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Abstract

This paper describes our system participated
in Task 6 of SemEval-2021: this task focuses
on multimodal propaganda technique classi-
fication and it aims to classify given image
and text into 22 classes. In this paper, we
propose to use transformer-based (Vaswani
et al., 2017) architecture to fuse the clues
from both image and text. We explore two
branches of techniques including fine-tuning
the text pre-trained transformer with extended
visual features and fine-tuning the multimodal
pre-trained transformers. For the visual fea-
tures, we experiment with both grid features
extracted from ResNet(He et al., 2016) net-
work and salient region features from a pre-
trained object detector. Among the pre-trained
multimodal transformers, we choose ERNIE-
ViL (Yu et al., 2020), a two-steam cross-
attended transformers model pre-trained on
large-scale image-caption aligned data. Fine-
tuning ERNIE-ViL for our task produces a
better performance due to general joint mul-
timodal representation for text and image
learned by ERNIE-ViL. Besides, as the distri-
bution of the classification labels is extremely
unbalanced, we also make a further attempt
on the loss function and the experiment re-
sults show that focal loss would perform better
than cross-entropy loss. Lastly, we ranked first
place at sub-task C in the final competition.

1 Introduction

Propaganda is usually adopted to influence the au-
dience by selectively displaying the facts to encour-
age specific synthesis or perception, or using the
loaded language to produce emotion rather than
emotion itself. It was often associated with mate-
rials prepared by governments in the past century.
In the internet era, activist groups, companies, reli-
gious organizations, the media, and individuals also

∗indicates equal contribution.

produce propaganda, and sometimes it can reach
very large audiences (Da San Martino et al., 2020).
With the recent research interest in detecting “fake
news”, the detection of persuasion techniques in
the texts and images has emerged as an active re-
search area. Most previous work like (Patil et al.,
2020) and (Chauhan and Diddee, 2020) have per-
formed the analysis at the language content level
only. However, in our daily life, memes consist of
images superimposed with texts. The aim of the
image in a meme is either to reinforce a technique
in the text or to convey one or more persuasion
techniques.

SemEval-2021 Task6-c offers a different per-
spective, multimodal multi-label classification
(Dimitrov et al., 2021), identify which of the 22
techniques are used both in the textual and visual
content of memes. Since memes are combinations
of texts and images, for this propaganda classifi-
cation task, we proposed to use transformer-based
architecture to fuse the clues from both linguis-
tic and visual modalities. Two branches of fine-
tuning techniques are explored in this paper. First,
a text pre-trained transformer is applied with ex-
tended visual features. Specifically, we initialize
the transformer with pre-trained text transformers
and fine-tune the model with extended visual fea-
tures including grid features(e.g., ResNet(He et al.,
2016)) and region features(e.g., BUTD (Anderson
et al., 2018)) from an image feature extraction net-
work and an object detector respectively. Second,
pre-trained multimodal transformers from ERNIE-
ViL(Yu et al., 2020) are used due to its better mul-
timodal joint representations characterizing cross-
modal alignments of detailed semantics.

Our contributions are three-folds:

• We propose to use transformer architecture
for fusing the visual and linguistic clues to
tackle the propaganda classification task.
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• We find that the multimodal pre-trained trans-
formers work better than using text pre-trained
transformers with visual features. And the ex-
periment results have shown that fine-tuning
the ERNIE-ViL model could achieve state-of-
the-art performance for this task.

• Our ensemble result of several models obtains
the best score and ranks first in Semeval-2021
Task 6-c multimodal classification task.

2 Related work

2.1 Text Transformers
Transformer network (Vaswani et al., 2017) is first
introduced in neural machine translation in which
encoder and decoder are composed of multi-layer
transformers. After then, pre-trained language
models, such as BERT (Devlin et al., 2018) and
GPT(Radford et al., 2018), adopting transformer
encoder as the backbone network, have signifi-
cantly improved the performance on many NLP
tasks. One of the main keys to their success is the
usage of transformer to capture the contextual infor-
mation for each token in the text via self-attention.
Later text pre-training works, such as ERNIE2.0
(Sun et al., 2020), RoBERTa (Liu et al., 2019) and
XLNET (Yang et al., 2019) are all shared the same
multi-layer transformer encoder and mainly put
their effort on modification of pre-training task.

2.2 Visual Feature Extraction
Visual feature extractors are mainly composed of
plenty of convolutional neural networks (CNN)
since CNN has a strong ability to extract complex
features that express the image with much more de-
tails and learn the task-specific features much more
efficiently. Existing works can be divided into the
following two types which are based on two differ-
ent image inputs: image grids and object regions.
Some of those methods, such as VGG (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016)
operate attention on CNN features corresponding
to a uniform grid of equally-sized image regions.
While the other works like Faster R-CNN (Ren
et al., 2015) operate a two-stage framework, which
firstly identifies the image regions containing the
specific objects, and then encodes them with multi-
layer CNNs.

2.3 Multimodal Transformers
Inspired by text pre-training models (Devlin et al.,
2018), many cross-modal pre-training models for

vision-language have been proposed. To integrate
visual features and text features, recent multimodal
pre-training works are mainly based on two vari-
ables of transformers. Some of them, like UNITER
(Chen et al., 2019) and VILLA (Gan et al., 2020)
use a uniform cross-modal transformer modelling
both image and text representations. As fine-tuning
on multimodal classification tasks, such as the
Visual-question-answering (VQA) (Antol et al.,
2015) task (a multi-label classification task), uni-
fied transformers take textual and visual features
as the model input, treat the final hidden state of
h[CLS] as the vision-language feature. While the
others like Vilbert (Lu et al., 2019), LXMERT (Tan
and Bansal, 2019), ERNIE-ViL (Yu et al., 2020)
are based on two-stream cross-modal transformers,
which bring more specific representations for im-
age and text. These two transformers are applied
to images and texts to model visual and textual
features independently and then fused by a third
transformer in a later stage. The fusion of the final
hidden state of h[CLS] and h[IMG] are used to do
the classification.

3 Approach

We propose to use a transformer encoder to fuse
the clues from both linguistic and visual modalities
and our approach is summarized in two branches,
the first one is fine-tuning a text pre-trained trans-
former with extended visual features, and the other
one is fine-tuning a multimodal pre-trained model.
For the first one, we try two different sets of vi-
sual features, grid features based on equally-split
patches of the image and salient region features
based on an object detector. For the second one,
a SoTA multimodal model, ERNIE-ViL (Yu et al.,
2020) is applied with a multi-label classification
loss. A unified framework for the two branches is
shown in Figure 1. We will introduce more details
in this section.

3.1 Text Pre-trained Transformer with
Visual Features

Our model consists of three parts: a) input feature
extractor, b) feature fusion encoder, c) classifica-
tion encoder.

For the first part, the text is tokenized into sub-
words to lookup the embedding while the image is
processed by a feature extractor, such as a grid fea-
ture processor or a salient region feature processor
to convert into vision embeddings. The input em-
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Figure 1: A unified framework used for the multimodal classification task.

beddings are combinations of image embeddings
and text embeddings and represented as

h[CLS], ht1 , · · · , htn , h[SEP ], hi1 , · · · , him , h[SEP ]

where the h[CLS], h[SEP ] are the vector represen-
tations of special tokens [CLS] and [SEP ] respec-
tively. The [CLS] token is inserted in the begin-
ning of the sequence, which act as an indicator of
the whole text, specifically, it is used to perform
complete text classification. The [SEP ] is a token
to separate a sequence from the subsequent one
and indicate the end of a text. ht1 , · · · , htn are the
text embeddings, and hi1 , · · · , him are the vision
embeddings. For the vision embeddings part, grid
features and salient region features are used.

Grid Features Convolutional neural networks
have potent capabilities in image feature extrac-
tion. The feature map obtained after the image
goes through multiple stacked convolution layers
contains high-level semantic information. Given an
image, we can use a pre-trained CNN encoder, such
as ResNet, to transform it to a high-dimensional
feature map and flatten each pixel on this feature
map to form the final image representation.

Salient Region Features Object detection mod-
els are widely used to extract salient image regions
from the visual scene. Given an image, we use a
pre-trained object detector to detect the image re-
gions. The pooling features before the multi-class

classification layer are utilized as the region fea-
tures. The location information for each region is
encoded via a 5-dimension vector representing the
fraction of image area covered and the normalized
coordinates of the region and then is projected and
summed with the region features.

For the second part, the transformer encoder
fuses the input text and image embedding, and
finally a cross-modal representation of size D is
achieved for this sequence.

The last part of our model is the classification
encoder and loss function. After obtaining the en-
coding representation of the image and the text
from the transformer encoder, we send the repre-
sentation of [CLS] through the classification head,
which is consisted of a fully connected layer and
a Sigmoid activation for predicting the score of
each category and loss with the ground truth.

3.2 Multimodal Pre-trained Transformer

Different from a single-modal pre-trained text trans-
former described above, a multimodal pre-trained
transformer for vision-language can learn more ef-
ficient presentations. In this part, a SoTA model,
ERNIE-ViL, is applied.

For the generation of input embedding of text
and image, it is mostly the same as the procedure
described in the previous section. Differences are
two-folds. First, for the vision feature, a faster
R-CNN encoder(Anderson et al., 2018) is used to
detect the salient regions while the position infor-
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mation is taken into consideration. Second, The
text and the visual input embedding is represented
as

h[CLS], ht1 , · · · , h[SEP ], h[IMG], hi1 , · · · , h[im]

where there is a new token h[IMG] represents the
feature for the entire image.

For the feature fusion part, ERNIE-ViL utilized
a two steam cross-modal transformer to fuse the
multimodal information. For more details, you may
refer to (Yu et al., 2020).

3.3 Criterion

In this task, there are 22 classes and the distribu-
tion of positive and negative samples is extremely
unbalanced. To solve this problem, we use the fo-
cal loss to improve the imbalance of positive and
negative samples. For i-th class

Lclassi =

{
α(1− p)γlog(p) if y=1
(1− α)pγlog(1− p) otherwise

where y is the ground truth; p is model prediction,
which is the confidence score of category i; α and γ
are hyper-parameters, α is used to control the loss
weight of positive and negative samples, and γ is
used to scale the loss of difficult and easy samples.

4 Experiment

4.1 Implementation Details

In this task, we choose DeBERTa-large+ResNet50,
DeBERTa-large+BUTD and ERNIE-VIL as the fi-
nal models. We performed all our experiments on
a Nvidia Tesla V100 GPU with 32 GB of mem-
ory. The models are trained for 20 epochs and we
pick the model which has the best performance on
validation set.

For the DeBERTa transformer, the Adam opti-
mizer with a learning rate of 3e-5 is used. Also, we
have applied the linear warm strategy for the learn-
ing rate. We set α = 0.9 and γ = 2.0 for the focal
loss. To ensure robustness under a small dataset,
we set the threshold to 0.5 instead of performing a
threshold search strategy on the validation set. For
the pre-trained object detector, we choose Faster R-
CNN (Anderson et al., 2018) and name the region
features as BUTD in the experimental results.

For the ERNIE-ViL transformers, we use the
same input prepossessing methods as (Yu et al.,

Positive(%) Negative(%)
train 1745(11.55%) 13369(88.45%)
dev 183(13.20%) 1203(86.80%)
test 523(13.49%) 3877(86.51%)

Table 1: Statistics of the positive and negative distribu-
tion of the dataset.

Loss Function Precision Recall F1
cross-entropy 76.12 55.74 64.35

focal loss 71.18 66.12 68.56

Table 2: Results of different loss functions.

2020) and choose the large scale model1 pre-
trained on all the four datasets. We finetune on
our multimodal classification dataset with a batch
of 4 and a learning rate of 3e-5 for 20 epochs.

4.2 Experimental Analysis

4.2.1 DeBERTa with Visual Features
Unbalanced Distribution There are 687/63/200
examples includes 22 categories in the
train/validation/test datasets respectively. As
shown in Table 1, the distribution of the classes is
extremely unbalanced. If the cross-entropy loss is
adopted directly during model training(the visual
features are from ResNet50), the model output may
have a greater chance of predicting the majority
class(negative class in this task), which results in a
lower recall. To solve this problem, the focal loss
is applied. From Table 2, it can be seen that the
result with focal loss performs much better than
with cross-entropy loss respective to the F1 score.

Visual Features We evaluate the improvement
brought by extended visual features and explore
different types of visual feature extractors, e.g.,
from pre-trained image classification networks or
pre-trained object detectors. The results are illus-
trated in Table 3. Firstly, it can be seen that the
final score is significantly improved with mixing
image features compared with using only text fea-
tures (Row “w/o vision feature”), which indicates
that the visual information is significantly benefi-
cial for recognizing cross-modal propaganda tech-
niques. Then, for features extracted from ResNet,
we find that the depth of the network affects the
results, especially on the validation dataset, with
the best result from ResNet50. The reason may be

1the pre-trained model is downloaded from
https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-vil
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dev-F1 test-F1
w/o vision feature 65.73 55.10

ResNet18 65.92 55.59
ResNet50 68.56 55.96
ResNet152 65.91 55.63

BUTD 66.29 56.21

Table 3: The results of using features extracted differ-
ent networks.

region numbers Dev F1 Test F1
5 64.91 54.00
10 66.67 54.60
36 67.40 57.14
100 67.45 56.07

Table 4: Results comparisons with different object re-
gion number inputs.

that the shallower network has insufficient feature
extraction capabilities, and the deeper network is
very difficult to train. Finally, the region features
from the pre-trained object detector(Row “BUTD”)
work best with an improvement of 0.25 on the test
dataset compared to ResNet50 features.

4.2.2 ERNIE-ViL
We compare the performance between ERNIE-ViL
with different object region inputs, which are num-
ber dynamic ranges between 0 and 36 with a fixed
confidence threshold of 0.2 and constantly fixed
5, 10, or 100 boxes. The results are illustrated in
Table 4.

Results show that a larger box number can al-
ways achieve better performance within a certain
range. Utilizing 0-36 boxes leads to huge perfor-
mance improvement with a 3.14 and 2.54 on Test-
F1 compared with using constant 5 boxes and con-
stant 10 boxes respectively. It can be concluded
that more object regions in a certain range can
provide more useful information. However, the per-
formance with 100 boxes is worse than that with
0-36 boxes. The reason may lie in that there are
not enough objects in the task sample. The ex-

Models Dev-F1 Test-F1
DeBERTa + ResNet50 68.56 55.96

DeBERTa + BUTD 66.29 56.21
ERNIE-VIL 67.40 57.14
Ensemble 69.12 58.11

Table 5: Final ensemble result.

tracted low-confidence object regions may mislead
the multimodal model, therefore fuse useless or
harmful visual features with text features. As a
result of that, brings a performance decrease on the
final score.

4.3 Ensemble Results

The performance comparison between our two
branches of approach is shown in Table 5. It can
be concluded that fine-tuning the multimodal pre-
trained transformer (Row “ERNIE-ViL”) works
better than fine-tuning text pre-trained transformers
with visual features (Row “DeBERTa + BUTD”).
Overall, fine-tuning ERNIE-ViL has achieved state-
of-the-art performance for this multimodal classifi-
cation task.

Since the training dataset is small, we train mul-
tiple models under various model structures and
different parameter configurations to take full ad-
vantage of the training dataset and increase the
diversity of models. We choose three models of all
model structures and all parameter configuration
that performs best on the validation set and then
ensemble them together. After performing ensem-
ble strategy on those three models, both validation
and test scores increases. As a result of that, we
achieved a 58.11 score at F1 in the test set and
ranked first place in the task competition.

5 Conclusion

We explore two branches to fine-tune pre-trained
transformers to jointly modelling texts and images
for the propaganda classification task. The first
branch, fine-tuning pre-trained text transformer
with visual feature, obtain significant performance
improvement compared to text classification which
validate the importance of visual clues for this task.
Visual features from object detector yield slightly
better results than grid features from ResNet. Im-
portantly, fine-tuning pre-trained multimodal trans-
formers obtain the best single model performance.
And this improvement further validates the claim
made by previous work that vision-language pre-
training learned general joint representation needed
for multimodal tasks. Besides, since the distribu-
tion of the classification labels is extremely unbal-
anced, we also make a further attempt on the loss
function. Training models with focal loss can lead
to a huge performance improvements than training
with cross entropy loss.
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