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Abstract
In this contribution, we describe the system
presented by the PolyU CBS-Comp Team at
the Task 1 of SemEval 2021, where the goal
was the estimation of the complexity of words
in a given sentence context.

Our top system, based on a combination
of lexical, syntactic, word embeddings and
Transformers-derived features and on a Gradi-
ent Boosting Regressor, achieves a top corre-
lation score of 0.754 on the subtask 1 for sin-
gle words and 0.659 on the subtask 2 for mul-
tiword expressions.

1 Introduction

The notion of complexity has often been debated in
linguistics and, depending from the disciplines, it
might have different meanings.

In linguistic typology, for example, complexity
is generally studied as a property of the language
system as a whole, it is conceived as the number of
(morphological, syntactic, semantic etc.) distinc-
tions that a speaker has to master, and it is assessed
by comparing different languages (McWhorter,
2001; Parkvall, 2008). On the other hand, in the
perspective of psycholinguistics and cognitive sci-
ence, the notion of complexity can be described
as the difficulty encountered by language users
while processing concrete linguistic realizations
(sentences, utterances etc.) (Blache, 2011; Cher-
soni et al., 2016, 2017, 2021; Iavarone et al., 2021;
Sarti et al., 2021). Finally, in the Computational
Linguistics community, the assessment of complex-
ity at the lexical level is often related to readability

applications (Shardlow et al., 2020), with the goal
of determining if a word in a given text will be
difficult to understand for the language users. Such
applications are extremely useful for second lan-
guage learners, for speakers with relatively low
literacy and for people with reading disabilities,
helping to tailor the difficult level of the texts to the
needs of the target users.

Task 1 of SemEval 2021 (Shardlow et al., 2021)
aims at the development of systems for the estima-
tion of lexical complexity in context, both for single
words and for multiword expressions. The organiz-
ers provided two datasets with the target words in a
sentence context, with annotations consisting of a
mean of the complexity ratings assigned by humans.
In our paper, we present the system developed by
the PolyU CBS-Comp team for the competition.
Our top system achieves a Pearson correlation of,
respectively, 0.754 on the single words dataset and
0.659 on the multiword expressions one.

2 Related Work

In the earliest shared task on the lexical complexity
problem, organized in 2016 (Paetzold and Specia,
2016), complexity was defined as a binary variable:
given a word in context, the word will be judged as
complex or not. Of course, this was a simplifying
assumption, since there might be many situations
where the boundary is not a clear-cut one, and anno-
tators would rather indicate a value in a continuous
scale. Moreover, the ”complex” words in the data
only needed to be categorized as such by just one
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of the annotators. A further study by Zampieri et al.
(2017) analyzed the output of the participating sys-
tems, showing that modeling complexity as binary
actually hindered their performance.

A second iteration of the shared task was orga-
nized in 2018 (Yimam et al., 2018), this time fea-
tures two separate subtasks: the traditional binary
classification task, where systems had to predict
whether one word was complex or not, and a re-
gression task, where systems had to estimate the
probability that an annotator would have consid-
ered a given word as complex.

Recently, Shardlow et al. (2020) have introduced
CompLex, a new gold standard for the estimation
of lexical complexity in context for English: the
corpus, including sentences from different textual
genres, is annotated with the mean complexity rat-
ings for the target words. As a preliminary evalu-
ation, the authors presented the results of a linear
regression model trained on sets of features includ-
ing word and sentence embeddings and some hand-
crafted features that are traditionally associated to
complexity, such as frequency, word length and
syllable count. The best scores, in terms of mean
absolute error, were obtained when using only the
latter set of features, while models based on the di-
mensions of the embeddings were lagging behind.

3 Datasets

The datasets for the shared task are part of the
CompLex corpus, which has been published and
described by Shardlow et al. (2020). The annotated
sentences were collected using three different cor-
pora: the Europarl corpus (Koehn, 2005), which
includes the proceedings of the European Parlia-
ment; the CRAFT biomedical corpus (Bada et al.,
2012); and the Bible, in the modern version of the
World English Bible translation (Christodouloupou-
los and Steedman, 2015).

The organizers selected targets as either single
words (Sub-Task 1) or multiword expressions (Sub-
Task 2), and the datasets include also multiple ex-
amples with the same target, as different contexts
can determine different complexity values. As for
the multiword expressions, they were identified via
syntactic patterns, being either adjective-noun or
noun-noun phrases.

20 annotations per data instance were collected,
with annotators coming from different English-
speaking countries (US, UK and Australia): the
possible ratings ranged from 1 → Very Easy to 5

Dataset Instance Corpus Score
This was the length of Sarah’s life. Bible 0.125

... dissenters by definition excluded. Europarl 0.688
...due to reduction in adipose tissue... CRAFT 0.813

Table 1: Examples of the instances from the different
corpora, together with the mean complexity scores for
the target words in bold.

→ Very Difficult. Mean scores were then normal-
ized in the 0-1 range.

In a first phase, the organizers released a training
data of 7661 samples for the single words track and
1517 samples for the multiword expressions track,
together with a trial/validation dataset of 420 and
99 samples, respectively. Later, they released a test
set of 917 samples for the single words track and
184 samples for the multiword expressions track.

Examples of the instances are shown in Table 1.

4 Evaluation

For both the single words and the multiword ex-
pressions track, we used the same set of features
as input for a regression algorithm. In the multi-
word expressions track, we computed the value of
the features for each of the two words in the target
expression and then we took the average.

4.1 Features

As hand-crafted features, we adopted the same ones
used by Shardlow et al. (2020) in the original eval-
uation of their dataset: Logarithmic Frequency,
Word Length and Syllable Length. The latter two
have been extracted using the Python textstat
for each target word. As for the frequency feature,
we extracted a general, out-of-domain frequency
for each target word using the SUBTLEX database
(Brysbaert and New, 2009) and the wordfreq
Python package (Speer et al., 2018), and then we
extracted the frequency of the word in each one
of the three corpora composing CompLex. In to-
tal, we obtained 6 features (4 frequency + 2 length
features) for each instance. We also added two
Boolean features for Capitalization: the first was
equal to 1 if the first letter of the target word was
upper case and 0 otherwise; the second one was
equal to 1 if all the letters of the target word were
upper case and 0 otherwise. The latter feature was
added because we noticed that some of the target
words in the dataset are acronyms.

Apart from the lexical information, Syntactic
Features were explored for both single words and
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multiword expressions. The StanfordNLP tools
(Manning et al., 2014) were first used to acquire
both the part-of-speech (POS) tags and dependency
trees. POS tags of target words were manipulated
using one-hot encoding, for a total of 20 POS-based
features. On the other hand, directed and path from
the target word to the root were extracted as depen-
dency features. We concatenated all dependency
tags to the root, using one-hot encoding once again
to encode every distinct path as a single feature. In
total, we generated 267 dependency paths features
with this mechanism.

Another feature was based on Word Embed-
ding similarity: first, we computed the sum of the
embeddings for all the words preceding the target,
as a sort of general representation of the sentence
context 1, and then we measured the cosine simi-
larity with the embedding of the target word. If the
target was a multiword expression, we summed the
embeddings of the words composing it. As word
embeddings, we used the publicly available Fast-
Text vectors, pre-trained on the Wikipedia corpus
(Bojanowski et al., 2017). 2

We added one feature based on the BERT
Transformer Model (Devlin et al., 2019) 3 by
masking the target word in the original sentence
and taking the probability value provided in output
by the Softmax. For multiword expressions, we se-
quentially masked the words composing the target
and took the average value.

Similarly, we used the GPT-2 Transformer
Model (Radford et al., 2019) 4 to obtain a prob-
ability score for the full sentence, computed as the
product of the probabilities of the single tokens.

The total number of extracted features is 300. Fi-
nally, we decided to generate polynomial features
from our set, in order to exploit potential inter-
actions. We used the PolynomialFeatures
functionality of the scikit-learn Python pack-
age to generate interaction features of order 2, so
that the final number of features that was fed to the
regressors was 45151.

1The use of vector sum as a compositional function has
been used in Distributional Semantics since Mitchell and Lap-
ata (2010).

2https://fasttext.cc/docs/en/
pretrained-vectors.html.

3We used the BERT-large-cased model, in the implementa-
tion of the Happy Transformer library: https://github.
com/EricFillion/happy-transformer.

4We used the GPT2-xl model, in the implementation of
the lm-scorer package: https://pypi.org/project/
lm-scorer/.

4.2 Regressors
We tested several regression algorithms, using the
implementations in the scikit-learn Python
package. The adopted scikit-learn API and the
main hyper-parameters are listed below:

• RR Ridge: Ridge Regression solves a re-
gression model where the loss function is the
linear least squares function and regulariza-
tion is given by the l2-norm. alpha=1.0,
normalize=True.

• MLP MLPRegressor: Multi-layer Per-
ceptron regressor optimizes the squared-
loss using LBFGS or stochastic gradi-
ent descent. hidden layer size=5,
activation=identity, solver=adam.

• PLSR PLSRegression: PLS Regres-
sion implements the PLS2 blocks regres-
sion in case of one dimensional response.
components=5.

• BRR BayesianRidge: a Bayesian
Ridge model implements the optimization
of the regularization parameters lambda
and alpha. alpha 1,alpha 2==1.0e-6,
lambda 1,lambda 2=1.0e-6.

• LR LinearRegression: Linear Regres-
sion is trained based on ordinary least squares
function. normalize=True.

• RF RandomForestRegressor: a Ran-
dom Forest is a meta estimator that fits a num-
ber of classifying decision trees on various
sub-samples of the dataset and uses averaging
to improve the predictive accuracy and con-
trol over-fitting. min samples split=2,
min samples leaf=1.

• GBR GradientBoostingRegressor:
Gradient Boosting builds an additive model
in a forward stage-wise fashion which
allows for the optimization of arbitrary
differentiable loss functions. learning
rate=0.1,min samples split=2,
min samples leaf=1.

4.3 Metrics
The performance of the participating systems was
evaluated in terms of Pearson correlation (r) be-
tween the outputs and the human mean ratings.
In the Results section, we also report the scores

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
https://github.com/EricFillion/happy-transformer
https://github.com/EricFillion/happy-transformer
https://pypi.org/project/lm-scorer/
https://pypi.org/project/lm-scorer/
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for Spearman correlation (ρ), Mean Absolute Er-
ror (MAE), Mean Squared Error (MSE) and R-
Square (R2).

5 Results

We evaluated our system for two subtasks based on
given trial datasets. For each regressor, we tuned
hyper-parameters according to each subtask. Per-
formance evaluation has been carried out in two
aspects: the assessment of the overall correlation
with human ratings and the analysis of the contri-
bution of the features.

5.1 Complexity Prediction

Evaluation metrics are reported ranking by Pearson
correlation in Table 2 and 3 for single words and
multiword expressions, respectively.

Regressor r ρ MAE MSE R2
RR 0.34 0.36 0.100 0.017 0.097
MLP 0.39 0.46 0.099 0.017 0.083
PLSR 0.46 0.53 0.093 0.015 0.206
BRR 0.47 0.51 0.094 0.015 0.181
LR 0.48 0.54 0.092 0.015 0.208
RF 0.49 0.65 0.078 0.010 0.472
GBR 0.75 0.72 0.070 0.008 0.561

Table 2: Performance on single words prediction (Sub-
Task 1).

Regressor r ρ MAE MSE R2
RR 0.26 0.28 0.128 0.021 0.083
MLP 0.28 0.37 0.117 0.019 0.091
BRR 0.40 0.42 0.112 0.017 0.151
PLSR 0.40 0.42 0.109 0.017 0.178
LR 0.41 0.42 0.110 0.016 0.183
RF 0.44 0.51 0.105 0.015 0.424
GBR 0.66 0.66 0.090 0.013 0.427

Table 3: Performance of multiword expressions predic-
tion (Sub-Task 2).

Features r ρ MAE MSE R2
Hand-crafted 0.73 0.69 0.072 0.009 0.527
+Synt. 0.73 0.69 0.073 0.009 0.528
+Embs. 0.73 0.69 0.073 0.009 0.530
+Trans. 0.74 0.71 0.071 0.009 0.545
+ALL 0.75 0.72 0.070 0.008 0.561

Table 4: Ablation study of feature groups.

It can be observed that predicting the complexity
of single words is naturally less difficult than mul-
tiword expression. Concerning the regression al-
gorithm, gradient boosting regression outperforms
other investigated methods by a large gap, while
PLS regression, Bayesian ridge regression, linear

regression and random forest regression perform
very similarly. Though PLSR has a worse Pearson
correlation than BRR, its R2 and Spearman cor-
relation are slightly better. Further studies about
regressors brought some unexpected results for our
feature based approaches: based on the features we
selected, Ridge Regression performs worse than
linear regression, suggesting that some features are
not suitable for applying L2-norm.

5.2 Feature Study

As our proposed method heavily relies on feature
selection, the acquired features are investigated
in four groups: Hand-crafted (including Logarith-
mic Frequency, Word and Syllable Length and
Capitalization), Syntactic (including the POS- and
the Dependency-based features), Embedding and
Transformer features. We adopted the features of
the Hand-crafted group as baseline, and present a
comparison between the performance of systems
using the other features as add-on components. The
scores in Table 4 refer to the performance on the
single words dataset, by using GBR as a regressor.

According to Table 4, syntactic, embedding and
transformer based features can all contribute to
improve the prediction results. As expected, the
combination of all feature type groups can achieve
the best predicting capability.

Comparing with the baseline of hand-crafted fea-
tures, syntactic and embedding features have very
marginal contribution. Yet, it should not be ne-
glected supplementing only transformer based fea-
tures cannot achieve the maximum performance
gain. This indicates that the interaction of the indi-
vidual features can bring latent useful information
to model, further revealing the complexity values
of the target words.

6 Conclusion

In this paper, we presented the PolyU CBS-Comp
system for lexical complexity prediction, which
took part in the SemEval shared task 1. Our method,
based on a combination of lexical, syntactic, em-
beddings and Transformers features, achieved a
0.754 correlation on single words and 0.659 on mul-
tiword expressions, when using Gradient Boosting
as a regression algorithm.

Traditional hand-crafted features, followed by
Transformer-based ones, seem to give the strongest
contribution to the classification performance,
which is further improved by adding feature in-
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teractions to the input for the regressor.
For future studies on lexical complexity, we plan

to further exploit the text genre information, for ex-
ample by adding domain-adapted language model
features (Van Schijndel and Linzen, 2018) to the
information available to our models.
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