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Abstract
In this paper, we describe our proposed meth-
ods for the multilingual word-in-Context dis-
ambiguation task in SemEval-2021. In this
task, systems should determine whether a
word that occurs in two different sentences
is used with the same meaning or not. We
proposed several methods using a pre-trained
BERT model. In two of them, we paraphrased
sentences and add them as input to the BERT,
and in one of them, we used WordNet to add
some extra lexical information. We evaluated
our proposed methods on test data in SemEval-
2021 task 2.

1 Introduction

Measuring semantic similarity is a task that is im-
portant in many applications such as summariza-
tion, plagiarism detection, etc. To measure the se-
mantic similarity between two words or sentences,
the words’ meaning in their contexts should be
understood. In “Task 2: Multilingual and Cross-
lingual Word-in-Context Disambiguation” of Se-
mEval 2021 (Martelli et al., 2021), systems should
determine whether a word that occurs in two differ-
ent sentences is used with the same meaning or not.
The considered languages in the Word-in-Context
Disambiguation task of the evaluation are Arabic,
Chinese, English, French, and Russian (Martelli
et al., 2021). Due to our internal limitation, we
only evaluated the proposed methods on the En-
glish dataset.

In most cases, humans can understand the cor-
rect meaning of each word by paying attention to
the context of that word. This was the main reason
for proposing the attention mechanism for machine
translation (Vaswani et al., 2017). Because atten-
tion plays an important role in BERT topology (De-
vlin et al., 2019), we believe it should work for
the WSD task. However, in some cases, the two
sentences may be about the same subject, while

the target word has a different meaning. In these
cases, find out that whether the target word has the
same meaning in both sentences or not is difficult.
To overcome this challenge, we need to add some
extra information about the contexts to the input of
the BERT.

We proposed four main methods for this task.
In the first method, we use the BERT model as a
language representation model in which the inputs
are the two sentences that come in a row and are
separated by a “[SEP]” token. Furthermore, the
target word is surrounded by a “[TGT]” token in
both sentences. Then, the first output of the last
layer is used as a classifier to determine whether the
word has the same meaning in the two sentences or
not. In the second one, we added some information
about the target word from the WordNet1 to the end
of each input and used the same strategy as the first
method. In the third and fourth methods, we used
the paraphrases of sentences as additional inputs to
the BERT.

The remainder of the paper is organized as fol-
lows: In section 2, we provide a short literature
review of the WSD task and mention some related
works that used BERT for this task. After that, in
section 3, we introduce our methods in consequent
sections: the first method that only uses the BERT
model is explained in Section 3.1. The second
method that uses the BERT model and some addi-
tional information from WordNet is explained in
Section 3.2. The third and fourth methods that use
the BERT model and add paraphrased sentences as
an additional input to the model are explained in
Section 3.3. Then in Section 4, the used datasets in
our experiments are specified. Finally, the results
and discussion are presented in Section 5.

1https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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2 Background

2.1 Task Setup
The dataset provided by MCL-WiC2 addresses both
multilingual and cross-lingual aspects, covers all
part-of-speeches, and also a high number of do-
mains and genres. The task of the challenge is a
binary classification where systems should specify
whether the target word has the same meaning in
both sentences (T for true) or different meaning
(F for false). The sentences can be from the same
language (multilingual dataset) or across different
languages (cross-lingual dataset) (Martelli et al.,
2021).

In the following you can find an example of sen-
tence pair in English from the multilingual dataset3:

• In that context of coordination and integration,
Bolivia holds a key play in any process of
infrastructure development.

• A musical play on the same subject was also
staged in Kathmandu for three days.

In this example, the target word “play” should be
tagged as F (False) since it is used in two distinct
meanings.

We evaluated our methods on the English part
of the multilingual dataset. We used the MCL-
WiC training set, containing 8000 sentence pairs
in English as the training data, and the MCL-WiC
development set containing 1000 sentence pairs in
English as the validation set for our system.

2.2 Related works
There are several published works that used BERT
for WSD task (Wiedemann et al., 2019; Du et al.,
2019; Yap et al., 2020; Guo et al., 2020) and also
some other papers that combined BERT and Word-
Net for this task (Levine et al., 2020; Peters et al.,
2019).

For example, (Levine et al., 2020) proposed a
method named SenseBERT in which the model is
pre-trained to predict the masked words and their
WordNet super-senses. They proposed a mech-
anism in which they pay attention to the words
at the sense level. Therefore, they achieved a
lexical-semantic level language model. Sense-
BERT achieved 72.1 % accuracy on the “Word in

2Multilingual and Cross-lingual Word-in-Context Disam-
biguation task

3https://github.com/SapienzaNLP/
mcl-wic/blob/master/SemEval-2021_
MCL-WiC_all-datasets.zip

Context” task which is a state-of-the-art result on
this task.

(Peters et al., 2019) proposed a general method
in which multiple knowledge bases are embedded
into large-scale models. By doing that and using
structured knowledge, they enhanced their repre-
sentations. First, they use an entity linker to re-
trieve relevant entity embeddings for each knowl-
edge base (KB). After that, they use word-to-entity
attention to update contextual word representations.
They trained entity linkers and self-supervised lan-
guage modeling together in an end-to-end multi-
task setting in which a large amount of raw text
is combined with a small amount of entity linking
supervision. By merging WordNet and a subset of
Wikipedia into BERT, KnowBert shows improve-
ment in several tasks such as word sense disam-
biguation. This method achieved a good result on
the “Word in Context” task with 70.9 % accuracy.

“GlossBERT” is another work that was proposed
in (Huang et al., 2019). The contexts and glosses of
the target words were put together and considered
as inputs to the BERT. Three BERT-based models
were proposed for WSD. The SemCor3.0 training
corpus was used to fine-tune the pre-trained BERT
model and finally, the models were evaluated on
several English WSD benchmark datasets. The ex-
perimental results show that the proposed method
achieved new state-of-the-art results on the WSD
task.

3 System Overview

In this section, we explain our proposed meth-
ods. The first method that relies only on the BERT
model is explained in Section 3.1. This method is
further improved in 3.2 by adding some extra infor-
mation extracted from the WordNet to the BERT’s
input. Finally, in section 3.3 we explain an aug-
mentation method by generating the paraphrases
of both sentences and add them as an extra input to
the BERT.

3.1 BERT Method

In this method, we fine-tune a BERT model using
the TensorFlow-models PIP package as explained
in fine-tuning-BERT Tutorial. To do this, we
use the pre-trained BERT encoder (large-uncased-
BERT) from TensorFlow Hub. As mentioned in
the tutorial, to fine-tune a pre-trained model, ex-
actly the same tokenization, vocabulary, and index
mapping with the model should be used. So we

https://github.com/SapienzaNLP/mcl-wic/blob/master/SemEval-2021_MCL-WiC_all-datasets.zip
https://github.com/SapienzaNLP/mcl-wic/blob/master/SemEval-2021_MCL-WiC_all-datasets.zip
https://github.com/SapienzaNLP/mcl-wic/blob/master/SemEval-2021_MCL-WiC_all-datasets.zip
https://www.tensorflow.org/official_models/fine_tuning_bert
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2
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rebuild and use the tokenizer that was used by the
base model.

Next, we preprocess the provided data and pre-
pare it as the input of the BERT model. For every
pair of sentences first, we add a “[TGT]” token
before and after the target word in both sentences.
After that, we add a “[SEP]” (Separator) token at
the end of both sentences. Then we encode them
separately by the tokenizer. The tokenizer itself
changes all words to lowercase and separates the
unknown words. We also encode and add a “[CLS]”
token at the first position of each example to be
able to do a classification task. Examples are con-
structed by concatenation of two sentences. Note
that we had to add “[TGT]” as a token into the
tokenizer vocabulary. Here is an example of a pair
of sentences:

[CLS] In that context of coordination and
integration, Bolivia holds a key [TGT]
play [TGT] in any process of infras-
tructure development. [SEP] A musical
[TGT] play [TGT] on the same subject
was also staged in Kathmandu for three
days.[SEP]

The output of the tokenization process is named
input word ids. For the above example, we will
have:

[ 101 1999 2008 6123 1997 12016 1998
8346 1010 11645 4324 1037 3145 1
2377 1 1999 2151 2832 1997 6502 2458
1012 102 1037 3315 1 2377 1 2006 1996
2168 3395 2001 2036 9813 1999 28045
2005 2093 2420 1012 102 ]

Note that input word ids vectors should be
padded with zero token ids to make them equal
length.

We also add two vectors as extra inputs to the
BERT model. One of them is called input mask,
in which, for every non-padding token, we put “1”,
and for every padding token, we put “0”. Another
one is called input type ids in which, for each token
of the first sentence, second sentence, and padding
tokens, we put “1”, “2”, and “0” respectively. Thus,
the input vectors equivalent to the above sentence
pairs (without padding tokens) are as follows:

input word ids: [101 1999 2008 6123
1997 12016 1998 8346 1010 11645 4324
1037 3145 1 2377 1 1999 2151 2832

1997 6502 2458 1012 102 1037 3315 1
2377 1 2006 1996 2168 3395 2001 2036
9813 1999 28045 2005 2093 2420 1012
102 ]

input mask: [1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1]

input type ids: [0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2]

After preparing the input, we define the BERT
classifier with the following configuration:

’attention probs dropout prob’: 0.1,
’hidden act’: ’gelu’,
’hidden dropout prob’: 0.1,
’hidden size’: 768,
’initializer range’: 0.02,
’intermediate size’: 3072,
’max position embeddings’: 512,
’num attention heads’: 12,
’num hidden layers’: 12,
’type vocab size’: 2,
’vocab size’: 30522

As mentioned in fine-tuning-BERT Tutorial :
“BERT adopts the Adam optimizer with weight decay.
It uses a learning rate that firstly warms up from
0 and then decreases to 0.” We choose the batch
size= 32 and train the BERT classifier with max-
imum epochs=10. We also use an early stopping
call back, which is based on the validation set loss,
and make the training process stopped, when the
validation loss increase in two steps.

3.2 BERT plus WordNet method
As mentioned before, in some WSD cases using
just the target word context can not be helpful, so
we proposed a new method in which some informa-
tion from the WordNet is added to the end of each
sentence.

In this method, for every synset of the target
word, we define a score that indicates how much
that synset is related to the target word in this con-
text. To calculate this score, we used the following
equation:

(1)

path dist

=
∑

w∈context

1

position dist(w, target w)

×minsyn2∈syns(w)(spd(syn1, syn2)))

https://www.tensorflow.org/official_models/fine_tuning_bert
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where position dist indicates how much the target
word is far from the word “w” in the context. So,
the farther the word is, the effect of that to calculate
the path dist is less. “syns(w)” are all synsets of
the word “w” in the context. “syn1” is the synset
of the target word that we want to calculate its
path distance. Note that, before calculating the
score, we remove all stop words, punctuations, and
numbers from the context of the target word. spd
is a function that is already implemented in NLTK
package4. It returns the distance of the shortest path
linking the two synsets (if one exists). For each
synset, all the ancestor nodes and their distances
are recorded and compared. The ancestor node
common to both synsets that can be reached with
the minimum number of traversals is used. If no
ancestor nodes are common, -1 is returned. If a
node is compared with itself, 0 is returned5.

As can be seen, if the path dist increases, the
synset is less related to the target word in this con-
text. Therefore, we sort the synsets based on how
relevant they are to the target word and use their
Lexname6 (which is called supersense in (Levine
et al., 2020) to represent them. After that, we add
all the sorted Lexnames at the end of each sentence
separated by a “[LX]” token.

Here is an example for a pair of sentences:

sentence1: in that context of coordina-
tion and integration , bolivia holds a
key [TGT] play [TGT] in any process
of infrastructure development .[LX] time
[LX] state [LX] act [LX] communication
[LX] event [LX] attribute [SEP]

sentence2: a musical [TGT] play [TGT]
on the same subject was also staged in
kathmandu for three days .[LX] time
[LX] communication [LX] act [LX] state
[LX] attribute [SEP]

Finally, we define input word ids,
input mask, and input type ids same as
in Section 3.1 and train the model defined in that
section.

4https://www.nltk.org/_modules/nltk/
corpus/reader/wordnet.html

5https://docs.huihoo.com/nltk/0.9.5/
api/nltk.wordnet.synset.Synset-class.
html

6More information about Lexname can be
found at https://wordnet.princeton.edu/
documentation/lexnames5wn

3.3 BERT plus Paraphrase Method
As paraphrasing changes the structure and some
words of a sentence while the meaning remains
the same, it can be helpful to add some extra infor-
mation as input to the BERT encoder. By adding
this information, we help the model to see other
meanings of the context words.

We used Machine Translation to generate para-
phrases of the sentences. To do that, we use Mi-
crosoft Translator Text API 7 to translate all of the
sentences from English to Spanish and then trans-
late them back from Spanish to English. As this
API has reliable results on translating from and to
the Spanish language, we choose it as the interme-
diate language. However, other languages such as
French and Germany can be used as well.

Based on this idea, two methods are proposed in
this section:

3.3.1 Using generated paraphrases
In the first method, we add the paraphrased sen-
tences word ids, mask, and type ids as additional
inputs to the BERT encoder. Thus, the input to the
BERT encoder is constructed from 6 parts instead
of 3 parts defined in Section 3.1. Normally, three
input vectors are used for the BERT. In this case,
we add three additional input vectors which are
made with the paraphrase of sentences instead of
sentences themselves. In our opinion, the best way
of combining this new data is to concatenate para-
phrases to the main sentences, but in this work, due
to our internal limitations, we could not do this, and
instead, we extended the three inputs to six. In prac-
tice, the input is the sum of the embedded vectors
of the six vectors. We do not use the “[TGT]” token
before and after the target word in the generated
paraphrase because it may be changed.

3.3.2 Using just the different words
As the generated paraphrases are not very different
from the original sentences most of the time, we
propose another method in which we just find the
words that are changed in the generated paraphrase
and then concatenate them with the original words
in the original sentence with a “[S]” token. To do
that, we should find the original word of each newly
generated word by finding the most similar word
from the main sentence to the generated word. We
used the fastText 8 pre-trained model in English to

7https://www.microsoft.com/en-us/
translator/business/translator-api/

8https://fasttext.cc

https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
https://docs.huihoo.com/nltk/0.9.5/api/nltk.wordnet.synset.Synset-class.html
https://docs.huihoo.com/nltk/0.9.5/api/nltk.wordnet.synset.Synset-class.html
https://docs.huihoo.com/nltk/0.9.5/api/nltk.wordnet.synset.Synset-class.html
https://wordnet.princeton.edu/documentation/lexnames5wn
https://wordnet.princeton.edu/documentation/lexnames5wn
https://www.microsoft.com/en-us/translator/business/translator-api/
https://www.microsoft.com/en-us/translator/business/translator-api/
https://fasttext.cc
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Methods run1 run2 run3 run4 run5 Average Std

BERT Method (3.1) 84.4 84.9 84.2 85.8 83.8 84.62 0.688
BERT + WordNet (3.2) 84.5 84.7 84.3 85.2 85.2 84.78 0.366
BERT + Paraphrase Sents (3.3.1) 85.3 85.6 85.6 86.9 85.5 85.78 0.571
BERT + Paraphrase Words (3.3.2) 84.1 86.3 85.6 85.4 82.4 84.76 1.378

Table 1: Results of the proposed methods in 5 different runs. Std in the last column indicate Standard Deviation.

find the most similar word, and then consider it as
the paraphrased word.

4 Experimental Setup

As mentioned before, we used the MCL-WiC train-
ing set, containing 8000 pair sentences in English
as the training data, and the MCL-WiC develop-
ment set containing 1000 pair sentences in English
as the validation data for our system. Similarly,
the MCL-WiC test set containing 1000 pair sen-
tences in English was used as the test data. The
results displayed in Table 1 are based on the test
set. We use the validation set only for finding the
best number of fine-tuning iterations. It is worth
mentioning that in test phase of the third method,
we first paraphrase the sentences of the test set and
make them ready for the model input as we did for
the training and validation sets. All reported results
are based on accuracy that is the main criteria for
the challenge.

5 Results

Due to the random initialization of classifier layer
weights, different results were achieved from differ-
ent runs. So, we decided to run each experiment 5
times and report the average and standard deviation
of model accuracy.

Table 1 shows the obtained results from different
methods based on the accuracy percentage. It is
obvious that adding generated sentence level para-
phrases proposed in Section 3.3.1 improves the
average accuracy compared to the BERT method.
However, we got only a marginal improvement
by adding paraphrased words proposed in Section
3.3.2. We guess the reason for this has two folds:
first, we had some difficulties in finding the origi-
nal word of the changed word, and using only the
fastText may not be helpful. For example, the word
“play” changed to “work” in the generated para-
phrase, while using the fastText, the system found
another word instead of “work”. The second reason
can be eliminating not-changed words that cause a

discontinuity in the word context.
On the other hand, adding more information

from WordNet proposed in Section 3.2 is not very
helpful, and the accuracy is not changed compared
to the base method proposed in Section 3.1. This
has happened because of the used way for adding
this information to the input and the shape of in-
formation. For example, adding only the two first
synsets or adding lemmas or glosses of synsets
instead of their lexnames may cause better results.

It is clear that there is a variation in the results
of each method for different runs. The last column
of the table shows the standard deviation of the
five obtained results for each method. The second
and third methods have smaller STD that means
these methods are robust to random initialization
classifier’s weights, and we can trust more to the
results.

In summary, adding generated paraphrases from
sentences increase the performance of the model.
However, using a better method for generating para-
phrases can lead to better results.

5.1 Conclusion
In this work, we proposed four BERT-based meth-
ods for the WSD task. To handle some issues such
as the same contexts for different word meanings,
we proposed to add some extra information from
WordNet or generate paraphrases of sentences. We
trained and evaluated our proposed methods on the
MCL-WiC training and testing sets, respectively.
The results show that adding generated paraphrases
as an additional input to the BERT can be helpful.
Although, the performance of the paraphrase gener-
ation method plays an important role. So, for future
works, using different methods of generating para-
phrases can be considered. Besides, as mentioned
before, adding only the two first synsets or adding
lemmas or glosses of synsets instead of their lex-
names from WordNet can be investigated. Due to
lack of time, we could not spend too much effort
on this challenge, and we leave it for the future.
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