation was proposed by
(Yin et al., 2020), using a reinforcement learning
approach to learn a data augmentation policy. A
generator that learns how to generate new data, and
a tracker trained for DST are learned in an alternate
manner. The generator is learned using reinforce-
ment learning rewards, and the tracker is then re-
trained on the data generated by the generator. This
approach showed to significantly improve the DST
performance. However, it lacks the controllability
of the generated data. CoCo (Controllable Coun-
terfactuals - (LI et al., 2021)) is a recent DST that
provides control in generating data with specific
slot-values in the utterance. This is achieved by
training a conditional generation model using an
encoder-decoder framework based on the system re-
sponse, and the turn-level user goal to generate the
user utterance. Once learned, the model can gen-
erate a new utterance when a new turn-level user
goal is input to the model. A filtering approach was
also employed to check if all the desired turn-level
user goals are present in the generated output, and
to choose the one satisfying the user goal.

7.3 Diverse Datasets

Much of the DST progress was achieved after the
release of multi-domain datasets, particularly Mul-
tiWoZ and SGD. Howeyver, these datasets are not
sufficient to train deployment-ready models due
to various uncertain situations that the models en-
counter in the real world, such as linguistic varia-
tions and uncooperative users. Moreover, almost
all datasets are in English (Wo0Z2.0 alone was trans-
lated to German and Italian).

Another important direction for the future is
leveraging other conversational datasets that are
widely available in many open social media plat-
forms, such as Reddit and Twitter. As these datasets

are open-domain and unlabelled, the main chal-
lenge is learning a dialogue structure behind these
dialogues that can help learning task-oriented dia-
logues and be data-efficient.

8 Conclusion

We have surveyed a number of recent studies ad-
dressing neural-network-based DST and have dis-
cussed both the task and the major datasets avail-
able to the research community. We grouped mod-
els according to their capacity to make dialogue
state predictions either with respect to a static on-
tology (i.e., a fixed set of dialogue states) or with
respect to a dynamic ontology (i.e., an open set
of dialogue states). We also reported about DST
models’ progress towards modeling trackers that
perform few-shot and zero-shot learning to accom-
modate new domains, this way opening multiple
opportunities both in research and industry.
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A Appendix

Model ‘ Values ‘ Slots ‘ Schema | Update
Word-based DST (Henderson et al., 2014c¢) Closed | Closed Fixed Function
Multi-domain DST (Mrksi¢ et al., 2015) Closed | Closed Fixed Function
FS-NBT (Mrksi¢ and Vuli¢, 2018) Closed | Closed Fixed Function
Scalable Multi-domain DST (Rastogi et al., 2017) | Closed | Closed Fixed Rules
CNN-Delex (Wen et al., 2017) Closed | Closed Fixed Rules
NBT (Mrksi¢ et al., 2017a) Closed | Closed Fixed Rules
StateNet (Ren et al., 2018) Closed | Open* Fixed Rules
Pointer (Xu and Hu, 2018) Open | Closed Fixed Rules
GLAD (Zhong et al., 2018) Closed | Closed Fixed Rules
GCE (Nouri and Hosseini-Asl, 2018) Closed | Open Fixed Rules
GSAT (Balaraman and Magnini, 2019) Closed | Closed Fixed Rules
BERT-DST (Chao and Lane, 2019) Open | Closed Fixed Rules
TRADE (Wu et al., 2019) Open | Open* | Dynamic None
DS-Picklist (Zhang et al., 2019) Closed | Open Fixed None
SUMBT (Lee et al., 2019) Closed | Open Fixed Function
SST (Chen et al., 2020) Closed | Open* Fixed Function
SGD-Baseline (Rastogi et al., 2020) Open | Open | Dynamic Rules
DA-DST (Balaraman and Magnini, 2021) Open | Open | Dynamic Rules
SOM-DST (Kim et al., 2020) Open | Open | Dynamic | Function
TripPy (Heck et al., 2020) Open | Open | Dynamic | Function
MinTL (Lin et al., 2020) Open | Open | Dynamic | Function
Nerual Reading (Gao et al., 2019) Open | Open | Dynamic | Function
NARDST (Le et al., 2020) Open Open | Dynamic None

Table 3: Tracking approach of implemented by vari-
ous DST models. * denotes the requirement of a pre-
trained embedding
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