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Abstract

Inspired by recent work in meta-learning and
generative teaching networks, we propose a
framework called Generative Conversational
Networks, in which conversational agents
learn to generate their own labelled training
data (given some seed data) and then train
themselves from that data to perform a given
task. We use reinforcement learning to opti-
mize the data generation process where the re-
ward signal is the agent’s performance on the
task. The task can be any language-related
task, from intent detection to full task-oriented
conversations. In this work, we show that our
approach is able to generalise from seed data
and performs well in limited data and limited
computation settings, with significant gains for
intent detection and slot tagging across multi-
ple datasets: ATIS, TOD, SNIPS, and Restau-
rants8k. We show an average improvement of
35% in intent detection and 21% in slot tag-
ging over a baseline model trained from the
seed data. We also conduct an analysis of the
novelty of the generated data and provide gen-
erated examples for intent detection, slot tag-
ging, and non-goal oriented conversations.

1 Introduction

In the past few years, large language models (some
with tens of billions of parameters) have shown
great success and have propelled the field of Nat-
ural Language Processing (NLP) and the indus-
try forward. In parallel, recent advances in Meta
Learning have shown great promise in computer vi-
sion, robotics, and machine learning in general (see
(Hospedales et al., 2020) for a survey), as these
approaches have the potential to overcome deep
learning challenges such as data bottlenecks, com-
putation requirements, and generalization. All of
these challenges are particularly relevant to conver-
sational AI, as we are still lacking large annotated
conversational datasets, but we have orders of mag-

nitude larger generic text data. Moreover, it can be
very costly to annotate such data in their entirety
and train high-performing task-specific conversa-
tional agents.

By adopting recent advances in Meta-Learning
and Neural Architecture Search, we envision the
next generation of intelligent conversational agents,
that can create the data they need in order to train
themselves to perform a task. We take a step to-
wards this direction by adapting Generative Teach-
ing Networks (GTNs) (Such et al., 2020) from im-
age recognition (MNIST, CIFAR10) to conversa-
tional AI and training it with Reinforcement Learn-
ing (RL) using Proximal Policy Optimisation (PPO)
(Ziegler et al., 2019). Our approach, called Gen-
erative Conversational Networks (GCN), allows
a conversational agent to generate its own anno-
tated training data and uses RL to optimize the
data generation process. It then uses that data to
train an agent to perform according to given spec-
ifications. These specifications can refer to any
language-related task, from intent detection to full
task-oriented conversations.

Similar to Generative Adversarial Networks
(GAN), GCN effectively trains two models, a data
generator and a learner. Unlike GAN-based ap-
proaches, however, GCN do not require a discrimi-
nator, only a numerical reward that can be obtained
by any means and reflects the performance of the
learner. This frees the architecture from tight do-
main constraints and allows it to be more adap-
tive and creative; some analysis and examples are
shown in the respective section. Moreover, contrary
to earlier approaches (Hou et al., 2020b, e.g.), we
do not generate delexicalised utterances therefore
we are not limiting our models to the vocabulary
that exists in the data nor do we require a vocab-
ulary to be provided. This allows GCN to better
generalise from seed data, and create annotated
training examples that are task-focused but also
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Figure 1: Generative Conversational Networks Architecture. We use PPO as described in (Ziegler et al., 2019) to
perform the generator update using the meta-loss. USR refers to the user side and SYS to the system side.

diverse and help increase the overall performance.
Potential use cases for GCN include quick pro-

totyping when limited resources are available, or
when human feedback is available for training to
continuously adapt to changes in the incoming data.
GCN can also be applied when creating simulated
agents with different characteristics (roles, person-
alities, etc) that can be used for training or evalu-
ation. Our main contributions can be summarized
as follows:

• We propose GCN, a meta-learning approach
for training conversational agents using RL

• We demonstrate that GCN can generalise from
seed data in limited-resource settings (data
and computation) and achieve competitive per-
formance in two NLP tasks: intent detection
and slot tagging

• We show that GCN can also be applied to
multi-turn, non-goal oriented conversations.

2 Related Work

There have been plenty of prior works in few-
shot learning for dialogue tasks including natu-
ral language understanding (Shah et al., 2019; Liu
et al., 2020; Hou et al., 2020a), dialogue state track-
ing (Wu et al., 2019; Dingliwal et al., 2021) and re-
sponse generation (Tran and Le Nguyen, 2018; Mi
et al., 2019; Chen et al., 2020; Peng et al., 2020a),
which aim to make each model transferable to a
low-resource new domain. Another line of recent
work proposes data augmentation techniques for
conversational agents (Campagna et al., 2020; Kale
and Rastogi, 2020; Lee et al., 2021). While these
studies focus on one-time augmentation by heuris-
tics or static neural models, our proposed approach
keeps improving the data generation and hence
models trained with that data, using RL.

C2C-GenDA (cluster to cluster generation for
data augmentation) (Hou et al., 2020b) is a gener-
ative data augmentation approach focused on slot
filling. This method jointly encodes multiple re-
alisations (i.e. a cluster) with the same semantic
interpretation and generates multiple previously un-
seen realisations. A “duplication-aware attention”
model guarantees that there are no replications of
the input in the output, since the model receives
all realisations of a given semantic interpretation.
The authors train their model with paraphrasing
pairs and show that they outperform existing sys-
tems. Contrary to our work, C2C-GenDA gener-
ates delexicalised utterances that need to be post-
processed.

With SC-GPT (Peng et al., 2020b), the authors
finetune GPT-2 on dialogue act - utterance pairs on
two scenarios, when the ontology is available (i.e.
many valid dialogue act sequences are available) or
when unlabeled data sets are available (i.e. many
valid utterances are available). They finetune for
each condition differently and achieve good results
for intent and slot tagging. Our approach is differ-
ent in that we directly generate annotated data and
do not require large data for fine-tuning.

PROTODA (Kumar et al., 2021) is a method
similar in spirit to our work in that it uses seed
data and generates new data to train intent classi-
fiers. The authors use prototypical networks that
are trained on a large number of intents and are
evaluated on unseen intents, showing good perfor-
mance. Our approach is more universal and geared
towards multiple conversational AI tasks.

3 Generative Conversational Networks

Following (Such et al., 2020) and (Ziegler et al.,
2019), we propose a new Meta-Learning architec-
ture combining the two, for training conversational
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agents using RL. Our approach can be helpful in
settings with limited resources, or in settings where
we want to augment data along some dimension
(e.g. dialect, terminology, small talk, user types,
expand to other domains, etc.).

3.1 Generative Teaching Networks

Generative Teaching Networks (GTNs) (Such et al.,
2020) is a meta-learning approach to generate syn-
thetic supervised data to train AI systems. Specif-
ically, GTNs are data-generating networks that
given Gaussian noise and a label in the input, gen-
erate data. The input label is optional as GTNs
can also produce labelled data. This data is used
by another model (e.g. a classifier) and the per-
formance of the second model on a given task is
then used as a loss signal to train the GTN. Eventu-
ally, GTNs learn to generate good quality data so
that the classifier model can perform well on the
given task. GTNs have been successfully applied to
train MNIST (LeCunn and Cortes) and CIFAR10
(Krizhevsky et al., 2009) classifiers from synthetic
data with very good performance and, besides su-
pervised tasks, they can be applied to unsupervised
and reinforcement learning. A broader application
of GTNs is to evaluate candidate neural architec-
tures in neural architecture search.

3.2 GCN Architecture

We pair GTNs with (Ziegler et al., 2019), who use
PPO to train transformers from human feedback. 1

Using RL to optimize the data generation process is
crucial to generalize from the training data2, as we
discuss later in the paper (section 5.4). We compute
a reward for each datapoint rather than for each
batch or for the entire generated data, to provide
a more fine-grained signal which allows GCN to
better handle the complexities of conversational
tasks and avoid language degradation.

Figure 1 shows an overview of the GCN architec-
ture. It has three main parts: a) a data generator, b)
a learner, and c) an evaluator. The training process
iterates over the following steps until good perfor-
mance is achieved: a) a generation step, where data
is generated in batches; b) a learner training step,
where a new learner model is spawned and trained
on the data provided by the generator; and c) a gen-

1Using the Transformer Reinforcement Learning (TRL)
implementation: https://github.com/lvwerra/trl

2Theoretically, we can train the generator from scratch
using noise in the input. We have not tested this condition in
this work, however.

erator update step, where the learner is evaluated
on a validation set or by humans using the learner
and feedback is provided back to the generator. Al-
gorithm 1 describes the training process.

Algorithm 1 GCN training procedure.
1: procedure TRAIN(Dseed, Dval, Dtest)
2: Initialize Generator g
3: if Dseed then
4: g.train(Dseed)
5: while Performancemeta < ε do . training
6: Dgen ← g.generate()
7: D ← Curriculum(Dgen, Dseed)
8: Sample and initialize new Learner l
9: l.train(D)

10: Performancemeta ← l.evaluate(Dval)
11: g.update(Performancemeta)
12: D ← g.generate() . evaluation
13: Sample and initialize new Learner l
14: l.train(D)
15: l.evaluate(Dtest) . or other evaluator

The generator can be any model of choice. It
generates data on demand and can receive vari-
ous kinds of input, depending on the configuration
and task: noise to encourage diverse data, spe-
cific labels to generate focused data, goals, dia-
logue acts, or knowledge base results to encourage
task-oriented dialogues, and so on. The genera-
tor’s output will be a batch of data that is then
sent to a learner model. At each meta-iteration, a
new learner is created either from a pool of avail-
able model architectures or using the same type
of model (our approach in this work). The learner
is trained on the generated batches of data using
a held-out validation set (generated or provided)
and its performance on the validation set is used
as a reward to train the generator using PPO. Af-
ter the training phase, the generator trains a new,
final learner that is evaluated on an external test set,
never seen by the generator or any learner, or by a
human or an evaluator agent. In theory, GCN can
train the generator and the learner from scratch; in
practice, however, we rely on pre-trained models
for the generator and the learners, to speed up the
process. We use a distilled version of GPT2 (distil-
GPT2, 82M parameters) to demonstrate the power
of GCN without requiring very large models.

We implement a form of curriculum learning
by providing the learner with seed data and grad-
ually introducing generated samples. This is done



114

at batch-level, to avoid cases where some batches
contain mostly good examples and some contain
mostly bad ones, in the early stages of training.
As the training progresses, the percentage of gen-
erated data grows to 100%. Other forms of cur-
riculum learning are left for future work (i.e. one
can provide the generator with labels from which
to generate utterances, or goals, dialogue states,
and knowledge base entries to generate dialogues,
etc.). Equation 1 shows how we calculate the num-
ber of learner training iterations that contain seed
data (warmup iterations iw) at each meta-iteration
imeta (data generation & learner training cycle)
and equation 2 shows how we calculate the number
of datapoints (nwb) per batch during the warmup
iterations:

iw =
Iwarmup − imeta

Iwarmup
Ilearner (1)

where iw is the number of warmup learner itera-
tions for the current meta-iteration imeta. Iwarmup

is the number of meta-iterations for which we have
warmup learner iterations and Ilearner is the num-
ber of learner iterations at each meta-iteration.

nwb =
|bgen|
Iwarmup

(Iwarmup − imeta) (2)

where nwb is the number of datapoints in the cur-
rent learner iteration batch that will be pulled from
the seed data (the rest are generated) and |bgen| is
the generator’s batch size.

3.3 Data Generation
Since our generator is a GPT-2 based model, we
train it using special tokens that act as separators
between labels and utterances:
<BOS> label <GO> utterance <EOS>

If we want the generator to create labelled data,
we prompt it with a <BOS> token (our approach
in the experiments); if we want to provide the label
and get a corresponding utterance, we prompt it
with<BOS> label<GO>. Depending on the task,
the label can be an intent, a collection of slot-value
pairs, a previous utterance, etc.:

• <BOS> flight <GO>...
• <BOS> people 5 time after 9am <GO>...
• <BOS> previous utterance <GO>...

for intent detection, slot tagging, and conversa-
tional response generation, respectively. Each
learner will receive data in this format and will have

to parse it to retrieve the input (between<GO> and
<EOS>) and the target label (between <BOS>
and <GO>) in order to train itself. When training
for the slot tagging task, we convert all slot names
to words or phrases (e.g. convert “arrival time” to
“arrival time”) in the label portion of the input to
better take advantage of distilGPT2. In this setting,
the generator outputs IOB tags in addition to the
output described previously and those tags are used
as the learner’s labels.

For more complex tasks such as task-oriented di-
alogues, we can use more special token separators
to separate the various kinds of input. Alternatively,
we can design task-specific generators where GPT-
2 can be a part of the model and we can have other
encoders and decoders for the various kinds of op-
tional inputs (belief states, goals, etc.).

3.4 Learner Training
Intent Detection. For this task we use a RoBERTa-
base sentence classifier (Liu et al., 2019) as a
learner. Upon receipt of a batch of data, the learner
will parse it and create an input and a target tensor,
containing the utterances and labels respectively.
Slot Tagging. For this task we use a RoBERTa-
base slot tagger (Liu et al., 2019). Similarly to
intent detection, the learner will parse the batch of
data but using the utterance part to create the input
tensor and the IOB tags to create the target tensor.
Non-goal oriented interaction. For this task we
use the Bert2Bert model (Rothe et al., 2020) where,
similarly to intent detection, the learner will cre-
ate the input and target tensors that represent one
dialogue turn.

3.5 Generator Training
Following (Ziegler et al., 2019), we use two gener-
ator models, π and ρ. π is the model that is being
trained and ρ is a reference model (distilGPT2 in
our case) that keeps π from diverging too much,
via a Kullback-Leibler (KL) term in the reward
function. PPO is then used to update π.

In GCN, each datapoint created by the generator
is saved as is the performance of the learner for that
particular datapoint. When the generator is being
trained, we combine the per-datapoint performance
Pd with the validation performance Pmeta of the
learner to compute the reward:

Rd = αPmeta + (1− α)Pd (3)

where d is the datapoint, Rd is the reward for that
datapoint, and P is a measure of performance, e.g.
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accuracy, F1 score, perplexity, etc.. In our experi-
ments, we use equal weighting for the reward com-
ponents: α = 0.5. Rd is then used to train the
generator π:

R(d, a) = Rd − βlog
π(a|d)
ρ(a|d)

(4)

where a is the “action”, i.e. the system’s response
and the coefficient β is varied dynamically (see
(Ziegler et al., 2019) for details). After some pre-
defined number of training epochs, we copy the
parameters of ρ to π.

3.6 Training from Human Feedback
One of the benefits of using RL to train GCN is that
it allows for continuous adaptation based on human
feedback. In a GCN-trained production system,
for example, we can combine human ratings with
other metrics (appropriateness, time lag, factual
correctness, etc) to compute a reward signal. As the
rated conversations include the human side as well,
that reward can only be used to characterise the
batch of GCN-produced data that were generated to
train the agent in production. Using reward shaping
methods (El Asri et al., 2013; Su et al., 2015, e.g.),
we can derive a reward per individual conversation
or even per dialogue turn.

4 Experiments

We assess GCN along two dimensions, creativity
in data generation and task performance. Regard-
ing task performance, we conduct experiments in
limited-resource settings along two tasks across
four datasets and compare against baseline mod-
els. Specifically, we conduct few-shot experiments
where for each experiment we allow a limited num-
ber of updates (100 learner iterations for the learn-
ers and 15 meta-iterations for the generators). We
use a batch size of 10 for intent detection and 50 for
slot tagging. We evaluate GCN on the following
tasks:

Intent detection. For intent detection, simi-
larly to (Kumar et al., 2021), we evaluate our ap-
proach on Facebook’s Task-Oriented Dialogues
(TOD) (Schuster et al., 2019), ATIS (Hemphill
et al., 1990), and SNIPS (Coucke et al., 2018) us-
ing random samples of the data of various sizes
(from 0.5% to 10%). In this setting, the generator
produces pairs of utterances and intent labels. The
learner is a RoBERTa-base sentence classifier.

Slot tagging. For slot tagging we use TOD,
SNIPS, and the Restaurants8k dataset (Coope et al.,

Baselines
Intent Classification (Accuracy)

ATIS TOD SNIPS
0.929 0.963 0.939

Slot Tagging (F1 Score)
TOD Restaurants8k SNIPS
0.969 0.92 0.938

GCN+RL
Intent Classification (Accuracy)

ATIS TOD SNIPS
0.956 0.99 0.944

Slot Tagging (F1 Score)
TOD Restaurants8k SNIPS
0.968 0.947 0.943

Table 1: Performance at 5000 training iterations.

ATIS Accuracy (100 learner iterations)
0.5% 1% 2% 5% 10%

Base 0.532 0.516 0.72 0.695 0.78
GCN-RL 0.738 0.757 0.769 0.78 0.803
GCN+RL 0.732 0.734 0.809 0.816 0.851

SNIPS Accuracy (100 learner iterations)
0.5% 1% 2% 5% 10%

Base 0.262 0.292 0.344 0.661 0.686
GCN-RL 0.229 0.424 0.547 0.715 0.783
GCN+RL 0.602 0.638 0.734 0.798 0.865

TOD Accuracy (100 learner iterations)
0.5% 1% 2% 5% 10%

Base 0.7 0.706 0.71 0.765 0.769
GCN-RL 0.78 0.855 0.84 0.904 0.899
GCN+RL 0.836 0.895 0.903 0.927 0.959

Table 2: Intent detection limited-resource results vari-
ous random subsets of the data.

2020), again using random samples of the data of
various sizes (from 0.5% to 10%). In this case,
the generator produces slot-value pairs and utter-
ances that realise them exactly. The learner is a
RoBERTa-base token classifier. In these initial ex-
periments, we generate the tags via approximate
matching, by looking at the label (slots and values)
produced by the generator and finding them in the
utterance that is also produced by the generator.
Since we ask the generator to produce a structured
dataset, we found that if we also ask it to produce
IOB tags (i.e. asking the generator to learn how to
do tagging) the system became very fragile due to
small misalignments that result in low rewards.

4.1 Experimental Setup

We use the original train / validation / test splits pro-
vided with each dataset. For Restaurants8k, we ran-
domly split the training set into training (80%) and
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SNIPS-3
PROTODA 0.881
GCN-RL 0.822
GCN+RL 0.926

Table 3: Results on the SNIPS-3 test set. We allow
5000 learner iterations here for a fairer comparison.

SNIPS Intent classification (accuracy)
1% 2.5% 5% 10%

C2C-GenDA 0.481 - 0.679 -
(encoder-decoder)

SC-GPT - 0.941 - 0.981
(GPT-2)
GCN-RL 0.907 0.901 0.906 0.926

(distilGPT2)
GCN+RL 0.914 0.917 0.934 0.939

(distilGPT2)

Table 4: Comparison with C2C (Hou et al., 2020b) and
SC-GPT (Peng et al., 2020b) on few-shot intent detec-
tion. We allow our learners to train for 5000 iterations.

validation (20%). Specifically for ATIS, we remove
intents with less than 20 utterances as per (Kumar
et al., 2021). To conduct our limited-resource ex-
periments, we sample the respective percentage
of training and validation data, making sure we
preserve the distribution of classes as much as pos-
sible3 and always evaluate on the full test set. We
pre-train the generator with the available training
data of each few-shot setting and use a curricu-
lum batch schedule to mix seed and generated data.
The learner is trained on those batches for 100 it-
erations and once the iterations are finished, the
learner is evaluated on the sampled validation set
and its performance is used as a reward for training
the generator. After 15 meta-iterations, the gener-
ator creates a final dataset that is used to train a
learner that is evaluated on the held-out test set. To
show the value of training the generator with RL,
we compare two conditions against the baselines:
GCN-RL, where the generator used to augment the
data is finetuned with the seed data but not trained
with RL (this can be thought of as “GTN for text”
instead of image recognition), and GCN+RL where
the generator is finetuned and trained using RL.

4.2 Training Details

Training a GPT-2 model with PPO in the context
of GCN can be sensitive to hyperparameters for a
variety of reasons, the most important being that
we receive a numerical reward that characterises

3We make sure that there is at least one datapoint for each
intent / slot.

an entire batch of data. As mentioned in section
3.5, calculating per-datapoint performance seems
to help speed up training. An option we do not ex-
plore in this work is to calculate per-token rewards.
We also find that if we gradually unfreeze the gener-
ator’s layers during training, the training becomes
more stable. These strategies make training fairly
stable and robust to hyperparameter values and
apart from setting an appropriate learning rate, no
other hyperparameter tuning was needed. We use
the following PPO hyperparameters (lr: learning
rate):

• β = 0.2 (adaptive)

• train for 4 epochs per batch

• lrgenerator =1e-5

• lrlearner =3e-3 (intents)

• lrlearner =1e-4 (slots)

• lrlearner =1e-4 (chit-chat)

We train the learners using Adam (Kingma and
Ba, 2014) and we train the generator using Stochas-
tic Gradient Descent because we found it to be
much more stable than Adam.

5 Task Results

In this section, we present the results of our evalu-
ation; all reported numbers are averages of 3 runs.
We conduct limited-resource experiments, i.e. re-
stricting the available computation as well as the
available data. We show that we achieve an average
improvement of 35% in intent detection and 21%
in slot tagging over a baseline model trained from
the seed data.

As the focus of our work is on a novel training
framework, we do not explicitly compare against
few-shot approaches (that would take the place of
the learner model) and typically do not restrict com-
putation. However, for completeness, we compare
against approaches that are similar to ours and not
specifically designed for one task.

5.1 Baselines

We use the learners trained directly on the available
seed data as our baselines. Table 1 shows the per-
formance of our learners (Baselines) when trained
directly on each dataset for 5000 iterations using
all available training data and the performance of
GCN+RL under the same conditions.
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5.2 Intent Detection

Table 2 shows the limited-resource experiments
where we compare GCN to the baseline (RoBERTa
sentence classifier). Base refers to the baseline,
GCN-RL refers to GCN without RL fine-tuning,
and GCN+RL refers to GCN with RL finetuning.
We see that GCN+RL outperforms the other condi-
tions in all settings.

In Table 3, we show a comparison with PRO-
TODA (Kumar et al., 2021) in the SNIPS-3 setting.
In that setting, the evaluation is performed on 3 in-
tents: GetWeather, PlayMusic, and SearchCreative-
Work, and training is performed on ATIS, TOD,
and SNIPS.

In Table 4, we show a comparison with C2C-
GenDA (Hou et al., 2020b) and SC-GPT (Peng
et al., 2020b) on SNIPS. GCN outperforms C2C-
GenDA while SC-GPT performs better than GCN,
which is expected since it is based on GPT-2 (in-
stead of distilGPT2) and fine-tuned on 400K addi-
tional dialogue act - utterance pairs. Another rea-
son may be that we allow 5000 learner iterations
for GCN due to computation resource constraints
which could explain the lower performance.

5.3 Slot Tagging

Table 5 shows the results from our limited-resource
experiments for slot tagging. Similarly to the pre-
vious task, we see that GCN+RL outperforms the
other conditions in most settings but we do see
less gains here compared to GCN-RL. This can be
explained by the increased complexity of the data
the generator is required to produce: slots, values,
and corresponding utterances (compared, for exam-
ple, to intents and corresponding utterances). Such
complexity means that small mistakes (generating
paraphrases of slots or values, over or under gen-
eration of the corresponding utterance, other mis-
alignments) can cause the learner to under perform
and thus lead to that datapoint receiving a very low
reward, even though only a small mistake occurred.
In future work, we are looking to alleviate this by
working with per-token rewards.

6 Non-Goal-Oriented Interactions

To demonstrate the ability of GCN to handle con-
versational tasks, we use TopicalChat (Gopalakrish-
nan et al., 2019) and train a Bert2Bert learner. The
generator here produces utterance pairs if prompted
with the <BOS> token, or produces a response if
prompted with <BOS>utterance<GO>. To pro-

TOD F1 (100 learner iterations)
0.5% 1% 2% 5% 10%

Base 0.541 0.567 0.617 0.723 0.741
GCN-RL 0.558 0.689 0.793 0.748 0.86
GCN+RL 0.597 0.728 0.815 0.838 0.868

Restaurants8k F1 (100 learner iterations)
0.5% 1% 2% 5% 10%

Base 0.182 0.36 0.627 0.626 0.774
GCN-RL 0.313 0.481 0.633 0.622 0.771
GCN+RL 0.334 0.564 0.659 0.696 0.827

SNIPS F1 (100 learner iterations)
0.5% 1% 2% 5% 10%

Base 0.347 0.454 0.618 0.705 0.77
GCN-RL 0.342 0.494 0.654 0.782 0.819
GCN+RL 0.326 0.483 0.719 0.804 0.899

Table 5: Slot tagging limited-resource F1 results.

Figure 2: Unigram out of vocabulary rates and vocabu-
lary sizes with respect to the ATIS test set.

duce a batch of data, we first prompt the generator
with a <BOS> token and observe its output pair
(u, u′). For the next turns, we prompt the generator
with <BOS> u′ <GO>, observe its output u′′,
and feed that to the following turn. Table 7 shows
example data generated by GCN that do not exist
in the TopicalChat dataset. We leave a thorough
evaluation for future work.

7 GCN Generator Creativity

To better understand the quality of the generated
data, we analyze the creativity of GCN, or how
many examples are copied from the data vs cre-
ated or paraphrased. We compare the seed data
with data generated by GCN-RL and GCN+RL
choosing ATIS as our use case. We calculate ex-
act match rates (EM) with respect to the seed data
and Self-BLEU scores (Zhu et al., 2018) in Table
6 and unigram OOV rates (OOV) with respect to
the test set and vocabulary sizes in Figure 2. We
see that GCN-RL is more influenced by the seed
data as the seed data size grows but when trained
with RL it maintains a higher OOV rate. While
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Seed EM Train EM Self-BLEU
ATIS % GCN-RL GCN+RL GCN-RL GCN+RL GCN-RL GCN+RL

0.5% 1.57% 0.0% 0.0% 17.45% 0.977 0.982
1% 0.37% 0.0% 0.0% 5.82% 0.996 0.971
2% 0.37% 0.23% 0.63% 7.72% 0.997 0.974
5% 3.27% 0.68% 0.3% 8.34% 0.998 0.967

10% 7.83% 1.08% 1.0% 6.6% 0.997 0.966
100% 66.33% 15.97% 14.33% 15.97% 0.985 0.963

Table 6: GCN exact match (EM) wrt the seed or the full train data and Self-BLEU scores on ATIS (micro avg).

Intent Utterance
flight+airfare $5 or less on the fly from boston to atlanta

city is there one way on i-town on august eighteenth
flight what continental flights leave phoenix on friday

reminder set i want to be reminded to finish seasoning the steaks
Slots & Values Utterance
weather jacket do i need a light jacket today?
datetime today

datetime for the first set an alarm for the first of
of every month every month for flea and tick prevent

generic cancel my earliest alarm
object type tv series look for the tv series

object all around all around
performance horse performance horse weekly

weekly
movie the fox and the fox what time does the fox play

Speaker Utterance
SP 1 Hi, how are you today?
SP 2 I’m great! how are you?
SP 1 I am well, thanks! I am a fan of football. Are you?
SP 2 A little, I know there is a league. Some players in the NFL are really competitive.
SP 1 Interesting. I used to watch it all the time, but I don’t really watch a lot anymore.

I think it’s sad they don’t get a chance anymore.

Table 7: A mix of good and bad examples generated by GCN. The errors may be at the label or utterance part.

not all OOV words are good, this trend in combina-
tion with the results on section 5 means that GCN
creates more diverse data that are focused on the
task and this is why we see the increase in task per-
formance. As we can see from Table 6, RL helps
reduce repetitions in the data and GCN in general
creates data outside of the seed but that are valid (a
larger portion exist in the full train data).

This means that GCN learns to produce good
quality novel data that can be used to train higher
performing learners. It is clear from the results in
section 5 that applying RL to GCN helps gener-
ate more diverse data, that in turn result in higher
task performance. For instance, using 10% of the
data, after 15 meta-iterations, the data generated
by GCN+RL achieve an average 94.4% of the top
baseline performance (Table 1) using 2% of the
training iterations on intent detection. For slot
tagging, we achieve an average of 91.8% of the
baseline performance.

Table 7 show some example datapoints gener-
ated by GCN+RL in all three tasks.

8 Conclusion

We have presented Generative Conversational Net-
works, an approach that takes a step towards con-
versational agents that generate their own data and
learn to perform well in conversational tasks. We
conducted an analysis on GCN’s creative ability
and demonstrated its performance and efficiency
on two sample language understanding tasks, in-
tent detection and slot tagging. However, GCN
has the potential to perform many more tasks and
we are currently evaluating it for non-knowledge-
and knowledge-grounded conversations. As future
work, we will investigate per-token rewards as well
as having populations of learners with different ar-
chitectures evaluated on the same task, and having
learners evaluated on multiple tasks.
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