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Abstract

In open-domain dialogue response generation,
a dialogue context can be continued with
diverse responses, and the dialogue models
should capture such one-to-many relations. In
this work, we first analyze the training ob-
jective of dialogue models from the view of
Kullback-Leibler divergence (KLD) and show
that the gap between the real world probability
distribution and the single-referenced data’s
probability distribution prevents the model
from learning the one-to-many relations effi-
ciently. Then we explore approaches to multi-
referenced training in two aspects. Data-wise,
we generate diverse pseudo references from
a powerful pretrained model to build multi-
referenced data that provides a better approx-
imation of the real-world distribution. Model-
wise, we propose to equip variational models
with an expressive prior, named linear Gaus-
sian model (LGM). Experimental results of
automated evaluation and human evaluation
show that the methods yield significant im-
provements over baselines.'

1 Introduction

Open-domain dialogue modeling has been formu-
lated as a seq2seq problem since Ritter et al. (2011)
and Vinyals and Le (2015) borrowed machine
translation (MT) techniques (Koehn et al., 2007;
Sutskever et al., 2014) to build dialogue systems,
where a model learns to map from one context to
one response. In MT, one-to-one mapping is a rea-
sonable assumption since an MT output is highly
constrained by its input. Though we may use a
variety of expressions to translate the same input
sentence, these different translations still highly
overlap with each other lexically and semantically

!Code and data are available at https://github.
com/ZHAOTING/dialog-processing/tree/
master/src/tasks/response_gen_multi_
response.
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Translation (en-jp) Dialogue
Input 1 like cheese.
Output 1 F—ADEFE, Me too.
Output2 FAlFF—IHEE, | find it disgusting.
Output3 F—ANPFETI, What type of cheese?

Figure 1: Examples of multiple valid outputs given the
same input in machine translation and dialogue.

(see the translation example in Figure 1), and learn-
ing from one output reference is often sufficient for
training a good MT system (Kim and Rush, 2016).
In dialogues, however, the same input can be con-
tinued with multiple diverse outputs which are dif-
ferent in both the used lexicons and the expressed
semantic meanings (see the dialogue example in
Figure 1). Learning from barely one output ref-
erence ignores the possibility of responding with
other valid outputs and is thus insufficient for build-
ing a good dialogue system.

The current dialogue modeling paradigm is
largely derived from MT research, and it trains
dialogue models with one output reference given
each input. In this paper, we will investigate why
single-referenced training harms our dialogue mod-
els and how to apply multi-referenced training.

2 Why Multi-Referenced Training
Matters?

A dialogue context X can be continued with a set
of different responses {Y7,---,Y;,---}. In the
training of a response generation model, we expect
to model the real probability distribution P(Y |X)
with model probability distribution Py(Y |X) for
each context X, where 0 is the model parameters.
In most scenarios, however, we can only rely on
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a data set D = {(X(j),Yl(j))}L-le where only
one valid response is presented. This results in a
data probability distribution Pp(Y | X) that is very
different from P(Y |X). In fact, Pp(Y|X) is an
one-hot vector where the first element is 1 while
others are 0.

Emprical training objective As a result, we op-
timize a model to match the model probability
distribution and the data probability distribution.
From the view of Kullback-Leibler divergence
(KLD), we can see it as to minimize Dxy (FPp||FPp):

Py (Yi]X)
B (YiX)’

—2_iPp (Vi X) log

which is identical to minimize the following target
function after ignoring terms that are not related to
the model parameter 0:

Lp(X,Y) = =3, Pp(Yi| X) log Fy(Yi| X)

—>_;1{i = 1} log Py (Y[ X)
—log Pp(Y1]X).

The resulting objective is the negative log likeli-
hood (NLL) loss function commonly used in the
implementation of dialogue models.

Ideal training objective We hope to minimize
the KLD between the model probability dis-
tribution and the real probability distribution,
Dy (P Fp):

Py (Y;]X)
P(Y;|X) >

¥, P(Yi[X) log
which is identical to minimize:
LY(X,Y) ==, P(Yi|X)log Py(Yi| X).

However, £* is intractable because 1) there are
often an enormous number of valid responses, and
2) we cannot obtain the real probability of a certain
response P(Y;|X).

The problem and proposed solutions The gap
between Lp and L£* is caused by the difference be-
tween Pp(Y|X) and P(Y|X), and it prevents dia-
logue models from learning one-to-many mappings
efficiently. To alleviate this problem, we propose
methods to allow for multi-referenced training in
two aspects.

2For simplicity, we define a response in D as the first
response to its context, and thus its subscript is 1. We will
omit the superscript in the rest of the paper.
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» Data-wise, we replace the original data distri-
bution Pp(Y|X) with an approximated real
distribution P,(Y'|X') by generating up to
100 pseudo references from a teacher model
parameterized by ¢. We show that using the
newly created data yields significant improve-
ment.

Model-wise, we argue that a model requires an
encoder of large capacity to capture sentence-
level diversity, and thus we propose to equip
the variational hierarchical recurrent encoder-
decoder (VHRED) model with a linear Gaus-
sian model (LGM) prior. The proposed model
outperforms VHRED baselines with unimodal
Gaussian prior and Gaussian Mixture Model
(GMM) prior in evaluation experiments.

3 Related Works
3.1 Knowledge Distillation

In the context of machine translation, Kim and
Rush (2016) proposed that a teacher model’s
knowledge can be transferred to a student model
on a sequence level. They showed that transferring
sequence-level knowledge is roughly equal to train-
ing on sequences generated by the teacher model
as references. However, one generated reference
given each input is sufficient for transferring the
teacher’s MT knowledge, while we will show in
following experiments that training with multiple
generated references can yield far better results in
dialogue response generation. This confirms our
earlier hypothesis that the one-to-many nature is
an important characteristic that distinguishes open-
domain dialogue modeling from other tasks such
as machine translation.

In task-oriented dialogues, Peng et al. (2019) pro-
posed to transfer knowledge from multiple teachers
for multi-domain task-oriented dialogue response
generation via policy distillation and word-level
output distillation. Tan et al. (2019) applied a
similar approach to multilingual machine transla-
tion. Kuncoro et al. (2019) transferred syntactic
knowledge from recurrent neural network grammar
(RNNG, Dyer et al., 2016) models to a sequential
language model.

3.2 Data Augmentation and Manipulation

The multi-referenced training approach can be seen
as a data augmentation method. Prior works on data
augmentation in text generation tasks often oper-
ate on a word level while our method performs



sentence-level augmentation. Niu and Bansal
(2019) proposed to apply semantic-preserving per-
turbations to input words for augmenting data in
dialogue tasks. Zheng et al. (2018) investigated
generating pseudo references by compressing ex-
isting multiple references into a lattice and pick-
ing new sequences from it. Hu et al. (2019) used
finetuned BERT (Devlin et al., 2019) as the data
manipulation model to generate word substitutions
via reinforcement learning.

Another line of research focuses on filtering
high-quality training examples for dialogue re-
sponse generation. Csdky et al. (2019) proposed to
remove generic responses using an entropy-based
approach. Shang et al. (2018) trained a data cali-
bration network to assign higher instance weight to
more appropriate responses.

3.3 Expressive Dialogue Models

Besides manipulating the training data, dialogue
researchers have attempted to strengthen dialogue
models’ capacity for capturing complex relations
between the input context and the output responses.
Zhou et al. (2017) incorporated mechanism em-
beddings m into a seq2seq model for dialogue re-
sponse generation. The mechanism-aware model
decodes a response by selecting a mechanism em-
bedding my and combining it with context encod-
ing c. Therefore, the model is capable of generat-
ing diverse responses by choosing different mech-
anisms. Zhang et al. (2018) borrowed the con-
ditional value-at-risk (CVaR) from finance as an
alternative to sentence likelihood (which is negated
Lp) for optimization. Optimizing the CVaR objec-
tive can be seen as rejecting to optimize on easy
instances whose model probabilities are larger than
a threshold a. Qiu et al. (2019) proposed a two-step
VHRED variant for modeling one-to-many relation.
In the first step, they forced the dialogue encoding
vector c to store common features of all response
hypotheses Ya2. 41 by adversarial training. In the
second step, they trained the latent variable z to
capture response-specific information by training
with a multiple bag-of-words (MBoW) loss. These
three methods will be compared with the proposed
model in this work as they have focused on mod-
eling one-to-many relations in dialogue response
generation.

Gao et al. (2019) relied on vocabulary prediction
to model sentence-level discrepancy. Chen et al.
(2019) utilized a mechanism-based architecture and

proposed a posterior mapping method to select the
most proper mechanism. Gu et al. (2019) proposed
to train latent dialogue models in the framework
of generative adversarial network (GAN). They
optimized the model by minimizing the distance
between its prior distribution and its posterior dis-
tribution via adversarial training.

4 Preliminary

4.1 Models

HRED We use the hierarchical recurrent encoder
decoder (HRED, Serban et al., 2016) as the baseline
model, where a hierarchical RNN-based encoder
Ey(+) encodes the context X and produces an en-
coding vector ¢, and an RNN-based decoder Dy(-)
takes c as input and computes the conditional prob-
ability of a response Py(Y;|X) as the product of
word probabilities.

C = 59(X)
Py(Yi|X) =TI}y Po(YilYin—1, X)
=TI, Do(Yig|Yiui—1, ),

where Y; ; stands for the j-th word in Y; and L is
the length of Y.

VHRED For a given context, the HRED pro-
duces a fixed-length encoding vector ¢ and relies on
it to decode various responses. However, the one-
to-many mapping in dialogues is often too complex
to capture with a single vector c. Serban et al.
(2017) proposed variational HRED (VHRED) and
used a stochastic latent variable z that follows a
multivariate Gaussian distribution to strengthen the
model’s expressiveness.

p, o = MLPy(c)
z ~ Gaussian(p, o°1)
Py(Yi|X) =TI, Do(Yiy|Yii-1,c,2),

where p and 02T are parameters of the Gaussian
distribution. In order to mitigate the infamous pos-
terior collapse problem in variational models, it
is common to apply tricks such as annealing KLD
loss (Bowman et al., 2016) and minimizing a bag-
of-words (BoW) loss (Zhao et al., 2017).

VHRED with GMM prior Gu et al. (2019)
showed that the performance of the vanilla VHRED
is limited by the single-modal nature of Gaussian
distribution, and thus they proposed to use as prior
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a Gaussian Mixture Model (GMM) with K compo-
nents to capture multiple modes in z’s probability
distribution, such that z is sampled in the following
way:

My, Tk, T = MLPg 1. (c)
z ~ GMM({py, U%Iaﬂ'k}szl)’

where 7, is the weight of the k-th component. We
refer to the VHRED with K-component GMM
prior as VHRED g, ¢ .

GPT2 We finetune a pre-trained medium-sized
GPT2 (Radford et al., 2019) on dialogues and use
it as the teacher model to obtain Py(Y | X) as an
approximation of P(Y'|X'). GPT2 has been shown
to reach low perplexity on real-world texts, and it
can generate high-quality responses (Wolf et al.,
2019; Zhang et al., 2019). Therefore, we expect it
to provide a relatively accurate approximation of
the real-world distribution.

4.2 Data

We use the DailyDialog corpus (Li et al., 2017) to
investigate the effects of the proposed methods. We
make a roughly 0.8:0.1:0.1 session-level split for
training, validation, and test, respectively.’

4.3 Metrics

Automated Metrics We use perplexity on the
test data as the metric for intrinsic evaluation. For
extrinsic evaluation, we choose BLEU-2 and three
types of word embedding similarities (Embedding
Extrema, Embedding Average, Embedding Greedy)
to measure the closeness between a hypothesis and
the corresponding ground-truth reference. For di-
versity evaluation, we choose to count the number
of generated unigram and bigram types at a corpus-
level.

Dialogue Response Evaluator Besides the auto-
mated metrics above, we also use RoBERTa-eval,
a model-based dialogue response evaluator, to ap-
proximate human judgement (Zhao et al., 2020).
RoBERTa-eval computes the appropriateness (a
real value from 1 to 5) of a response hypothesis by
conditioning on its context instead of by comparing
with its reference. It has been shown to correlate
with human judgement significantly better than au-
tomated metrics. The authors reported Pearson’s p
=0.64 and Spearman’s p = 0.66 on the DailyDialog
corpus.

3See the Appendix for more details about the data set.
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Human Evaluation Following Adiwardana et al.
(2020), we ask Amazon MTurk human annotators
to evaluate each response on two criteria, sensi-
bleness and specificity. Both metrics take binary
values, and we use their average (knowns as Sen-
sibleness and Specificity Average, SSA) to assess
the overall quality.

5 Proposal: Enhancing Data for
Multi-Referenced Training

To enhance the training data, we try to close the gap
between Pp(Y |X) and P(Y|X). Since all prob-
ability mass is on a single response in Pp(Y | X),
the gap can be closed by assigning some mass to
other valid responses. We use a finetuned GPT2,,;
to generate IV hypotheses as valid responses, and
let the probability mass to be assigned to them uni-
formly. It results in Py (Y |X') wherein NV elements
have % probability. The new training objective is:

LHX)Y) =%t

TN 2i=2 log Py(Y;|X),

where we assume responses Y2 to Y1 are gener-
ated responses.

Training with the new loss function can be
achieved by directly replacing the ground-truth re-
sponses in the training data with the hypotheses.*

Sequences generated by beam search often
highly overlap both lexically and semantically (Li
et al., 2016). Therefore, we use nucleus sampling
with top probability 0.95 (Holtzman et al., 2019) to
generate 100 hypotheses as for each context in the
training data.

5.1 Training with Hypotheses

In this part, we compare baseline HRED models
trained with only ground truth (GT) and with dif-
ferent numbers of hypotheses. Since using N hy-
potheses makes the training data NV times larger,
we accordingly adjust the maximum number of
training epochs. We found that all the models can
converge in the given epochs. >

As shown in Table 1, replacing 1 GT with 1
hypothesis yields a boost on most metrics. Fur-
ther increasing the number of hypotheses will con-
tinue to improve the model’s performance. It is
worth noting that when the number of hypotheses

“We will refer to the original response as ground truth and
the generated responses as hypotheses. A reference can be
either a ground-truth response or a hypothesis response.

3See the Appendix for experimental settings and statistics
of model size and training cost.



Param Trn Time

Embedding Similarity

Model (in M) (in sec.) Data ppl BLEU-2 Ext Avg Grd Reval D1 D2
Teacher model
GPT2,4 338.39 3000 1GT 21.16 8.67 41.02 65.17 4844 428 4372 23430
Single-referenced training (baseline w/o KD)
HRED 8.04 150 1GT 29.00 6.46 3940 60.80 4392 342 1914 7369
Single-referenced training (baseline tok-KD, §5.2)
HRED,-kp 8.04 700 1GT 27.68 6.90 39.83 6233 45.11 345 1820 7118
Single-referenced training (baseline seq-KD, §5.1)
HRED 8.04 150 lhyp 35.08 6.62 39.66 6196 4475  3.61 1914 7369
Multi-referenced training (proposed seq-KD, §5.1)
Shyp 23.10 7.13 40.23 6243 4544 382 1788 7267
HRED 8.04 150 20hyp 21.15 7.38 40.52 6253 45.64 387 1707 6945
100 hyp  20.93 7.28 40.26 6222 4530 3.89 1704 6794

Table 1: Experimental results of data enhancement. Param shows the number of model parameters in M (220);
Trn Time shows the approximate time of training on 1 GT data for 1 epoch; GT — ground truth; hyp — hy-
potheses; ppl — perplexity; Ext — Embedding Extrema; Avg — Embedding Average; Grd — Embedding Greedy;
Reval — RoBERTa-eval score; D1 — the number of generated unigram types in the entire test data; D2 — the number

of generated bigram types in the entire test data.

is increased from 20 to 100, the performance gain
is limited. This suggests that as training data in-
creases, the model’s capacity might have become a
bottleneck.

5.2 Comparing with Knowledge Distillation

The proposed data enhancement can be considered
as a multi-sequence sequence-level knowledge dis-
tillation (seq-KD), and it has been shown to sig-
nificantly outperform single-sequence seq-KD (i.e.
the 1 hyp setting). We would also like to compare
it with token-level KD (tok-KD), where the stu-
dent HRED learns to match its softmax output with
the teacher GPT2 on every token (Kim and Rush,
2016). The model is referred to as HRED, ;_kp.

While tok-KD outperforms single-sequence seq-
KD in some metrics according to Table 1, the pro-
posed multi-sequence seq-KD is much better than
tok-KD in all metrics. Other drawbacks of tok-KD
include: 1) It requires the student model to have
the same vocabulary as the teacher model; 2) The
teacher model has to predict the probability distri-
bution for every output token and thus makes the
training extremely slow.

6 Proposal: Enhancing Model for
Multi-Referenced Training

We have previously seen the HRED’s performance
gain when we increase the number of hypotheses
from 1 to 20, but it starts to degrade when we
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further increase the number to 100. A conjecture is
that the model’s capacity is insufficient to learn too
complex input-output relations.

6.1 Larger-Sized Model

The simplest way to increase a model’s capacity
is to use more hidden units and layers. Since the
baseline HRED has 1 hidden layer with 500 hid-
den units, we experimented with larger HREDs,
which are 1) HRED; with 2 layers and 1000 hidden
units per layer and 2) HRED,; with 2 layers and
2000 hidden units per layer. As shown in Table 2,
HRED; slightly outperforms the original HRED
but a larger HRED; yields worse results in some
metrics. It suggests that increasing model size is
not a consistent way to improve performance.

6.2 Variational Model

VHRED and VHRED,,,,, have the potential to
learn one-to-many relations better since they can
generate different output sequences by sampling
different values from its encoding distributions.
However, their performance is not even compa-
rable with the baseline HRED according to Table 2.
We also found the performance of VHRED and
VHREDy,,,,5 with larger latent variable size and
more components to be worse, which is partially
due to the fact that their KLD losses are positively
correlated with the latent variable size and thus are
unbalanced with their reconstruction losses. These



Param

Trn Time

Embedding Similarity

Model (in M) (in sec.) Data ppl BLEU-2 Ext Avg Grd Reval D1 D2
Teacher model
GPT2,4 338.39 3000 1 GT 21.16 8.67 41.02 65.17 48.44 428 4372 23430
Baseline model
HRED 8.04 150 100 hyp 20.93 7.28 40.26 6222 4530  3.89 1704 6794
Baseline larger model (§6.1)

HRED; 21.04 170 100 hyp 20.81 7.36 40.66 6253 4548 390 1734 7032
HREDy 52.52 190 100 hyp  20.69 7.21 40.43  62.51 45.65 3.85 1743 6986
Baseline variational model (§6.2)

VHRED 11.02 160 100 hyp 56.54 5.39 3849 6238 4459 325 2124 10903
VHREDg,u5 11.36 160 100 hyp 50.44 5.44 3877 6255 4479 333 2058 10879
Proposed variational model (§6.3)

1GT 39.97 6.10 4030 64.03 4592  3.33 1934 8789

1hyp 50.44 6.12 40.26 64.17 46.05 350 1989 9427

VHRED g5 11.36 160 Shyp 30.85 6.61 4131 6531 47.19 3.73 1825 8522
20hyp 29.74 6.82 4133 6529 4739 376 1786 8395

100 hyp 28.76 6.79 4131 65.18 47.19 3.76 1777 8364

1GT 46.46 6.70 41.12 6498 46.83 3.64 1907 8941

1hyp 4645 6.65 41.10 6495 4677 3.64 1895 8869

VHREDgm20 12.52 160 Shyp 29.18 6.99 41.80 6572 47.68 3.82 1725 7757
20hyp 2693 7.07 4229 66.13 48.01 3.86 1604 7255

100 hyp  26.40 7.31 4231 6632 4832 391 1677 7641

VHRED gm100 18.67 160 100 hyp 26.25 7.39 4228 66.19 48.16 3.92 1612 7302

Prior works (§6.4)
MHRED 8.51 300 100 hyp 24.27 6.59 39.65 61.64 4479  3.80 1829 7729
HREDcvir 8.04 150 100 hyp 20.92 7.32 40.49 6243 4553 3.88 1738 6908
VHREDuyz,w 11.02 900 100hyp 51.74 5.68 38.71 62.81 4507 3.41 2334 12116
Table 2: Experimental results of model enhancement.

results suggest that existing variational baselines
are not expressive enough and difficult to optimize.

6.3 VHRED with Linear Gaussian Model
(LGM) Prior

To allow for stronger expressiveness, we propose
a linear Gaussian model (LGM) prior. Instead of
relying on a single Gaussian latent variable, we
exploit K Gaussian latent variables z; to zx and
use their linear combination to encode a dialogue:

My, Ok, T = MLPg’k(C)
z), ~ Gaussian(py, o21)

z= Zszl TkZk,
and we refer to the VHRED with K -variable LGM
prior as VHRED g, .

This simple modification significantly improves
VHRED’s performance according to results in Ta-
ble 2. We experimented with K in {5, 20,100}
and found the performance improvement to be con-
sistent with more hypotheses and larger K.
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Regarding how the interaction between a
model’s expressiveness (i.e. K) and the amount of
hypotheses affects model performance, we notice
that:

* When K is small (K =5), we can hardly ob-
tain performance gain by training with more
hypotheses (from 20 to 100).

* When we increase K to 20, further perfor-
mance gain is achievable. It suggests that the
performance bottleneck can be widened to al-
low for learning from more hypotheses.

* When we increase K to 100, the performance
gap between VHRED)g,,,20 and VHRED 1100
is very small. It suggests that we may need
more hypotheses to exploit the expressiveness
of VHREDlgml()() .

6.4 Comparing with Prior Works

Three models from prior works are also used for
comparison in Table 2, including the mechanism-



Human Scores (in %)

Model Sensible Specific SSA
Trained on 1-GT data
HRED 59.50 60.00  59.75
VHREDyg,,,,.5 38.50 56.00 47.25
VHREDy,,20  52.50 63.50  58.00
Trained on 100-hypotheses data
HRED 68.50 67.00 67.75
VHRED,,,,,5  44.50 66.50  55.50
VHREDyg,20  72.50 74.00 73.25

Table 3: Results of human evaluation on 3 models
trained on 2 types of data.

aware model (MHRED, Zhou et al., 2017), the con-
ditional value-at-risk model designed for learning
different dialogue scenarios (HRED¢y,r, Zhang
et al., 2018), and the two-step variational model
(VHREDyB,w, Qiu et al., 2019). Their details have
been discussed in Section 3.3.

For the VHRED5,w model, We only imple-
mented the second step (multiple BoW loss part)
because the paper has not provided sufficient de-
tails for implementing its first step, and the reported
results suggest that the model still works well with-
out the first step processing (Qiu et al., 2019).

As shown in Table 2, these models are not com-
petitive in the multi-referenced setting, and two of
them cannot even beat the baseline HRED.

7 Human Evaluation

Besides automated evaluation, we also conduct hu-
man evaluation to provide a more accurate assess-
ment of model performance. We sample 100 dia-
logues randomly from the test data and generate
responses using 3 models (HRED, VHREDy,,, .5,
VHREDy,,,;5) trained on 2 types of data (the 1-
GT data and the 100-hypotheses data). We ask
4 Amazon MTurk human workers to annotate
the sensibleness and the specificity of the 600
(context,response) pairs. The collected data
reach good inter-rater agreement (Krippendorff’s
a > 0.6). Then we calculate the average of the two
metrics (SSA, Adiwardana et al., 2020) as intro-
duced in Section 4.3.

The results of the human evaluation are given in
Table 3. First, all three models obtain significant
improvements on all three metrics by training on
the multi-referenced data, which confirms the effec-
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tiveness of the proposed data enhancement method.
Then, VHRED .20 is better than its GMM coun-
terpart and the HRED. And a larger performance
gain is obtained for VHRED 4,29 than other models
when we train it on the multi-referenced data. The
result suggests that an expressive prior is indeed
necessary and useful for latent dialogue models,
especially in the multi-referenced setting.

8 Analysis

8.1 Combining Ground Truth and
Hypotheses

One issue that readers may be concerned about is
whether it is better to combine ground truth with
hypotheses than to use them separately. We take
the VHRED ;20 as an example and conduct ex-
periments using mixed training data. As shown in
Table 4, we can get performance gain by training
with mixed data. The improvement is larger when
the original data is smaller (1 hypothesis) because
it doubles the training data. When using 100 hy-
potheses, we can almost fully rely on the generated
data and discard ground truth.

8.2 What do variables in LGM learn?

We combine latent variables linearly in the LGM
prior. To investigate how each variable contributes,
we ftrain a standard VHREDy,,20 on the 100-
hypotheses data, but evaluate it by using only 1
variable to generate responses. Besides the met-
rics introduced above, we calculate the average
selection probability 7, on the test data (as denoted
by 7). Out of the results, we find four obvious
patterns regarding their selection probability (avg
prob.), perplexity (PPL), and RoBERTa-eval scores
(Reval.). The results of these patterns are shown in
Table 5.

In general, selection probability correlates posi-
tively with RoBERTa-eval score, while perplexity
is less relevant to the other two metrics. For vari-
ables that have high probabilities and RoBERTa-
eval scores (e.g. the 8th and the 1st), there is a per-
formance discrepancy on other metrics, and thus
we believe LGM can capture different aspects of
responses. For instance, we notice that the 1st vari-
able tends to generate generic and safe responses,
while the 8th variable is likely to produce sentences
with more diverse word types. A dialogue example
is given in Table 6.° A more comprehensive inter-

®More examples and results can be found in the Appendix.



Embedding Similarity Reval

Use GT #hyp. ppl BLEU-2 Ext  Avg Grd
X 1 4645 6.65 41.10 6495 46.77 3.64
v 1 30.12 6.70 4148 65.01 4691 3.71
X 5 29.18 6.99 41.80 65.72 47.68  3.82
v 5 2731 7.26 4221 6633 4832 3.83
X 20 26.93 7.07 4229 66.13 48.01 3.86
v 20 26.46 7.25 42.00 65.81 4771 3.88
X 100 26.40 7.31 4231 6632 4832 391
v 100 26.49 7.23 4228 65.83 4760 3.88

Table 4: Experimental results of combining ground truth and hypotheses. (§8.1)

k T ppl BLEU-2 Reval

Bad prob. / bad PPL / bad Reval.
4 0.12% 4865.8 1.77 1.51
Bad prob. / good PPL / bad Reval.

0 038% 112.10 5.42 2.73
Medium prob. / bad PPL / good Reval.
8 8.22% 2740.2 6.22 3.74
Good prob. / good PPL / good Reval.

1 3924% 72.34 5.52 3.59

Table 5: Experimental results of VHREDy,,,59 decod-
ing with the k-th latent variable. (§8.2)

pretation of the variables remains challenging, and
we leave this to future works.

9 Conclusion

In this work, we analyzed the training objective
of dialogue response generation models from the
view of distribution distance as measured by Kull-
back—Leibler divergence. The analysis showed that
single-referenced dialogue data cannot characterize
the one-to-many feature of open-domain dialogues
and that multi-referenced training is necessary. To-
wards multi-referenced training, we first proposed
to enhance the training data by replacing every
single reference with multiple hypotheses gener-
ated by a finetuned GPT2, which provided us with
a better approximation of the real data distribu-
tion. Secondly, we proposed to equip variational
dialogue models with an expressive prior, named
linear Gaussian model (LGM), to capture the one-
to-many relations. The automated and human eval-
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Dialogue Example #422
Floor Context Utterance
A i’m so hungry. shall we go eat now,
rick?
B sure. where do you want to go? are you

in the mood for anything in particular?
A how about some dumplings? i just

can’t get enough of them.

[to be predicted]

k Response Utterance

tables tables tables there any any any
any pale, medium rare.

0 ok. i don’t think we have any soup at
the moment.

8 i’ve heard that some dumplings are
really good. but i don’t know what to
eat.

1 ok. i’ll go to the restaurant.

Table 6: Samples of VHRED,g,20 decoding with the
k-th latent variable. (§8.2)

uation confirmed the effectiveness of the proposed
methods.
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A Human Evaluation

We recieved 2400 annotations in total (4 annota-
tors for each of the 600 (context, response) pairs).
We first remove annotation outliers following Leys
et al. (2013). After removing 208 annotations for
sensibleness and 253 for specificity, the remain-
ing annotations have reasonable inter-rater agree-
ment meansured by Krippendorff’s o (Krippen-
dorff, 2018) as shown in Table 7.

B Experimental Settings

B.1 Model Implementation

For HRED and VHRED models, we implement
encoders and decoders with gated recurrent unit
(GRU) networks. Sentence-level encoders are bidi-
rectional, while dialogue-level encoders and de-
coders are unidirectional. All the GRU networks
have 1 layer and 500 hidden units. We use 30-
dimensional floor embeddings to encode the switch
of floor. For VHREDs, latent variables have 200
dimensions. Prior and posterior networks are imple-
mented by feedforward networks with hyperbolic
tangent activation function. While priors have dif-
ferent forms (unimodal Gaussian, Gaussian mix-
ture model, and linear Gaussian model), we use
unimodal Gaussian for all the posteriors. We use
attentional mechanism for all decoders. All models
were trained on a single NVIDIA TITAN RTX
card. When training on K-hypotheses data, the
training time per epoch is roughly K times of the
reported number.

B.2 Training Details

We optimize all the models with the Adam
method (Kingma and Ba, 2015). The initial learn-
ing rate is 0.001 and gradients are clipped within
[-1.0, 1.0]. We decay the learning rate with decay
rate 0.75 and patience 3. The training process is
early stopped when the learning rate is less than
1x10~7. The numbers of training epochs and steps
are shown in Table 9. Batch size is 30 during train-
ing. We use up to 5 history utterances as context,
and all utterances are truncated to have 40 tokens
to most. We set dropout probability as 0.2 and
shuffle training data every epoch for better gener-
alization. VHREDs are optimized by maximizing
their variational lower bound (Sohn et al., 2015).
We apply linear KL annealing in the first 40,000
training steps.

For finetuning the GPT2 model, we use a smaller
batch size of 10 to fit the model into memory. As

Item Krippendorff’s o
Sensibleness 0.76
Specificity 0.60

Table 7: Inter-rater agreement of human annotations.

Ttem Statistics
Train  Validation  Test
sessions 9237 1157 1159
(ctz,resp) pairs 59305 9906 9716

Table 8: Corpus statistics.

Training Data Max Epochs Max Steps
1 GT 100 5.93M
1 hyp. 100 5.93M
1 GT + 1 hyp. 50 5.93M
5 hyp. 20 5.93M
1 GT + 5 hyp. 20 7.12M
20 hyp. 10 11.86M
1 GT + 20 hyp. 10 12.45M
100 hyp. 2 11.86M
1 GT + 100 hyp. 2 11.98M

Table 9: Maximum training epochs and steps in differ-
ent data settings.

with other hyperparameters such as learning rate
and weight regularization factor, we follow the set-
tings used by Wolf et al. (2019). And the GPT?2 is
finetuned on the 1-GT data for only 2 epochs.

C Extra Samples

We show three more dialogue samples in Table 10
and 11.
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Dialogue #100

Floor Context Utterance
A i have never shopped there, but i think price club is a kind of membership store.
B what does that mean?

A that means you have to pay a membership fee to shop there. i have heard they have very good

prices on electronics.
B electronics?

A ves. like stereos and [UNK].

B [TO BE PREDICTED]

Model Trn. Data Response Utterance
Ground truth - how much is the membership fee?
HRED 1 GT do you have any other advantages?
VHRED 5 1 GT  how do you want to buy?
VHRED,,20 1 GT so what? i don’t have a current account.
HRED 100 hyp. i see. i’ll buy a new one.
VHREDg5 100 hyp. that’s a good idea. how about the one?
VHREDg/n20 100 hyp. i see. is there a warranty?
- the 4th variable 100 hyp. sure. which service do you use?
- the Oth variable 100 hyp.  how much money can you get it?
- the 8th variable 100 hyp. i have a membership card. it’s very expensive.
- the 1st variable 100 hyp. i see. it’s a good deal.

Table 10: More samples on the test data. (§C)

Dialogue #500
Floor Context Utterance
A i am not sleepy.
B it’s getting late, and you have to wake up early tomorrow.
A there is no way that i can fall asleep right now.
B try listening to some soft music.
A it won’t work. i’m nowhere close to being tired.
B [TO BE PREDICTED]
Model Trn. Data Response Utterance
Ground truth - ireally don’t care, just go to sleep.
HRED 1 GT you're too tired.
VHREDg5 1 GT what’s up?
VHREDg/n20 1 GT  you shouldn’t have to sleep.
HRED 100 hyp. don’t worry. i’ll get you up.
VHREDy,,5 100 hyp. idon’t know. i just want to relax.
VHREDg;,20 100 hyp. you should be tired. you can get a good sleep.
- the 4th variable 100 hyp. do do let you gift you gift you gift you live you live here i sing for
here friendship akimbo?
- the Oth variable 100 hyp. don’t be at the evening.
- the 8th variable 100 hyp. you are always sleepy.
- the 1st variable 100 hyp. come on. you can get a good sleep.

Table 11: More samples on the test data. (§C)
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