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Abstract

This paper describes our submission to the
SemEval-2021 shared task on Lexical Com-
plexity Prediction. We approached it as a
regression problem and present an ensemble
combining four systems, one feature-based
and three neural with fine-tuning, frequency
pre-training and multi-task learning, achieving
Pearson scores of 0.8264 and 0.7556 on the
trial and test sets respectively (sub-task 1). We
further present our analysis of the results and
discuss our findings.

1 Introduction

Predicting which words are considered hard to un-
derstand for a given target population has many ap-
plications. For example, it can be used to identify
texts appropriate for language learners or included
in a pipeline for automatic text simplification for
people with low literacy skills or reading disabil-
ities (Xia et al., 2016; Shardlow, 2014; Gooding
and Kochmar, 2019b). In this paper, we describe
our submission to the SemEval-2021 shared task
on Lexical Complexity Prediction (LCP) (sub-task
1), where participating teams are expected to pre-
dict the complexity score of single words in con-
text (Shardlow et al., 2021). Compared to previ-
ous shared tasks on Complex Word Identification
(CWI), which have primarily focused on binary
classification as systems were expected to iden-
tify words as complex or not (Paetzold and Specia,
2016a; Yimam et al., 2018); a new multi-domain
English dataset was used for the purpose, which
was annotated using a 5-point Likert scale (Shard-
low et al., 2020). We approached LCP as a regres-
sion problem and proposed a traditional feature-
based model, as well as three neural models explor-
ing fine-tuning, frequency pre-training and multi-
task learning (MTL).

The remainder of this paper is organised as fol-
lows. Section 2 presents related work in the area.

In Section 3, we describe our approach to the task
and detail the four models included in our final en-
semble system. In Section 4, we turn to the experi-
ments, describing the data and evaluation metrics
used, and presenting our results on the shared task
trial set. Section 5 presents our official results on
the shared task test set, and offers a discussion of
the results and the performance of our submitted
system. Finally, we conclude the paper and provide
an overview of our findings in Section 6.

2 Related work

The SemEval-2016 shared task on CWI (Paetzold
and Specia, 2016a) was framed as a binary clas-
sification problem, where complexity was defined
as whether or not a word is difficult to understand
for non-native English speakers. A set of 400 non-
native speakers annotated the data in a binary fash-
ion and a word was labelled as complex if it was
annotated as complex by at least one annotator. The
study performed by Zampieri et al. (2017) showed
that most systems performed poorly due to the way
the data was annotated. They also found out that
words that were annotated as complex by the ma-
jority of human annotators tend to be easier for
systems to identify, arguing that lexical complexity
should be seen as a continuum on a spectrum rather
than a binary value.

The second CWI shared task was organized as
part of the BEA-2018 workshop (Yimam et al.,
2018). It extended the previous one by intro-
ducing a new probabilistic classification sub-task
where participants were asked to assign the prob-
ability that an annotator would find a word com-
plex. The continuous complexity value for each
word was calculated as the proportion of annota-
tors that found a word complex. The results of the
shared task showed that traditional feature engi-
neering approaches (mostly based on length and
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Linguistic feature Pearson Importance
Train  Trial Test
1. Number of syllables in target word 0.162 0.235 0.120 0.019
2. Number of characters in target word 0.099 0.159 0.094 0.103
3. Mean number of syllables per word in given text 0.057 0.224 0.073 0.132
4. Mean number of characters per word in given text  0.084  0.230  0.089 0.119
5. Deviation from mean number of syllables 0.079 -0.180 -0.096 0.151
6. Deviation from mean number of characters -0.138 -0.093 -0.062 0.180
7. Frequency of target word -0.240 -0.247 -0.183 0.369
8. Frequency of target lemma -0.125 -0.256 -0.209 0.714
9. Frequency of target dependency label -0.040 -0.091 -0.054 0.059
10. Frequency of target POS 0.051 0.136 -0.010 0.128
11. Frequency of target word and dependency label ~ -0.195 -0.111 -0.200 0.089
12. Frequency of target word and POS -0.257 -0.201 -0.154 0.126
13. Number of compounds in surrounding phrase 0.001  0.092 0.079 0.021
14. Number of modifiers in surrounding phrase 0.073 0.085 0.068 0.006
15. Number of dependencies linked to target word -0.073 -0.044 -0.059 0.039

Table 1: Features used in the random forest regressor and the corresponding Pearson’s correlation with complexity
in the training (train), trial, and test data; as well as the corresponding mean permutation importance (n = 50).

Bold Pearson values are significant (p < 0.001).

frequency features) performed better than neural
network and word embedding approaches, includ-
ing the winning system Camb-2018 from Gooding
and Kochmar (2018). However, this system was
subsequently outperformed by a sequence labeller
approach to CWI that incorporated word context
(Gooding and Kochmar, 2019a). In both shared
tasks, the top-performing systems demonstrated
the strength of ensemble models (Paetzold and Spe-
cia, 2016b; Gooding and Kochmar, 2018).

3 Approach

3.1 Random forest regression

As a baseline, we began with training a simple ran-
dom forest regressor based on 15 manually selected
linguistic features. The regressor was trained with
100 trees, and we used mean absolute error (MAE)
to measure the quality of each split. Most of our
features were inspired by psycholinguistic studies
and readability metrics. The full list of features can
be found in Table 1.

Frequency Based on the psycholinguistic find-
ings that the frequency of a word is strongly cor-
related with the speed at which it is processed
(Preston, 1935; Monsell et al., 1989; Brysbaert
et al., 2011), we introduced six features which are
based on frequencies found in the Simple English
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Wikipedia (SimpleWiki).! We selected SimpleWiki
for its standardised form, relatively low frequency
of complex words, and coverage of a large num-
ber of topics. Two of our frequency-based features
were calculated based on the frequency of words
that match both the surface form and the syntac-
tic role - this was done as a coarse form of word
sense disambiguation, but also to capture syntactic
complexity.

Syntax Psycholinguistic studies have shown
that syntactic complexity is linked to processing
speed (Ferreira, 1991) and working memory lim-
itations (Norman et al., 1992), which may affect
participants’ perception of lexical complexity. In a
similar vein, we added three syntactic features: the
number of compounds and modifiers in the phrase
containing the target word, and the number of child
dependencies linked to the target word.

Readability We included syllable-based’ and
character-based metrics, which were inspired by
traditional readability metrics such as the Flesch-
Kincaid readability tests (Kincaid et al., 1975)

'The Simple English Wikipedia data can be accessed at
https://simple.wikipedia.org/. For this shared
task, we used a preprocessed version at https://github.
com/LGDoor/Dump-of-Simple-English-Wiki.

The number of syllables were estimated using the Sylla-
bles library: https://github.com/prosegrinder/
python-syllables.


https://simple.wikipedia.org/
https://github.com/LGDoor/Dump-of-Simple-English-Wiki
https://github.com/LGDoor/Dump-of-Simple-English-Wiki
https://github.com/prosegrinder/python-syllables
https://github.com/prosegrinder/python-syllables

and the Coleman-Liau index (Coleman and Liau,
1975).

3.2 Fine-tuning BERT

Fine-tuning pre-trained language models via su-
pervised learning has become the key to achiev-
ing state-of-the-art performance in various natural
language processing (NLP) tasks. Our approach
builds upon this, where we used BERT (Devlin
et al., 2019) as the underlying language model and
added a linear layer on top that allows for regres-
sion.

We treated it as a sequence regression problem
and constructed the input by concatenating the tar-
get word wy, the complexity of which was to be
determined, and its context sentence:

[CLS); wy; [SEP]; w1, ...ywy, ...; [SEP] (1)

We then fed the [C'LS] representation into the
output layer for regression.

We used the L1-loss, which measures the MAE
for the prediction, i.e.:

Loss = mean({l1,...,IN});ln = |Zn—yn| (2)

where x and y are respectively the output of the
model and the target value. IV is the batch size.

During training, the whole model was optimised
in an end-to-end manner.

3.3 Frequency pre-training

We proposed an extension to the fine-tuning BERT
system by introducing a pre-training step. We con-
structed a new pre-training set with 20,000 sen-
tences extracted from SimpleWiki, filtering for
whole sentences by detecting the presence of verbs,
and removing sentences that are longer than 256
words, as this is the length of the longest sentence
in the training data.

Frequency of each word and part-of-speech
(POS) combination in SimpleWiki was counted
and converted into a value between 0 and 1:

In(f)
L= In(h)

3)

where f is the original frequency value and 5 is the
highest frequency found (excluding stop words).
This conversion makes use of the Zipfian distri-
bution observed in natural language (Zipf, 1935),
allowing the model to be pre-trained on output val-
ues that match the range in the shared task dataset
(see Section 4.1 for more details).

Data Train Trial Test
Bible 2,574 143 283
Biomedical 2,576 135 289
Europarl 2,512 143 345
Total 7,662 421 917

Table 2: Number of single word instances in the train-
ing (train), trial and test subsets of the Bible, Biomedi-
cal and Europarl datasets.

We chose this particular frequency feature be-
cause it is the most strongly correlated one with
the complexity values in the training data among
the 15 features used in the random forest regressor
(see Table 1 #12).

3.4 Neural multi-task learning

MTL allows models to use information from re-
lated tasks and learn from multiple objectives,
which leads to performance improvement on indi-
vidual tasks (Rei and Yannakoudakis, 2017; Yuan
et al., 2019; Taslimipoor et al., 2020; Andersen
et al., 2021). Instead of only predicting the com-
plexity value of word in context, we extended the
model to incorporate auxiliary objectives. We used
a joint learning approach trained on in-domain data
only and experimented with three related tasks to
boost model performance:

* POS tagging

e Grammatical Relations (GR) prediction: We
included as an auxiliary objective the predic-
tion of the GR type of a dependent with its
head.

¢ Genre classification: A classification task was
introduced to predict the genre of the text.

Model weights were shared between the main
and auxiliary training objectives. We used pre-
trained DistilBERT (Sanh et al., 2020) for language
representation as the basis for our neural network
and added additional layers on top of the Trans-
former (Vaswani et al., 2017) architecture for fine-
tuning.

The final layer for the LCP objective is a fully
connected layer that performs regression. Different
from the first two neural systems, we treated it as
a token regression problem, where we only input
the context sentence, and fed the vector representa-
tion of the target word w; into the output layer for
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Hyper-parameter BERT

Language model

Max. length 190
Batch Size 40
Epochs 5
Decay rate 0.01
Learning rate 5e-06
Schedule linear
Warm up steps 80

BERTjyeq. MTL
bert-base-uncased bert-base-uncased distilbert-base-uncased
160 304
8 1
7 4
0.01 0.01
2e-05 1e-05
linear linear
90 7662

Table 3: Hyper-parameters used for experiments.

regression:

[CLS);wy, ..., wy, ..., wn; [SEP] ()]

For those cases where the target word was split
into multiple sub-tokens, we took the averaged rep-
resentation.

Additionally, a new output layer was introduced
to perform the auxiliary task. For the first two
token-level auxiliary tasks (POS and GR), the token
representations were fed into the output layer. The
model only predicted labels for auxiliary objectives
on the first token of a word, in an identical fashion
to Devlin et al. (2019). For genre classification,
we used the [C'LS| representation. The overall
loss function is a weighted sum of the main LCP
loss (measured as MAE) and the auxiliary loss (as
cross-entropy):

Loss = ALosspop + (1 — A)LosSque ~ (5)

4 Experiments

4.1 Dataset and evaluation

The data used in this shared task is an augmented
version of CompLex (Shardlow et al., 2020), a
multi-domain English dataset with sentences an-
notated using a 5-point Likert scale with 1 being
very easy and 5 being very difficult. The final com-
plexity labels were normalised in the range of [0, 1].
The dataset contains texts of three genres (Bible,
Biomedical and Europarl) and both single words
(sub-task 1) and multi-word expressions (sub-task
2). Since we focused on sub-task 1, we used only
single word instances in our experiments. Corpus
statistics are given in Table 2.

Systems were evaluated using Pearson correla-
tion. We also report scores for the following met-
rics: Spearman correlation, MAE, mean squared
error (MSE) and R-squared (R2).
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4.2 Training details

We used spaCy? to preprocess the data and auto-
matically generated lemma, POS and GR labels to
be used in our experiments.

For the feature-based system, we used the ran-
dom forest regressor in the scikit-learn library.*
For the neural systems, we used pre-trained lan-
guage models provided by huggingface (Wolf
et al., 2020).°> All neural systems were trained
using the AdamW variant (Loshchilov and Hutter,
2019) of the Adam stochastic optimisation algo-
rithm (Kingma and Ba, 2015). Detailed hyper-
parameters are listed in Table 3. Each neural model
was trained on one NVIDIA Tesla P100 GPU.

4.3 Individual system performance

Individual system performance on the trial set is
reported in Table 4, where RandomForest refers
to the feature-based random forest regression sys-
tem, BERT refers to the fine-tuned BERT system,
BERTy¢q. refers to the fine-tuned BERT system
with frequency pre-training, and MTLx refers to
the MTL system with the subscript ‘x’ representing
the auxiliary task (POS, GR, or genre). We also re-
port results from the winning system Camb-2018
in the BEA-2018 CWI shared task, a feature-based,
context-independent linear regression model.

We can see that our feature-based RandomFor-
est system achieved comparable performance to the
heavily feature-engineered Camb-2018 system, de-
spite using only 15 features. This may be due to the
fact that linguistic features are often highly inter-
dependent and capture very similar information.

We also notice that all our neural systems outper-
formed both feature-based systems by large mar-
gins (+0.1 Pearson). This contradicts the findings

*https://spacy.io/
*nttps://scikit-learn.org/
Shttps://huggingface.co/transformers/


https://spacy.io/
https://scikit-learn.org/
https://huggingface.co/transformers/

System Pearson Spearman MAE MSE R2

RandomForest  0.7043 0.6746 0.0751 0.0096 0.4934
BERT 0.7907 0.7579 0.0647 0.0072 0.6191
BERT g, 0.8089 0.7546 0.0646 0.0068 0.6397
MTLpos 0.8000 0.7528 0.0662 0.0075 0.6052
MTLGgr 0.7936 0.7208 0.0654 0.0070 0.6290
MTLgenre 0.7982 0.7272 0.0656  0.0070 0.6300
Camb-2018 0.7079 0.6885 0.0746  0.0095 0.4957

Table 4: Performance of individual systems on the trial set (sub-task 1). The best results are marked in bold.
Camb-2018 is the winning system in the BEA-2018 CWI shared task.

Ensemble Pearson Spearman MAE MSE R2

MTLaj 0.8129 0.7471 0.0634 0.0065 0.6542
MTL4j + BERT + BERT req, 0.8228 0.7641 0.0621 0.0063 0.6684
MTLy + BERT + BERTjeq, + RandomForest ~ 0.8264 0.7676 0.0623  0.0063 0.6688

Table 5: Performance of ensemble systems on the trial set (sub-task 1). The best results are marked in bold.

from the BEA-2018 CWI shared task where tra-
ditional feature-based approaches performed bet-
ter than neural network and word embedding ap-
proaches. This could possibly be explained by
the use of pre-trained Transformer-based language
models in our neural systems, as well as a different
annotation scheme employed when constructing
the CompLex dataset used for this shared task. Nev-
ertheless, our findings appear to match the general
trend in NLP where neural systems are overtaking
feature-based models as the state of the art. All
our neural systems produced comparable results:
BERT}y¢q. yiclded the best Pearson, MAE, MSE
and R2 scores; while BERT yielded the best Spear-
man score.

4.4 Ensemble performance

We further averaged the outputs from individual
systems to obtain an ensemble. Table 5 shows re-
sults for different system combinations. Overall,
the best system consists of all our individual sys-
tems proposed in Section 3, including the feature-
based RandomForest system; and achieved the
best Pearson score of 0.8264, Spearman of 0.7676,
MSE of 0.0063, and R2 of 0.6688. The ensem-
ble of all neural systems yielded the best MAE of
0.0621.

5 Official results and discussion

Our submission to the LCP shared task (sub-task
1) is the result of our best system (in terms of Pear-

son), an ensemble of three neural and one feature-
based systems MTLay + BERT + BERTjq, +
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RandomForest. The official results are reported
in Table 6. Our final system achieved a Pearson
score of 0.7556.

5.1 Per-genre performance

Using the Pearson correlation metric, the highest
performance is obtained on the Biomedical data,
followed by the Bible and Europarl data. On the
MAE metric, however, the worst performance is
found for the Biomedical data (see Table 6). We
hypothesise that this might result from differences
in the distribution of the lexical complexity scores.
In particular, the scores for the Biomedical data
appear to have a slightly larger interquartile range
(see Appendix A, Figure A.1c).

5.2 Individual system contribution

To measure the contribution of each individual sys-
tem to the overall performance, a number of abla-
tion tests were performed, where one system was
removed at a time. Results in Table 6 suggest that
all neural systems have positive effects on the over-
all performance. Among them, MTL,y; is the most
effective one, whose absence is responsible for a
0.02 decrease in Pearson, followed by BERTfeq.
and BERT. Interestingly, removing RandomFor-
est yielded a better Pearson score of 0.7560, indicat-
ing that it is detrimental and brought performance
down. This is inconsistent with our results on the
trial set (see Table 5), where all systems contributed
to the final system.



Pearson Spearman MAE MSE R2
Official 0.7556 0.7105 0.0646 0.0070 0.5705
Bible 0.7475 0.7154 0.0662 0.0076 0.5493
Genre Biomedical 0.7763 0.7274 0.0745 0.0088 0.6025
Europarl 0.7195 0.6699 0.0551 0.0049 0.5169
RandomForest  0.7560 0.7126 0.0647 0.0070 0.5685
Ablated BERT 0.7523 0.7069 0.0650 0.0070 0.5655
system  BERTjq 0.7515 0.7067 0.0652 0.0071 0.5633
MTLay 0.7371 0.6920 0.0669 0.0076 0.5335

Table 6: Official results of our submitted system on the test set (sub-task 1). Per-genre performance and ablation

test results are included.

Analysis of RandomForest To understand why
the feature-based regressor performed worse on
the test data, we examined the correlation between
each feature and the complexity scores in the train-
ing (train), trial, and test sets. Results in Table 1
show that several linguistic features (particularly
#3, #4, and #10) are more strongly correlated with
scores in the trial data compared to the test data,
which may explain the discrepancy in our results.
Although most features appear to have a small but
significant correlation with complexity in the train-
ing data, many are not significant in the test data,
likely due to the smaller sample size. This suggests
that, while there may be some weak, overall corre-
lation between these features and complexity, there
is sufficient noise in the data that the relationship is
negligible and unreliable when used to predict the
complexity of a given word.

Additionally, we investigated the importance of
each feature in the random forest regressor, as
measured by the mean permutation importance
(Breiman, 2001) - see Table 1. Our analysis re-
veals that the frequency of the target lemma (#8) is
the most important one, followed by the frequency
of the target word itself (#7). Both of these fea-
tures are more strongly correlated with complex-
ity in the trial data than either the training or test
data, which also contributes to the inconsistency
described above.

6 Conclusion

This paper presents our contribution to the
SemEval-2021 shared task on LCP. We competed
in sub-task 1 (single words) with an ensemble sys-
tem combining three neural models and one feature-
based model. Our analysis reveals that even though
all three neural systems perform comparably, the
MTL system contributed the most to the ensemble
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system. Adding the feature-based model improved
the performance on the trial data, but brought per-
formance down on the test data. In addition to
the mismatch between the trial and test data, the
noise in the data further contributed to this incon-
sistency. The comparatively lower performance
of the feature-based system is especially interest-
ing in light that such systems were competitive
for CWI until relatively recently (Gooding and
Kochmar, 2018). When looking at different genres,
our submitted system yielded the highest perfor-
mance in Pearson, but worst performance in MAE
in Biomedical domain, compared to the other gen-
res. We hypothesise that this is due to differences
in data distribution between genres.
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