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Abstract

This paper describes our contribution to Se-
mEval 2021 Task 1: Lexical Complexity Pre-
diction. In our approach, we leverage the
ELECTRA model and attempt to mirror the
data annotation scheme. Although the task is
a regression task, we show that we can treat it
as an aggregation of several classification and
regression models. This somewhat counter-
intuitive approach achieved an MAE score of
0.0654 for Sub-Task 1 and MAE of 0.0811 on
Sub-Task 2. Additionally, we used the concept
of weak supervision signals from Gloss-BERT
in our work, and it significantly improved the
MAE score in Sub-Task 1.

1 Introduction

With the rapid growth in digital pedagogy, English
has become an extremely popular language. Al-
though English is considered an easy language to
learn and grasp, a person’s choice of words often
affects texts’ readability. The use of difficult words
can potentially lead to a communication gap, thus
hampering language efficiency. Keeping these is-
sues in mind, many Natural Language Processing
tasks for text simplification have been recently pro-
posed (Paetzold and Specia, 2017; Sikka and Mago,
2020). Our task of lexical complexity prediction
is an important step in the process of simplifying
texts.
The SemEval 2021 Task 1 (Shardlow et al., 2021)
focuses on lexical complexity prediction in English.
Given a sentence and a token from it, we have to
predict the complexity score of the token. The task
has two Sub-Tasks-
Sub-Task 1: complexity prediction of single words
Sub-Task 2: complexity prediction of multi word
expressions (MWEs).
A word might seem complex because of 2 major
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factors-
a) The word is less common or complex in itself.
b) The context in which the word is used makes it
hard to comprehend.
Observing the orthogonality of these two reasons,
we captured the context-dependent features and in-
dependent features separately, trained models on
them individually, and then combined the two us-
ing ensemble methods. We used the ELECTRA
(Clark et al., 2020) model for extracting context-
dependent features and GloVe embeddings (Pen-
nington et al., 2014) for representing the word-level
features.
Additionally, we propose a classification pipeline
that is trained on GloVe embeddings of the tokens.
This pipeline can be interpreted as a model for
capturing different annotators’ thought processes:
overconfidence, under-confidence and randomness.
We are making our code available for our models
and experiments via GitHub1.

2 Background

This task uses the CompLex dataset (Shardlow
et al., 2020), which is a lexical complexity predic-
tion dataset in English for single and multi word ex-
pressions (2-grams). Sentences in this task consists
of sentences taken from 3 corpora- Bible, Biomed
and Europarl. The train, validation and test split
of the data was 9179, 520, 1103 respectively. We
used the trial data as the validation set.
The aim of the task is to predict how complex a
given token in a given sentence is. More mathemat-
ically, given a tuple [s, t, c], where s = [t1, t2, ...tn]
and t = tj , we have to give an estimate of the func-
tion σ, such that σ(s, t) = c. (s is the sentence, t is
the token and c is the complexity score).
The earlier focus on this task has been through

1https://github.com/neilrs123/Lexical-Complexity-
Prediction

https://github.com/neilrs123/Lexical-Complexity-Prediction
https://github.com/neilrs123/Lexical-Complexity-Prediction
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Figure 1: Solution Pipeline

the SemEval 2016 Task 11 (Paetzold and Specia
(2016a)). However, it was a binary classification
task. Most of the participating systems used Sup-
port Vector Machines such as Kuru (2016) and
Choubey and Pateria (2016), decision trees and ran-
dom forests (Choubey and Pateria (2016), Brooke
et al. (2016), Ronzano et al. (2016)), and even basic
threshold based approaches (Kauchak (2016), Mal-
masi et al. (2016)). Very few of them, including
Bingel et al. (2016) used neural networks. The sys-
tem by Wróbel (2016) achieved an F1 score very
close to the winning solution using only single fea-
ture - word frequency from Wikipedia. Most of
these systems use word embeddings, POS informa-
tion and word frequencies as features. The winning
system by Paetzold and Specia (2016b) however
uses 69 morphological, semantic and syntactic fea-
tures.
Another related shared task was presented at the
BEA workshop at 2018 (Yimam et al., 2018). It
had a probabilistic task as well as a binary classi-
fication task. Even there, the organizers conclude
that feature engineering has worked better than neu-
ral networks. The winning system by Gooding and
Kochmar (2018) uses feature engineering and later
random forest and linear regression models.

3 System Overview

Our proposed pipeline can be divided into the fol-
lowing 4 main components-
a) Feature Extraction
b) Regression Pipeline
c) Classification Pipeline
d) Ensemble
The pipeline is shown in Figure 3.

3.1 Feature Extraction

ELECTRA is a transformer based model, that is
trained like a discriminator and not like generator.
And in our case, this model performed exception-
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Figure 2: Convergence of losses for finetuning ELEC-
TRA with weak supervision

ally well on the validation data as compared to
BERT (Devlin et al., 2019).

We extracted context-dependent features using
embeddings generated from the ELECTRA model
and captured context-independent word-level fea-
tures using static 200-dimensional GloVe embed-
dings of the tokens.
In order to generate the embeddings of the tar-
get word through ELECTRA, we implemented
the KMP pattern matching algorithm (Wikipedia,
2021) to find the indices of the sub-tokens of the tar-
get token in the tokenized sentence. Subsequently,
we calculated an average across these sub-token
embeddings generated by ELECTRA.
While using GloVe embeddings, in the case of
multi-word expressions in Sub-Task 2, the average
of the embeddings of both token words was taken
as the feature vector. If a word was not present in
the GloVe dictionary, the GloVe embedding was
initialized to a 200-dimensional vector consisting
of zeros.

3.2 Regression Pipeline

The most natural way to look at the lexical complex-
ity prediction task is to treat it as a regression task.
The regression pipeline, a significant component of
our system, is based on this idea. For Sub-task 1,
in the regression pipeline, a pretrained ELECTRA
model was finetuned with a linear layer on top of
it. We leveraged the model directly available at
the Huggingface library (Wolf et al., 2020). Only
the last transformer layer of ELECTRA was kept
trainable. The remaining ones were kept frozen.
For Sub-task 2, a fixed ELECTRA model (non-
trainable weights) was used to generate token em-
beddings and a linear regression model was trained
with these extracted embeddings.
Weak Supervision: In order to have higher atten-
tion on the target word, the use of weak supervi-
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sion signals proved useful. Inspired by GlossBert
(Huang et al., 2019), the target word was wrapped
with single inverted commas (’ ’s) as a weak signal
to the transformer (Vaswani et al., 2017) model.
This technique significantly improved the results
obtained using the regression pipeline in subtask I.
However, the same technique applied to subtask II
made the scores worse.

Method Val MAE Test MAE

+ signal 0.06516 0.06800
- signal 0.06990 0.07118

Table 1: Variation of MAE scores with and without the
signalling technique for Sub-task 1: the single word
task. (’+ signal’ means weak supervision has been used
and ’- signal’ means otherwise.)

3.3 Classification Pipeline

Motivation from Annotation Procedure: An-
other way to look at the task is via a novel clas-
sification pipeline that is inspired from the data
annotation process that is explained in Shardlow
et al. (2020). Even though the task is a regres-
sion task, each data annotator performed a 5 class
classification-
Given a sentence and a token in the sentence, each
annotator had to select one class from among Very
Easy, Easy, Neutral, Difficult and Very Difficult.
Each of these classes was mapped to a discrete la-
bel between 0 and 1- namely 0, 0.25, 0.5, 0.75 and
1 respectively. The final complexity score was an
average of up to 20 such annotations.
The Classification Pipeline aims to model this data
annotation procedure. The main idea of this pro-
cess is to teach classification models how to anno-
tate data tuples. The three main components of this
scheme are-
a) Generating dummy annotations from complexity
scores b) Training classification models on dummy
annotations, and c) Aggregating all predicted anno-
tations to generate predicted complexity scores.
Generation of Dummy Annotations: A given
complexity score can be represented as a weighted
average of its lower and upper target classes and
the weights can be determined using the magnitude
of the complexity score. These weights then de-
termine the proportions of the two classes in the
set of dummy annotations for that data tuple. For
example, if the number of dummy annotators is
n = 5 and the complexity score of the training

example is c = 0.2, the lower and upper target
classes are low = 0 and high = 0.25, respec-
tively. Let α be the proportion of dummy annota-
tions with the lower target class. Correspondingly,
1 − α will be the proportion with the upper tar-
get class. The number of dummy annotations with
target class = low are given as floor(n∗α) and
that with target class = high as n−floor(n∗α).
α can be calculated using the equation-

c = α ∗ low + (1− α) ∗ high
We get α = 0.2. Hence, we have floor(n∗α) = 1
dummy annotations with target class = low(0)
and remaining 4 annotations with target class =
high(0.25). Hence, the dummy annotations set
for c = 0.2 is 0, 0.25, 0.25, 0.25, 0.25. Simi-
larly, the dummy annotations set for c = 0.8 is
0.75, 0.75, 0.75, 0.75, 1.
In this process, we also attempted to capture the
impact of intentional human errors made during
the data annotation procedure. Just like a weary or
uninterested annotator who would have randomly
selected for one of the five classes for a certain data
tuple, a small fraction of the dummy annotations
was assigned random values from the set contain-
ing 0, 0.25, 0.5, 0.75 and 1. This modification aims
to model the small-scale randomness in annotation
procedure.
Using this procedure, dummy annotation sets of
size n can be generated for any value of c, where
n can be treated as a hyperparameter. The value
n can also be interpreted as the number of classi-
fication models that are being trained in the next
step.
Classification Models: In a diverse set of annota-
tors, there will be over-confident annotators who
will select lower classes and there will be under-
confident annotators who will select upper classes.
Then there will be neutral annotators as well. By
ensuring that the dummy annotations are sorted,
we can say that the first classifier learns how to
annotate like the over-confident annotator, the last
classifier learns how to annotate like the under-
confident annotator and the classifiers in between
model the neutral annotators. We trained SVM clas-
sifiers with RBF kernels, using GloVe embeddings
of token words as features.
Aggregation of Predicted Annotations: The an-
notations were aggregated by simply taking the
average of all predicted class labels in order to ob-
tain the final predicted complexity scores. Each of
these models may have high individual variances,
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Figure 3: A few worked out examples of generating
dummy annotations from complexity scores. For each
of these cases, the continuous labels 0,0.25,0.50,0.75
and 1 are mapped to categorical labels 1,2,3,4,5 and
then put into SVM. Clearly the labels of the 1st classi-
fier is less that that of the second one. i.e. on a scale of
confidence, the first classifier is at a lesser position. So
it models a less confident person.

but the ensemble tends to have lower variance and
bias. Also, any number of models can be inserted
in the ensemble without leading to over-fitting on
the train data.

3.4 Ensemble
In order to have a better bias variance trade off and
also to exploit the “expertise” of different pipelines,
the final approach incorporates both the regression
and classification pipelines to form an ensemble.
The final predicted complexity was obtained by
taking an ensemble of the predictions from the
regression and classification pipelines as described
above. The classification pipeline for both the Sub-
Tasks was based on GloVe embeddings as features
and SVM classifiers. The regression pipeline for
Sub-Task 1 was based on fine-tuning ELECTRA
with weak supervision and that for Sub-Task 2 was
based on features collected from ELECTRA model
(non-trainable) with a linear regression trained on
it.

4 Experimental Setup

The official evaluation metric for both the Sub-
Tasks was Pearson Correlation (standard for regres-
sion tasks). For both sub-tasks, the train/test/val
split as per the official release has been used. The
ELECTRA finetuning was done with an NVIDIA
GTX 1080 GPU with early stopping (93 epochs).
We used the MAE loss function to train the model
with an adam optimizer with lr = 1e−5, eps =
1e− 08 and weightdecay = 0 . Training set was
shuffled and the batch size was kept at 64. In the
ELECTRA model, the padding parameter was set

to True and maximum length was at 140. For the
SVM models the value of slack was chosen to be
1 and for SVM and Linear regresion the sklearn
(Pedregosa et al., 2011) library was used. All the
hyperparameters were tuned with a grid search
method.

5 Results

Results on Validation Data: The comparison of
the baseline results and our results obtained using
the regression pipeline, the classification pipeline
and the ensemble of the two models on the valida-
tion set (trial data) is given in Table 4.

Task Baseline Regre- Classi-
ssion fication
Pipeline Pipeline

Subtask
1

0.0853 0.0651 0.0641

Subtask
2

- 0.0840 0.0768

Table 2: Results on validation set (Mean Absolute Er-
rors)

Task MAE Pearson MSE
One 0.0623 0.8308 0.0065
Two 0.0727 0.8146 0.0087

Table 3: Results on Vaditation Set for final ensemble

Results on Test Data: Our results on the test data
along with the best results obtained for each task
are shown in Table 1.
The winning system’s pearson and MAE scores
on the test data are as follows: 0.7886 and 0.0609
for subtask I(single word expressions), 0.8612 and
0.0616 for subtask II(multi word expressions).

Task MAE Pearson MSE
One 0.0654 0.7511 0.0071
Two 0.0811 0.8277 0.0098

Table 4: Results on Test Set

6 Error Analysis

Analyzing all the experiments and the correspond-
ing results, the following can be concluded: a)
Word-level features as well as context-dependent
features need to be considered while determining
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complexity of a token. b) Approaches based on the
data annotation scheme are well suited to tackle the
lexical complexity prediction task. c) Ensemble
of a large number of simple models is an effective
way of tackling this task. d) Models with large
number of parameters like BERT () suffer heavily
due to overfitting, where as ELECTRA base prove
to be much better.
The model architectures that were tried out in ear-
lier stages showed similar trends. For example,
ELECTRA finetuning produced much better scores
than BERT finetuning. Also, simpler models like
a simple linear regression on GloVe embeddings
showed promise, proving that simpler models with
lesser parameters worked better. All these trends
across those models are visually shown in Figure
4. It was observed that the model was underper-
forming on the tuples from Biomed corpus. How-
ever the scores did not improve using BERT vari-
ants like BioBERT (Lee et al., 2019), BioMed-
BERT (Chakraborty et al., 2020) and a few other
transformer based models pretrained on biomedi-
cal texts. A variant of ELECTRA on biomedical
texts could have improve on this, however due to
its unavailability it could not be tried out.
In majority of the prior work on LCP, there is abun-
dance use of word frequency as a feature. However,
in this system the scores got worse when frequency
features were used along with others in ensemble.
And the feature in itself could not produce compet-
itive results. Previously, Gong et al. (2020) and Mu
et al. (2018) have shown that frequency informa-
tion causes significant distortion in the embedding
space. We also hypothesize that the frequency in-
formation in GloVe embeddings help us in this
regard.

7 Conclusion

In this paper we presented a system for lexical com-
plexity prediction in the form of a regression task.
The proposed system’s primary novelty is in treat-
ing it as a classification task and trying to model
the annotation scheme. An ensemble of these clas-
sification models and vanilla fine-tuning of ELEC-
TRA model proved to be very useful. Also the
weak supervision based approach gave the scores a
significant boost for the Sub-Task 1.
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