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Abstract

This paper presents the winning system that
participated in SemEval-2021 Task 5: Toxic
Spans Detection. This task aims to locate
those spans that attribute to the text’s toxic-
ity within a text, which is crucial for semi-
automated moderation in online discussions.
We formalize this task as the Sequence Label-
ing (SL) problem and the Span Boundary De-
tection (SBD) problem separately and employ
three state-of-the-art models. Next, we inte-
grate predictions of these models to produce
a more credible and complement result. Our
system achieves a char-level score of 70.83%,
ranking 1/91. In addition, we also explore the
lexicon-based method, which is strongly inter-
pretable and flexible in practice.

1 Introduction

41% of American adults in 2020 are reported ex-
periencing some form of harassment1. Increasing
incidents of online harassment and cyber violence
have spurred researchers to investigate the prob-
lem of identifying and filtering offensive speech
on the Internet. Most previously published insult
detection tasks (Davidson et al., 2017; Xu et al.,
2012) and methods (Aroyehun and Gelbukh, 2018;
Modha et al., 2018) classify an entire comment (or
document) to discern whether the comment is offen-
sive or not, but cannot identify specific pieces of the
toxic comment. Unlike previous studies, SemEval-
2021 Task5: Toxic Span Detection(Pavlopoulos
et al., 2021) requires the identification of the spe-
cific toxic spans, which is more innovative and
challenging, and a key step towards a successful
semi-automatic review of comments.

†Authors equally contributed to this work.
‡Corresponding Author: xuruifeng@hit.edu.cn

1https://www.pewresearch.org/internet/2021/01/13/the-
state-of-online-harassment/

More formally, toxic span detection is an extrac-
tion task, which is usually formalized as a Sequen-
tial Labeling (SL) problem, as shown in Figure
1(a), locating those spans by BIO tags. However,
SL methods suffer from a huge search space due
to the compositionality of labels (the power set of
all sentence words), which has been proven in (Lee
et al., 2016; Hu et al., 2019a). Therefore, in ad-
dition to SL formalization, we also formalize the
task as a Span Boundary Detection (SBD) problem,
as shown in Figure 1(b), locating those spans by
start and end positions. Notice that, when there
are multiple spans in a sentence, the matching of
start and end positions may be ambiguous during
decoding. This shows that theoretically, the SBD
formalization is not consistently superior to the
SL formalization. Hence, we choose to combine
predictions of these two kinds of formalization to
produce a more credible and complement result.
Our system achieves a char-level score of 70.83%,
ranking 1/91.

Besides, we also explore the lexicon-based meth-
ods, which usually have high precision but rather
low recall, and are strongly interpretable and flex-
ible in practice. First, we mine a toxic lexicon
from the training set by a simple statistical strat-
egy. Next, WordNet (Fellbaum, 2010) and GloVe
(Pennington et al., 2014) are utilized to extend this
lexicon further. With a toxic lexicon, we extract
toxic spans through word-level matching.

2 Related Work

In recent years, cyber violence has become a
widespread societal concern, and how to identify
and filter hate speech has become an important
topic in machine learning. TRAC proposes an
aggression recognition task (Kumar et al., 2018)
that provides a dataset of 15,000 annotated Face-
book posts and comments in English and Hindi for
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Figure 1: Comparison of SL and SBD, (a) denotes SL, (b) denotes SBD.

training and validation. The task aims to classify
comments into three categories: non-aggressive,
covertly aggressive, and overly aggressive. The
Toxic Comment Classification Challenge 5 2 is an
open competition in Kaggle that provides partici-
pants with comments from Wikipedia and defines
six toxic categories: toxic, severe toxic, obscene,
threat, insult, identity hate. In SemEval 2019 task
6 (Zampieri et al., 2019), in addition to whether the
comment is offensive, the type of the attack and
the target of the attack are also included. Based on
this, Semeval 2020 task 12 (Zampieri et al., 2020)
further extends the dataset to 5 languages: Arabic,
Danish, English, Greek, and Turkish.

3 Methods

In the section, we describe how toxic span detection
is formalized and corresponding solutions in detail.

3.1 Sequence Labeling

The BIO tag scheme is utilized to locating toxic
spans, where B (Begin) corresponds to the first
token in a toxic span, I (Inside) corresponds to
the inside and end tokens in a toxic span, and O
corresponds to those no-toxic tokens. Following
most existing work (Lample et al., 2016; Ma and
Hovy, 2016), we leverage Conditional Random
Fields (CRF) (Lafferty et al., 2001) for learning
and inference.

In addition to token-level classification, CRF
models the dependencies between tags in a tag se-
quence by the transition matrix A ∈ RK×K , where
K is the size of the tag space, i.e. K = 3. For the
contextual representation x ∈ Rn×h, the score of a
tag sequence y ∈ Rn in CRF is defined as:

S(x,y) =h1(y1;x)+ (1)
n−1∑
k=1

(
hk+1 (yk+1;x) +Ayk,yk+1

)
.

2https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

where hk(yk;x) is the score of the tag yk at the
k time step. Then, the conditional probability is
obtained by a normalization operation:

P (y|x) = exp(S(x,y))∑
ỹ∈Y exp(S(x, ỹ))

. (2)

where Y contains all possible paths of tag se-
quences. During inference, the predicted tag se-
quence ŷ is obtained by:

ŷ = argmax
y∈Y

P (y|x). (3)

We adopt BERT(Devlin et al., 2019) and
BERT+LSTM(Hochreiter et al., 1997) as the lan-
guage encoder respectively, resulting in two solu-
tions: BERT+CRF and BERT+LSTM+CRF. The
reason for adding LSTM is that we believe that the
contextual representation refined by LSTM could
be more sensitive to the position of tokens.

3.2 Span Boundary Detection

Different from SL formalization, SBD formaliza-
tion utilizes the start and end positions tagging
scheme to represent toxic spans. SBD formaliza-
tion was originally applied in the machine reading
comprehension task (Seo et al., 2016; Wang and
Jiang, 2016). In these works, two n-classifiers are
employed to predict the start position and end posi-
tion separately, where n denotes the length of the
input sentence. However, this strategy can only out-
put a single span for an input sentence. Later, Hu
et al. (2019b) extended the two n-classifiers strat-
egy by a heuristic multi-span decoding algorithm.
But this is not a concise and efficient solution for
multi-span scenario, as the decoding algorithm re-
lies on two hyper-parameters: (1) γ, the minimum
score threshold, (2) K, the maximum number of
spans. In addition to the two n-classifiers strategy,
a more recent and popular strategy is to employ
two binary classifiers to determine whether each
token is the start (end) position or not (Li et al.,
2020; Wei et al., 2020; Yu et al., 2019). In this
paper, we adopt the binary classifiers strategy for
SBD formalization and describe the details below.
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Split Train Dev Test
Num 6894 1723 2000

Table 1: Data statistics.

Given the contextual representation x =
{x1, x2, · · · , xn} ∈ Rn×h, for the location i, we
calculate the probability of whether it is a start posi-
tion by Equation (4) and the probability of whether
it is a end position by Equation (5).

pstart(i) = σ(W>1 xi + b1), (4)

pend(i) = σ(W>2 [xi; pstart(i)] + b2), (5)

where W1 ∈ Rh×1, W2 ∈ R(h+1)×1 and b1, b2 ∈
R are model parameters.

The predictions of start and end positions are
obtained by:

starts = {i|pstart(i) > 0.5, i = 1, · · · , n}, (6)

ends = {i|pend(i) > 0.5, i = 1, · · · , n}. (7)

Then we adopt the nearest start-end matching strat-
egy: for each predicted start position s ∈ starts,
the nearest predicted end position e to the right of
s is selected to formal a predicted span (s, e).

Similarly, we adopt BERT as the language en-
coder, and we call this model as BERT+Span.

3.3 Ensemble Strategy
Voting method is applied to integrate the results. In
detail, for k different models, if no less than k/2
models consider a character to be in the toxic span,
the character is retained.

4 Experimental Setup

4.1 Data
The given trial data and training data are merged
and the duplicates are removed. In addition, we
fix some annotation errors, such as the partially-
labeled words. 80% of the processed data is utilized
for training and the rest is the validation set. Table
1 shows the statistics of the data used.

4.2 Parameter Settings
We find that the parameter size of the pre-trained
model does not have a significant effect on perfor-
mance, and therefore we simple adopt BERT-base
as the our language encoder, which consists of 12
transformer blocks with 12 representation heads.
Three models are trained separately. The learning

P(%) R(%) F1(%)
BERT+LSTM+CRF 71.99 89.96 69.34
BERT+CRF 74.50 88.10 69.44
BERT+Span 76.29 86.77 69.34
Ensemble 75.01 89.66 70.83

Table 2: Performance of three benchmark models and
ensemble approach.

rate of BERT is set to 2e-5, the learning rate of
CRF is set to 5e-3, and the maximum encoding
length is 128. The weight decay is set to 0.01.

4.3 Evaluation Metrics
We use the official metric, i.e. char-level F1-score,
as the evaluation metric. In addition, for a more
detailed analysis, we also introduce character-level
Precision (P ) and Recall (R). Note that F1/P/R
is the average over the samples, so there is no F1 =
2PR/(P +R).

5 Results

5.1 Ensemble Approach
Table 2 shows the performance of three benchmark
models and the ensemble approach. The experi-
mental results show that all three models achieve
similar results on F1-score, and integrating them
results in an improvement of more than 1%, indi-
cating that the predictions of the three models have
good complementarity.

To further analyze the differences and respec-
tive advantages of SL and SBD formalization, we
list their performances in single-span scenario and
multi-span scenarios in Figure 2. It could be found
that SBD formalization is more advantageous in
single-span scenario, while SL formalization is
more advantageous in multi-span scenario, which
is consistent with our claim.

5.2 Lexicon-based Approach
We also explore a lexicon-based approach for pre-
dicting toxic spans. A toxic lexicon is mined from
training data by a simple statistical strategy. More
Specifically, the toxic score of a word w is defined
as below:

toxic score(w) =
#w in toxic span

#w in whole corpus
, (8)

where #w in toxic span is the count of ap-
pearances of word w in toxic spans, and
#w in whole corpus is the count of appearances
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# of words P(%) R(%) F1(%)
Ensemble - 75.01 89.66 70.83
Lexicon1(Wiegand et al., 2018) 551 75.13 44.47 33.07
Lexicon2(Wiegand et al., 2018) 2989 66.22 72.01 50.98
Lexiconoriginal(Our) 119 76.71 82.22 64.98
Lexiconwordnet(Our) 231 72.56 84.05 64.09
Lexiconglove(Our) 186 73.98 83.34 64.19

Table 3: Results of Lexicon-based approaches and ensemble model on Precision, Recall and F1. Lexicon1 and
Lexicon2 are two external lexicons. Lexiconoriginal is collected by ourselves from training set. Lexiconwordnet

and Lexiconglove are expanded from Lexiconoriginal with WordNet and GloVe.
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Figure 2: Comparison of the performance of SL and
SBD method for data with different numbers of Spans.

of word w in the whole corpus. Then those words
with a toxic score greater than a given threshold θ
are selected from a lexicon.

When predicting, the words in the sentence that
appear in that toxic lexicon are extracted as the
predicted toxic spans. There are three lexicons
in our experiment, two of which were collected
by (Wiegand et al., 2018), another is collected by
ourselves from the training set.

Table 3 shows the results of the lexicon-based
approaches and the ensemble approach, and we can
observe that our lexicon-based approaches obtain
notable results in the F1-score. In addition, we
also calculate the average precision and average re-
call values of different methods on the test set, and
our original lexicon-based approach even outper-
forms ensemble approaches in average precision,
but there is still a significant gap in an average re-
call. Since the lexicon-based approaches can only
identify the toxic words in the lexicon, the recall
can be improved by expanding the toxic lexicon.

To improve the recall, we use WordNet (Miller,
1995) and GloVe (Pennington et al., 2014) to ex-
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Figure 3: Performances of Lexiconoriginal model with
different threshold.

pand the toxic lexicon. In detail, we collect synsets
of each toxic from WordNet, and collect the near-
est similar words by calculating cosine similarity
of GloVe vectors. The performances of the two
expanded approaches are shown in Table 3. Al-
though the recall of two approaches improves over
the original lexicon, the precision decreases signifi-
cantly, which indicating that there are a consider-
able number of non-toxic words in the synonyms
found through WordNet.

Besides, we explore the impact of threshold θ
when mining the original lexicon on performance.
The performances with different threshold is shown
on Figure 4. As the threshold θ increases, the size
of lexicon decreases, P decreases, R increases, F1
increases and then decreases, reaching a maximum
64.98 when θ = 0.5.

6 Conclusion

In this paper, we formalize the toxic span detection
as two problems separately and employ three state-
of-the-art models. The strengths of each model are
analyzed and a more credible and complement re-
sult is obtained through a voting approach. Our re-
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sults achieve a good score (ranking 1/91). Besides,
we explore a lexicon-based approach. The lexicon
is mined from the annotation of the training data
and then expanded by WordNet and Glove. Exper-
iments show that the lexicon-based approach has
not yet achieved the performance of the ensemble
approach. We believe that future work could move
towards combining deep learning-based methods
and lexicon-based methods.
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