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Abstract

Lexical Complexity Prediction (LCP) involves
assigning a difficulty score to a particular
word or expression, in a text intended for
a target audience. In this paper, we intro-
duce a new deep learning-based system for
this challenging task. The proposed system
consists of a deep learning model, based on
a pre-trained transformer encoder, for word
and Multi-Word Expression (MWE) complex-
ity prediction. First, on top of the encoder’s
contextualized word embedding, our model
employs an attention layer on the input context
and the complex word or MWE. Then, the at-
tention output is concatenated with the pooled
output of the encoder and passed to a regres-
sion module. We investigate both single-task
and joint training on both Sub-Tasks data us-
ing multiple pre-trained transformer-based en-
coders. The obtained results are very promis-
ing and show the effectiveness of fine-tuning
pre-trained transformers for LCP tasks.

1 Introduction

Text Simplification (TS) is a fundamental task for
improving text readability, and presents a wide
variety of use cases, including assisting children
with reading difficulties and native speakers with
low literacy levels (De Belder and Moens, 2010;
Aluı́sio and Gasperin, 2010), increasing accessibil-
ity for people with intellectual disabilities (Saggion,
2017), and facilitating certain aspects of language
for language learners (Paetzold and Specia, 2016).
TS may involve modifications to the syntactic struc-
ture of a sentence, its lexical units or both (Shard-
low, 2014).

Lexical Simplification (LS), as a sub-task of TS,
focuses on simplifying complex words of an in-
put sentence. It first identifies complex words in
a sentence, known as Complex Words Identifica-
tion (CWI) or Lexical Complexity Prediction (LCP)

task. Then, it replaces them with other alternatives
of equivalent meaning. Those substitutions should
be more simplistic while preserving the semantic
and the grammatical structure of the input sentence
(Paetzold and Specia, 2017; Qiang et al., 2020).

Most of the previous research has modeled LCP
as a binary classification task (Paetzold and Specia,
2017; Zampieri et al., 2016; Ronzano et al., 2016).
A recent research study has introduced a multi-
domain dataset, annotated using a 5-point Likert
scale scheme (Shardlow et al., 2020). The aim is
to label the complexity of a word or a Multi-Word
Expression (MWE), in a more fine-grained manner,
from very easy to very difficult. Hence, the lexical
complexity of words is expressed on a continuous
scale.

In this paper, we introduce our submitted sys-
tem to the SemEval-2021 LCP 1 and 2 Sub-Tasks
(Shardlow et al., 2021). The proposed system con-
sists of a deep learning model for word and MWE
complexity prediction. Our model employs a resid-
ual attention block and a regression module on top
of a pre-trained transformer encoder, as follows:

• The encoder is fed with the concatenation of
the context and the complex word or MWE,
using the SEP token of the encoder’s tok-
enizer.

• The residual attention block is a layer on top
of the encoder’s Contextualized Word Embed-
ding (CWE) of the input context (sentence)
and the complex word or MWE. The aim is
to leverage the encoder’s CWE to extract the
relevant features of the inputs.

• The attention layer output is concatenated
with the pooled output of the encoder and
passed to the regression module for complex-
ity prediction.
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(a) Distribution of sentences per do-
main

(b) Distribution of single words com-
plexity

(c) Distribution of MWEs complexity
.

Figure 1: Domains and complexity distributions of the datasets sentences

The proposed model is trained to minimize both
the Root Mean Square Error (RMSE) and the aux-
iliary loss associated to the negative Pearson Corre-
lation. The two losses are combined using the un-
certainty loss weighting (Kendall et al., 2017). We
investigate two pre-trained transformer networks,
namely BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). Moreover, we evaluate both
single-task and joint training of word and MWE
complexity prediction sub-tasks. The best perfor-
mances are achieved using RoBERTa-large encoder
while performing joint training on both Sub-Tasks
data. The obtained results are very promising and
show the effectiveness of our system, which was
ranked among the top 10 submitted systems to both
LCP 1 and 2 Sub-Tasks.

The rest of this paper is organized as follows.
Section 2 describes the dataset and the sub-tasks
of SemEval-2021 Task 1. In Section 3, we present
our system overview. Section 4 summarizes and
discusses the obtained results for both Sub-Task 1
and Sub-Task 2. Finally, Section 5 concludes the
paper.

2 Task Description

2.1 Dataset Descripion

The dataset of the Lexical Complexity Prediction
shared task (Shardlow et al., 2021) is an augmented
version of the Complex dataset (Shardlow et al.,
2020). In addition to complex word annotation, the
data also include MWEs along with their context
sentences and complexity scores. The dataset is
annotated using a 5-point (1-5) Likert scale scheme
and covers sentences from three domains: Bible,
EuroParl, and Biomedical texts. The dataset is
labeled by a group of annotators from English-
speaking countries. It is compiled from sentences
with at least four valid annotations. The aggre-
gation of annotations is performed ensuring that

the normalized complexity is in the interval [0, 1].
The complexity scores are on a 5-point Likert scale
and correspond to five levels of complexity rang-
ing from ”Very Easy” to ”Very difficult” (Shardlow
et al., 2020).

2.2 Sub-tasks Descripion
The LCP shared task consists of two sub-tasks
(Shardlow et al., 2021):

• Sub-Task 1: predicting the complexity score
of single words.

• Sub-Task 2: predicting the complexity score
of multi-word expressions.

The training set consists of 7,662 samples for
single word complexity prediction (Sub-Task 1),
while the training set of MWE sub-task contains
1,517 samples (Sub-Task 2). Figure 1a presents the
number of samples per domain. The dataset is al-
most balanced for all three domains in the two LCP
sub-tasks. Figure 1b and 1c show the complexity
distribution of single words and MWEs, respec-
tively. The Figures (1b and 1c) illustrate that most
single words have a complexity score less than 0.5,
whereas for MWEs, the complexity scores are be-
tween 0.25 and 0.75.

3 System Overview

The proposed system uses a residual attention block
and a regression module on top of the pre-trained
transformer encoder network. In the following, we
describe each component of our system.

3.1 Transformer Encoder
In order to encode the input context and the com-
plex word or MWE, we employ two state-of-the-art
pre-trained transformer encoder networks, namely
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). First, the context (sentence) and the
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complex word or MWE are concatenated using the
special token (SEP or /s) of the encoder’s tokenizer,
as follows:

• BERT case:

Input = [CLS] context [SEP ] word/MWE

• RoBERTa case:

Input = < s > context < /s > word/MWE

Then, the tokenizer of the encoder splits the input
into wordpieces [T1, T2, ..., Tn] and encodes them
using its vocabulary. The transformer encoder is
fed with these encoded inputs. As a result, it out-
puts:

• The pooled embedding hpooled ∈ R1×d (the
embedding of [CLS] and < s > tokens for
BERT and RoBERTa encoders, respectively).

• The contextualized word embedding (CWE)
H = [h1, h2, ..., hn] ∈ Rn×d (d is the embed-
ding dimension).

3.2 Attention block
Our model applies an attention layer on top of
the CWE, output by the encoder (Bahdanau et al.,
2015; Yang et al., 2016). The aim is to reward
CWEs according to their relevance to the complex-
ity prediction task. Using the CWE, the attention
layer extracts a features vector v, representing the
weighted sum of H vectors:

C = tanh(HWa)

α = softmax(CTWα)

v = α ·HT

where Wa ∈ Rd×1 and Wα ∈ Rn×n are the learn-
able parameters of the attention layer, C ∈ Rn×1 is
the context vector of the attention mechanism, and
α ∈ [0, 1]n weights the CWEs according to their
relevance to the task.

3.3 Regression Module
The regression module F consists of one hidden
layer and one output layer. F is fed with the con-
catenation of the encoder’s pooled output hpooled
and the output attention block v. F outputs the ŷ,
the predicted complexity:

ŷ = F ([hpooled, v])

The proposed system is trained to minimize both
the Root Mean Square Error (RMSE) and the aux-
iliary loss associated to the negative Pearson Cor-
relation:

• The RMSE loss:

Lrmse(ŷ, y) =

√√√√ 1

N

N∑
i=1

(yi − ŷj)2

• The auxiliary loss associated to the negative
Pearson Correlation:

Laux(ŷ, y) = 1−
∑N

i=1(yi−y)(ŷi−ŷ)√∑N
i=1(yi−y)2

√∑N
i=1(ŷi−ŷ)2

where N is the number of samples, y is the ground
truth complexity, ŷ is the predicted complexity, and
y (resp. ŷ) is the mean of y (resp. ŷ). In order to
combine both Lrmse and Laux, we use the uncer-
tainty loss weighting (Kendall et al., 2017). The
latter aims to combine multiple losses according
to their uncertainty and to avoid manual tuning of
the loss weights. Finally, our model is trained to
minimize the total loss, given by:

Ltotal =
1

2σ21
Lrmse +

1

2σ22
Laux + log(σ1σ2)

where σ1 and σ2 are two parameters for learning
the relative weight of Lrmse and Laux.

4 Results

This section describes the experiment settings and
the obtained results.

4.1 Experiment Setting
We investigate the performance of our system using
both the base and the large models of BERT and
RoBERTa encoders:

• BERT-base: 12 transformer blocks, d = 768,
12 attention heads, and 110M parameters.

• BERT-large: 24 transformer blocks, d =
1024, 16 attention heads, and 336M param-
eters.

• RoBERTa-base: 12 transformer blocks, d =
768, 12 attention heads, and 125M parame-
ters.

• RoBERTa-large: 24 transformer blocks, d =
1024, 16 attention heads, and 355M parame-
ters.

We implement a simple text preprocessing
pipeline that normalizes the contractions1. All mod-
els are trained using Adam optimizer (Kingma and

1We have employed the package contractions for
this purpose. https://github.com/kootenpv/
contractions

https://github.com/kootenpv/contractions
https://github.com/kootenpv/contractions


588

Sub-Task 1 (Word complexity) Sub-Task 2 (MWE complexity)

Training Encoder Pearson Spearman MAE MSE R2 Pearson Spearman MAE MSE R2

BERT-base 0.7211 0.7005 0.0742 0.009 0.4455 0.8199 0.8157 0.0732 0.0086 0.6703
Single BERT-large 0.73 0.7023 0.0816 0.0105 0.3567 0.8214 0.8158 0.0723 0.0087 0.6668
Task RoBERTa-base 0.7402 0.7198 0.0871 0.012 0.2654 0.8274 0.8235 0.0752 0.0087 0.6669

RoBERTa-large 0.7613 0.7309 0.0728 0.0088 0.4629 0.8369 0.8349 0.0749 0.0088 0.6619

BERT-base 0.7236 0.7058 0.0827 0.0109 0.3288 0.8256 0.8125 0.0738 0.0088 0.6349
Joint BERT-large 0.7317 0.6936 0.077 0.0097 0.406 0.8371 0.8391 0.0703 0.0083 0.7191

Training RoBERTa-base‡ 0.7576 0.7318 0.0754 0.0091 0.4374 0.8424 0.8322 0.0696 0.0078 0.6767
RoBERTa-large‡ 0.7779 0.7366 0.0803 0.01 0.3813 0.8489 0.8406 0.076 0.0087 0.638

Table 1: The obtained results using single-task and joint training of both Sub-Tasks 1 and 2. The best performances
are highlighted with bold font. The attached superscript ‡ denotes the results of our two official submissions to
both Sub-Tasks 1 and 2 (TEST).

Sub-Task 1 (Word complexity) Sub-Task 2 (MWE complexity)

Pearson Spearman MAE MSE R2 Pearson Spearman MAE MSE R2
w/o attention 0.7584 0.7316 0.1089 0.0171 0.485 0.8323 0.8335 0.0941 0.094 0.6632
w/o auxiliary loss (Laux) 0.7597 0.7198 0.0695 0.0082 0.3176 0.8382 0.8352 0.0692 0.0074 0.6167
w/o uncertainty loss weighing 0.7694 0.7321 0.0728 0.0088 0.4623 0.8472 0.8401 0.0797 0.0103 0.6071
Model 0.7779 0.7366 0.0803 0.01 0.3813 0.8489 0.8406 0.076 0.0087 0.638

Table 2: Ablation study of our model’s component using joint training and RoBERTa-large as encoder (symbol
w/o denotes without the corresponding component). w/o uncertainty loss weighing corresponds to the simple
combination of model losses (Ltotal = Lrmse + Laux).

Ba, 2015) with a learning rate of 1 × 10−5. The
batch size and the number of epochs are fixed to 16
and 5, respectively. We investigate both single-task
training and joint training of both Sub-Task 1 and
Sub-Task 2 (training a single model on both sub-
tasks data). All models are trained on the full train
sets, validated on the trial sets, and evaluated on
the test set of each Sub-Task. For evaluation pur-
pose, we use the shared task’s evaluation metrics,
namely the Pearson correlation, the Spearman
correlation, the Mean Absolute Error MAE, the
Mean Squared Error MSE, and the coefficient of
determination R2.

4.2 Experiment Results
Table 1 presents the obtained results of our model
for both single-task and joint training, using the
four transformer-based encoders. The overall re-
sults show that training joint models for both Sub-
Tasks (1 and 2) outperform their single-task coun-
terparts. The Use of deep encoders (large encoders)
in our model yields better correlation performances.
The best results for the correlation metrics are ob-
tained using joint training and RoBERTa-large. For
Sub-Task 1, the best MAE, MSE and R2 perfor-
mances are achieved using single-task training and
RoBERTa-large encoder. For Sub-Task 2, the best
performances of all evaluation measures are ob-
tained using joint training. In accordance with

Sub-Task 1, the best correlation performances are
attained using RoBERTa-large encoder. Besides,
the best R2 is achieved using BERT-large, while
the top MAE and MSE performances are obtained
using RoBERTa-base.

To sum up, the best performances are obtained
by joint training of our model on top of a deep
encoder. These results can be explained by the fact
that deep encoders yield better input representation
for both Sub-Tasks. The joint training helps to
leverage signals from both Sub-Tasks.

4.3 Ablation Experiment

In order to assess the effectiveness of each compo-
nent of our model, we perform an ablation study
using joint training and RoBERTa-large encoder.
Table 2 illustrates the results of our model’s abla-
tion study. The results show that all components in
our model improve the system performance. The
auxiliary loss improves the performances of corre-
lation measures, while it degrades MAE, MSE, and
R2 performances. Combining RMSE and auxiliary
losses using uncertainty loss weighting slightly im-
proves the performance of correlation measures.

5 Conclusion

In this paper, we have presented our submitted
system to the SemEval-2021 Task 1. The pro-
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posed system consists of a deep learning model
for word and MWE complexity prediction. Our
model employs a residual attention block and a re-
gression module on top of a pre-trained transformer
encoder. We have trained the model to minimize
the uncertainty weighted loss of the RMSE and the
auxiliary loss associated to the negative Pearson
correlation. Experiments are performed using the
base and the large variants of the pre-trained BERT
and RoBERTa encoders. The best performance
is obtained using RoBERTa-large encoder while
performing joint training on both Sub-Tasks data.
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