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Abstract

Natural conversations are filled with disflu-
encies. This study investigates if and how
BERT understands disfluency with three exper-
iments: (1) a behavioural study using a down-
stream task, (2) an analysis of sentence em-
beddings and (3) an analysis of the attention
mechanism on disfluency. The behavioural
study shows that without fine-tuning on disflu-
ent data, BERT does not suffer significant per-
formance loss when presented disfluent com-
pared to fluent inputs (expl). Analysis on sen-
tence embeddings of disfluent and fluent sen-
tence pairs reveals that the deeper the layer, the
more similar their representation (exp2). This
indicates that deep layers of BERT become rel-
atively invariant to disfluency. We pinpoint at-
tention as a potential mechanism that could ex-
plain this phenomenon (exp3). Overall, the
study suggests that BERT has knowledge of
disfluency structure. We emphasise the poten-
tial of using BERT to understand natural utter-
ances without disfluency removal.

1 Introduction

Natural conversations are often disfluent. Consider
the following utterance: “How does, I mean, does
BERT understand disfluency?”” Upon hearing this
question, you understand that the speaker first tried
to ask a ’how’ question with a presupposition that
BERT understands disfluency, but then corrected it
to a yes-no question, thus removing this presuppo-
sition. Disfluent utterances like these are prevalent
in natural dialogues, but rare in written texts. Re-
cent Transformer-based language models such as
BERT have amazed us in a sweep of NLP tasks re-
quiring language understanding. Since BERT was
pre-trained on written corpora, one might expect it
to struggle with disfluent inputs like the one above.
Traditionally, considerable effort in NLP has been
devoted to disfluency detection and removal, espe-
cially in the context of dialogue systems.
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But is disfluency removal necessary for
Transformer-based language models or can they
understand disfluent sentences out of the box? We
approach this question from the outside in with
three experiments. Experiment 1 stands outside
the blackbox and explores how BERT performs be-
haviourally in a downstream task when presented
with fluent vs disfluent language. Experiment 2
gets into the blackbox and investigates how embed-
dings of disfluent inputs change from the lowest to
the highest layers. Finally, experiment 3 attempts to
explain BERT’s mechanism of disfluency process-
ing by looking at attention on disfluent sentence
parts.

We discovered that the results of all three experi-
ments are congruent in that semantic understand-
ing is only weakly impaired by the presence of
disfluencies. Crucially, BERT represents disfluent
utterances similarly to their fluent counterparts in
deeper layers. This ability could be explained by
the self-attention mechanism which is central to
Transformed-based architectures. We hypothesise
that BERT balances a trade-off between seman-
tic selectivity and disfluency invariance', and that
disfluency is processed similar to other syntactic
features.

1.1 Disfluency is structured

Disfluency is ubiquitous in natural speech, found in
about six out of 100 words on one estimate (Tree,
1995), and between 10% to 20% of utterances in
natural dialogues on another estimate (Hough et al.,
2016).

!Selectivity and invariance are notions more widely known
in computer vision. Neurons of vertebrates develop selectivity
to specific shapes or objects while being invariant to spatial
and chromatic arrangements. This trade-off gives rise to object
recognition robust to changes in position, rotation, occlusion
and contrast. Invariance and selectivity are equally important
in language. Since the essence of a sentence is found in
its meaning, a robust model should develop selectivity to
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Figure 1: Structure of disfluency

Disfluencies have a consistent structure (Figure
1). They typically contain a moment of interrup-
tion, a reparandum, an editing term and an alter-
ation (Shriberg, 1994), out of which only the mo-
ment of interruption is obligatory. Disfluencies can
be forward- or backward-looking (Ginzburg et al.,
2014). They are forward-looking when an utter-
ance is interrupted by a filled or a silent pause, but
are continued without an alteration. Disfluencies
are backward-looking when an utterance is inter-
rupted and replaced with an alteration that refers
back to an already uttered reparandum.

This study focuses on three types of backward-
looking disfluencies: revision, repetition and aban-
donment.

* A revision contains a reparandum and an al-
teration, which are both different. In the fol-
lowing example, “Paris” is the reparandum,
“Prague” is the alteration and “I mean” is an
editing term (Tian et al., 2015):

— “I'went to Paris,  mean, Prague last week”.

* A repetition contains a reparandum and an
alteration, and the two are the same. In this
example, the first “what’s your” is the reparan-
dum and the second the alteration:

— “What’s your, what’s your old address?”.

* An abandonment contains only a reparan-
dum, but no alteration. In this example, “shall
we” is the abandoned reparandum, “actually”
is an editing term and there is no alteration:
— “Shall we, actually, what’s the weather like
tomorrow?”

We chose to focus on backward-looking disflu-
encies because they are semantically more complex
than forword-looking ones. For forward-looking
disfluencies, a model only needs to ignore silent
or filled pauses and most commercial Automatic
Speech Recognition (ASR) systems can already
cope with filled pauses such as ‘um’ and ‘uh’. For

semantics while being invariant to disfluencies.

backward-looking disfluencies, there are several
components such as reparanda, alterations and edit-
ing terms. Thus, a robust language model would
need to not only recognise the disfluent compo-
nents, but also know how they relate to each other
as well as to the rest of the sentence.

1.2 Motivation

The motivation of this study is twofold: We want
to explore the inner workings of BERT on dis-
fluency processing, and we want to challenge the
commonly-held belief that disfluency removal is
necessary for dialogue systems.

Disfluency is rarely noise. It can aid comprehen-
sion and contribute to communicative meaning. For
example, upon hearing “we believe, well, I believe
that aliens exist”, you understand that by changing
“we believe” to “I believe”, I communicate that I
retract my implication of this belief being shared,
to which you can respond “no, no, I believe it too”.
This reply would not make sense if my original
utterance was the fluent counterpart “I believe that
aliens exist”.

Psycholinguistics studies have shown that partic-
ipants anticipate more complicated concepts after
a filled pause (Arnold and Tanenhaus, 2011); they
remember the story better if it was told with disflu-
encies rather than without (Fraundorf and Watson,
2011). The processing of the reparandum helps
identify the repair and has positive effects on com-
prehension (Shriberg, 1996). Ginzburg et al. (2014)
point out that there is a continuity between self-
repair and other repair types in dialogues.

Humans adapt their speech patterns to their con-
versational partners. Studies show that human par-
ticipants tend to be more fluent when addressing
a computational dialogue system than in human-
human dialogues (Healey et al., 2011). However,
this does not mean that humans prefer to speak
fluently to a machine. If dialogue systems become
better at understanding disfluency and are able to
incrementally acknowledge and respond to disflu-
encies, humans will likely interact more naturally
with machines. This is only possible if disfluencies
are retained and gracefully handled by dialogue
systems.

1.3 Related Work

The current study is related to both disfluency re-
search and also to the study of the inner workings
of BERT, often coined “BERTology”. BERT (De-
vlin et al., 2019) is a large Transformer network
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pre-trained on 3.3 billion tokens of written cor-
pora including the BookCorpus and the English
Wikipedia (Vaswani et al., 2017). Each layer con-
tains multiple self-attention heads that compute
attention weights between all pairs of tokens in the
input. Attention weights can be seen as deciding
how relevant every token is in relation to every
other token for producing the representation on the
following layer.

BERTology: In terms of syntax, Htut et al.
(2019) showed that BERT’s representations are hi-
erarchical rather than linear. Jawahar et al. (2019a)
found that dependency tree structures can be ex-
tracted from self-attention weights. On the other
hand, studies on adversarial attacks (Ettinger, 2020)
show that BERT struggles with role-based event
prediction and negation. Syntactic information
seems to be encoded primarily in the middle layers
of BERT (Hewitt and Manning, 2019).

In terms of semantics, studies disagree in terms
of where semantic information is encoded. Tenney
et al. (2019) suggest that semantics is spread across
the entire model. In contrast, Jawahar et al. (2019b)
found “surface features in lower layers, syntactic
features in middle layers and semantic features in
higher layers”.

Disfluency detection, removal and generation:
Despite an abundance of research in probing the
linguistic knowledge of written language in BERT,
there is little work on probing the model on its
knowledge of disfluency processing. The most
related research is on disfluency detection and
removal, which shifted from feature-based ap-
proaches (Hough, 2014) to more end-to-end sys-
tems (Lou and Johnson, 2020) in the past several
years. Most studies use textual input, and train or
fine-tune a seq2seq model using annotated disflu-
ency data (Wang et al., 2017; Dong et al., 2019).
Some studies take into account prosody (Zayats and
Ostendorf, 2019). Some research stresses the im-
portance of incremental disfluency detection (Sha-
lyminov et al., 2018). A related emergent field is
disfluency generation (Yang et al., 2020).

2 Experiments

2.1 Experiment 1: Behavioural study

Experiment 1 investigates how well BERT per-
forms on a downstream task containing disfluent
language without being exposed to disfluent data.
Specifically, we used the Natural Language Infer-

ence (NLI) task (Bowman et al., 2015), where
the model sees two sentences A and B, such as
“A woman is singing” and “A young woman is
singing”. It then decides whether A entails B, con-
tradicts B, or is neutral to B. The NLI task was
chosen since it allows to quantify semantic under-
standing with a performance metric. By using an
existing dataset and introducing disfluencies, we
can observe the extent to which the accuracy de-
grades for different disfluency types.

Dataset: In order to compare the performance
of BERT on fluent and disfluent pairs, we used
data from the Stanford Natural Language Inference
(SNLI) Corpus (Bowman et al., 2015), which is a
collection of 570,000 sentence pairs annotated with
the labels “contradiction”, “entailment” and “neu-
tral”. We took a subset of 100 sentences from the
dataset and injected three types of disfluency using
a combination of heuristics and manual methods?.
Repetition was created by picking a random point
of interruption in the sentence and by repeating the
previous 2-4 words. Manual selection ensured that
the points of interruption sounded natural. Revision
and abandonment were manually created so that the
disfluencies are natural and comparable between
sentence A and sentence B in each pair. The final
data set contains 100 fluent sentence pairs, each
augmented three times for the disfluencies revision,
repetition and abandonment. The introduced disflu-
encies do not alter the semantic meaning of these
sentences. An example data point can be seen in
table 1.

Fluent
Abandonment

Sentence A A woman is hanging the laundry outside.

A woman is hanging the laundry outside, and it was te-

Repetition A woman is hanging the laundry hanging the laundry
outside.
Revision A woman is doing, I mean, hanging laundry inside.
Sentence B Fluent A woman is putting her clothes out to dry.
Abandonment A woman is putting her clothes out to dry, and it was te-
Repetition A woman is putting is putting her clothes out to dry.

Revision A woman is doing, I mean, putting her clothes out to dry.

Table 1: Example data point - Experiment 1 NLI.

2.1.1 Methods and Results

We used the medium-sized BERT model
(bert-base-cased) which contains 12 layers,

2We also tried neural methods taking advantage of pre-
trained language models. To generate revision, we masked
between 2-4 tokens at an arbitrary position in the sentence
and used BERT to “fill in the blank™. The output was then
concatenated with the rest of the sentence. This method often
gave rise to unnatural disfluencies. Therefore, we did not use
this method for data creation.
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12 attention heads, and a total of 110M parameters.
Using the Transformers Python library (Wolf
et al., 2020), we trained a classifier by adding a
softmax layer. The classifier was trained on the
original SNLI data for one epoch with a batch
size of 16. We then tested this model on fluent
and their corresponding three disfluent sentences.
The aim of experiment 1 is to assess how different
disfluency types penalise the performance while
using a model not trained on disfluent NLI
sentences.

The results (figure 2) show that compared to the
baseline accuracy of 87.5% for fluent sentences,
the accuracy for abandonment drops slightly to
84.80% for abandonment, to 81.3% for repetition
and to 80.4% for revision.

These findings suggest that without any fine-
tuning on data containing disfluency, BERT already
performs fairly well on the NLI task with disfluent
data. With the caveat of the dataset being small
and synthetic, the behaviour in experiment 1 leads
to the hypothesis that BERT has an innate under-
standing of disfluencies. Can we find evidence for
this understanding in a bigger and natural dataset?
To answer this question, we carry out analyses on
sentence embeddings in experiment 2.

0.9 87.50%
84.82%
81.25%
80.36%
5,08
O
Y
5
[S]
<
0.7
0.6
Fluent ~ Abandonment Repetition Revision
Type

Figure 2: Experiment 1 - Model accuracy on SNLI task
across Fluent, Abandonment, Repetition and Revision

2.2 Experiment 2: Inside the blackbox -
Embedding Analysis

Experiment 1 shows that the performance of BERT
is largely retained when the task contains a small
amount of disfluency. Experiment 2 looks inside
the blackbox and investigates how the embeddings
of disfluent sentences change over BERT layers.
Because a disfluent sentence and its fluent coun-
terpart are more similar in meaning than in form,
we expect the sentence embeddings of the pair to
be more similar in layers associated with semantic
representation than layers associated with surface
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form and syntactic representation. If BERT indeed
encodes surface form in early layers, syntax in the
mid layers, and semantics in the deep layers, we
should see that sentence embeddings of disfluent
and fluent pairs become more similar in deep lay-
ers.

Dataset: In experiment 1, we used synthetic data.
The original SNLI data is a written corpus, and
disfluencies were injected manually. As such, the
sentences have a different distribution from utter-
ances appearing in natural conversations. To study
the behaviour of BERT on naturally occurring dis-
fluency, we used data from the Switchboard corpus
(Godfrey et al., 1992), which is a collection of
about 2,400 telephone conversations from speak-
ers across the United States. The sentences are
annotated for disfluency structure. We extracted a
sample of 900 utterances balanced by disfluency
type, resulting in 300 instances for abandonment,
repetition and revision respectively. For each dis-
fluent utterance we created a fluent counterpart by
removing filled pauses, interjections and reparan-
dam. Here is an example from this data set:

¢ Abandonment:

— Disfluent: and we just, every time you tossed the
line in, you pull up a five, six, seven inch minimum
bass.

— Fluent: every time you tossed the line in, you pull
up a five, six, seven inch minimum bass.

* Repetition:

— Disfluent: um you’re not supposed to, I mean,
you're not supposed to eat them dead.

— Fluent: you’re not supposed to eat them dead.

¢ Revision:

— Disfluent: well, today it was, I mean, the air was
Jjust so sticky, so damp.

— Fluent: today the air was just so sticky, so damp.

2.2.1 Methods and Results

Let S denote the dataset of all (disfluent, fluent)
sentence tuples. We determine whether BERT’s
representation of a disfluent sentence is similar to
fluent sentences using two metrics:

e Metric 1: the raw cosine similarity
— Sd'Sf
d(8a,5f) = max(Tsalla s Ty Computed for

all (sq,sf) € S.

* Metric 2: the cosine similarity ranking com-
puted for all (s4,t¢) with (s,t) € S x S.
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Figure 3: Experiment 2: In figures A and B, we plot the raw cosine similarity between each disfluent and fluent
pairs, as well as between a disfluent sentence and a random fluent sentence (baseline). Figure A plots all sentence
tokens and figure B plots the [CLS] token. The X axis represents layers. The Y axis represents the average cosine
similarity with a range of (0,1], the closer to 1 the more similar the two vectors. In figures C and D, we plot the
similarity ranking of the fluent counterpart - the closer to zero, the more similar the fluent counterpart compared to
controls. Figure C ranks embeddings of all sentence tokens and figure D ranks the embedding of the [CLS] token.
The X axis represents layers. The Y axis represents distance to top rank, so -50 means that the fluent counterpart

is ranked on average 50 out of 300 in similarity.

The raw similarity (1) indicates how close a
disfluent-fluent pair is in the embedding space,
while a top rank in (2) determines the quality of an
embedding in capturing semantic nuances. A close
disfluent-fluent pair should converge to a high rank.
The reasoning is that a disfluent sentence s is com-
pared against all other fluent sentences ¢y, some
of which will be semantically similar. If the rank
is high, the embeddings encode the semantic in-
formation that allows the ranking to disambiguate
the correct fluent counterpart across all sentences.
In other words, one could conclude that BERT’s
embeddings encode semantic content invariant to
disfluency perturbations.

We compare two ways of sentence representa-
tion’: a concatenation of the embeddings of all

3There is no consensus on which embeddings best rep-
resent sentence meaning. The original BERT paper (Devlin
et al., 2018) proposed the hidden state of the [CLS] token on
the last layer as an aggregation of sequence representation.
Other studies compared pooling methods on hidden states
from different layers and showed that pooling strategies are fit
for downstream tasks (Ma et al., 2019).

sentence tokens, as well as the embedding of the
[CLS] token. These embeddings are evaluated at
all 12 layers of BERT. For comparison, we also
evaluate the input vectors presented to the network.

Cosine similarity: We aggregate the activations
of all sentence tokens into a single flattened vector®.
In addition, we evaluate the activation of the [CLS]
token. We calculate the cosine similarity between
each disfluent sentence and its fluent counterpart.
As a baseline, we calculate the cosine similarity
between a disfluent sentence and a random fluent
sentence. In all cases, we report the mean cosine
similarity.

The results are shown in Figure 3A and 3B. Fig-
ure 3A shows that overall, the cosine similarity of a
disfluent and fluent pair is higher than the baseline.
The embeddings become more similar in deeper
layers. An identical embedding would have a sim-
ilarity of 1. At the input layer, the embeddings

“To calculate the cosine similarity between two sentences

of different lengths, we pad the shorter sentence in each pair
with [PAD] so that the two have the same number of tokens.

212



are semantically dissimilar with a mean value of
0.3. However, this value increases steadily until
layer 6, plateaus on layer 7 and 8, peaks on layer
11 at around 0.72, before dropping slightly on layer
12. A similar drop was reported by Wang and Kuo
(2020). The result indicates that embeddings in-
crease in their semantic selectivity while maintain-
ing invariance to disfluencies. We did not observe
any significant difference between the three types
of disfluency.

For [CLS] embedding similarity, we observe that
the cosine similarity of disfluent and fluent pairs de-
creases as the layer gets deeper. Figure 3B shows
that [CLS] embedding similarities start off at 1
on input layer, drops gradually until layer 11 to
about 0.975, and increases again on layer 12. From
layer 3 onwards, the [CLS] embedding similarity is
higher for abandonment than for repetition and re-
vision. The reason [CLS] similarity starts of at 1 is
because at input layer, [CLS] embedding does not
contain any information from the sentence, and is
identical for all sentences. In deeper layers, [CLS]
“absorbs” information and becomes more dissimilar
for different sentences. Crucially, the [CLS] sim-
ilarity of the baseline drops significantly over the
layers compared to the three disfluent-fluent pairs.

Disfluent-fluent sentence pair ranking: In or-
der to find out how the raw cosine similarity com-
pares across fluent sentences for a specific disfluent
sentence, we calculate the cosine similarities and
compute the rank of the correct fluent counterpart.
To reduce the computational overhead, the ranking
is performed separately for each disfluency type,
yielding a maximum rank of 300.

The results are shown in Figure 3C and 3D. Fig-
ure 3C shows that the similarity ranking of the
fluent counterpart starts off low at around 70 on the
input layer, suggesting that the tokenised surface
forms of a disfluent sentence and the fluent counter-
part vary significantly, which is unsurprising since
disfluencies indeed render the sentences different
in surface form. The ranking then sharply improves
on layer 1, drops on layer 2, steadily rises all the
way to layer 10, before fluctuating on layer 11 and
layer 12, to a mean rank of 17 out of 300.

Why does the ranking first sharply improve on
layer 1 and then drop on layers 2 to 3? We believe
that this is because BERT’s layer 1 primarily en-
codes lexical presence instead of how the tokens
relate to each other. We can see that the improve-
ment is the highest for repetition than for abandon-
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ment and revision. This is because in repetition, the
tokens between the disfluent and fluent pairs are
more similar. However, the advantage of repetition
disappears from layer 2 onwards, suggesting that
from layer 2, BERT starts to represent the structure
and focuses less on the presence of tokens.

Among the three disfluency types, ranking for
abandonment is the highest from layers 3 to 12.
This shows that although the surface form of aban-
donment is just as different to its fluent counter-
part as revision and repetition, the syntactic and
semantic meaning representation of abandonment
is more similar compared to repetition and revision,
and also aligns with the results of experiment 1 (cf.
figure 2).

Figure 3D shows the ranking of the [CLS] em-
bedding of a fluent counterpart among all sentences.
We removed the ranking for the input layer where
the [CLS] embedding is identical for all sentences.
The ranking of the [CLS] embedding of a fluent
counterpart is already high at around top 15 (out
of 299) on layer 1; it increases to around top 8 on
layer 4, drops to top 20 on layer 8, and increases
steadily until peaking on layer 12 close to the top
rank.

Overall, experiment 2 shows that BERT ranks a
disfluent sentence high in similarity compared to all
possible fluent counterparts. In terms of the [CLS]
token, the embedding on the final layer achieves
top rank among 300 sentences, supporting previous
studies that the final layer [CLS] embedding is a
relatively good aggregation of sentence meaning.
In terms of all sentence tokens, the similarity im-
proves steadily in deeper layers, pointing towards
increasing semantic selectivity and invariance to
disfluencies. What could explain this selectivity-
invariance tradeoff in BERT? A cornerstone of
BERT is its attention mechanism which we will
analyse closely in experiment 3.

2.3 Experiment 3: Attention analysis -
Looking for the root cause

To understand disfluency, BERT will have to (1)
identify which part in the sentence is the reparan-
dum and which part is the alteration (if it exists),
and (2) relate the reparandum and the alteration
to the sentence. To investigate both aspects, we
analysed attention on these disfluent segments. Pre-
vious studies show that attention weights reflect
syntactic and semantic features (Clark et al., 2019).
If BERT understands the structure of disfluency,
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Figure 5: Experiment 3: Average Attention for each attention head

we should expect that it pays a disproportionate
amount of attention to the reparandum compared
to the alteration.

2.3.1 Methods and results

In order to compare the attention to reparandum
and alteration, experiment 3 studies only revision
and repetition. We identify the indices of the
reparandum and alteration, and for each layer and
each attention head, we calculated the average at-
tention of the following:

* from the reparandum towards the alteration,
and from the alteration towards the reparan-
dum (Figure 4A, 5A)

* from all other sentence tokens towards the
alteration and towards the reparandum (Figure
4B, 5B)

 from the [CLS] tokens towards the alteration
and towards the reparandum (Figure 4C, 5C)

Figure 4 plots the average attention on each layer
of BERT. Overall, we see that the reparandum re-
ceives less attention than the alteration from layer
3 onwards, both from all sentence tokens and from
the [CLS] token. We also see that the reparan-
dum pays more attention to the alteration than the
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other way around. These results suggest that in
the initial layers 1-3, BERT has not distinguished
the structure and different roles of the reparandum
and the alteration. However, from layers 4 to 12,
the reparandum contributes less to meaning rep-
resentation than the alteration. The reparandum
and alteration have an asymmetric relationship: the
former pays attention to the later more than vice-
versa.

Figure 5 plots the average attention from each
attention head. Every attention head pays less at-
tention to the reparandum than the alteration. In
addition, there is more variation among attention
heads on the alteration than the reparandum. Some
attention heads, specifically heads 5, 6, 11 and
12 pay significantly more attention than the rest
of the attention heads on the alteration. Experi-
ment 3 once again supports the finding that the
final layer [CLS] token is a good aggregation of
sentence meaning. The attention heads’ behaviour
from [CLS] shows the same pattern as the attention
from all sentence tokens.

Experiment 3 provides evidence that BERT has
knowledge of the structure of disfluency, and this
knowledge is present from the mid layers to the
deep layers, akin to other syntactic and semantic
knowledge. This result aligns with results from



experiments 1 and 2, and gives an insight into ~ow
the sentence representation of a disfluent sentence
becomes more similar in deeper layers. It does so
by paying less attention to the reparandum, while
the reparandum attends specifically to the alteration.
As aresult, the meaning of the reparandum relates
more weakly to the rest of the sentence compared
to the alteration.

3 Discussion

Disfluencies are prevalent in natural conversations.
This study investigates how Transformer-based lan-
guage models such as BERT process disfluent ut-
terances and asks whether these models have an
“innate” understanding of disfluency. There are ben-
efits of retaining instead of removing disfluencies
when building dialogue systems because disfluency
contributes to communicative meaning. A system
that is better at understanding and responding to
disfluent utterances will allow users to speak more
naturally while also reducing the burden for engi-
neers to introduce additional pipeline steps for data
cleaning.

We investigated if and how BERT understands
disfluency from the outside in; first by assessing the
performance on a downstream task (experiment 1),
then by computing sentence embedding similarities
between disfluent-fluent sentence pairs (experiment
2), and finally by probing attention on disfluent
segments (experiment 3).

Experiment 1 shows that without fine-tuning on
disfluent data, BERT can perform fairly well on a
natural language inference task containing disfluent
language using a small synthetic dataset.

Experiment 2 shows that the sentence embed-
ding of a disfluent sentence becomes more similar
to its fluent counterpart the deeper the layer. Sim-
ilarities of [CLS] tokens are low in earlier layers,
but improve steadily in the final four layers. In
addition to insights into disfluency processing, the
results also suggest that layer 1 of BERT represents
lexical presence without information on the rela-
tion among the tokens. The fact that pairs are most
similar in the deepest layers supports previous find-
ings that semantic meaning is more concentrated
in the deeper layers of BERT.

Experiment 3 investigates why embedding simi-
larity increases by looking at attention on disfluent
segments. We found that BERT distinguishes the
reparandum and alteration by paying less attention
to the reparandum from layers 4 to 12.
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Overall, the results are congruent in three exper-
iments for two datasets. We conclude that BERT
has knowledge of the structure of disfluency. It
processes disfluency similar to other syntactic fea-
tures and extracts semantic meaning by selectively
attending to different parts of the disfluency at dif-
ferent intensities. Thus, we believe that attention is
the key mechanism that modulates the selectivity-
invariance tradeoff and allows BERT to embed dis-
fluent sentences similar to fluent ones in deep lay-
ers.

4 Future work

For future studies, we could expand the scope from
BERT to other Transformer language models such
as DistillBERT (Sanh et al., 2019), GPT-2 (Rad-
ford et al., 2019) and XLNet (Yang et al., 2019).
It would be interesting to see if language models
trained with different objectives and on different
data also possess the capability of resolving disflu-
ent inputs.

In addition to more models, we could expand the
scope to more languages and study if models such
as multilingual BERT or MT5 (Xue et al., 2020)
have knowledge of disfluency using the annotated
disfluency data in German, French and Chinese
from the DUEL corpus (Hough et al., 2016).

5 Conclusion

Natural conversations are filled with disfluencies
such as self-repairs, repetitions and abandonment.
This study shows that BERT has an out-of-the-box
understanding of disfluency: it represents a dis-
fluent sentence similar to its fluent counterpart in
deeper layers. This is achieved by identifying the
disfluency’s structure and paying less attention to
the reparandum. The results of this study raise the
question whether we can use Transformer models
to process disfluent utterances directly instead of
first removing disfluent components in a prepro-
cessing step. We argue that retaining disfluencies
is beneficial for dialogue systems, both in terms
of better capturing communicative meaning and
enabling users to communicate more naturally with
dialogue systems.
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