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Abstract

In this work, we present our approach for
solving the SemEval 2021 Task 2: Multilin-
gual and Cross-lingual Word-in-Context Dis-
ambiguation (MCL-WiC). The task is a sen-
tence pair classification problem where the
goal is to detect whether a given word common
to both the sentences evokes the same mean-
ing. We submit systems for both the settings
- Multilingual (the pair’s sentences belong to
the same language) and Cross-Lingual (the
pair’s sentences belong to different languages).
The training data is provided only in English.
Consequently, we employ cross-lingual trans-
fer techniques. Our approach employs fine-
tuning pre-trained transformer-based language
models, like ELECTRA and ALBERT, for the
English task and XLM-R for all other tasks.
To improve these systems’ performance, we
propose adding a signal to the word to be dis-
ambiguated and augmenting our data by sen-
tence pair reversal. We further augment the
dataset provided to us with WiC, XL-WiC and
SemCor 3.0. Using ensembles, we achieve
strong performance in the Multilingual task,
placing first in the EN-EN and FR-FR sub-
tasks. For the Cross-Lingual setting, we em-
ployed translate-test methods and a zero-shot
method, using our multilingual models, with
the latter performing slightly better.

1 Introduction

A key challenge in lexical semantics is to identify
or to encode the different senses of an ambigu-
ous word. The Word Sense Disambiguation task
(WSD) (Navigli, 2009) is a framework used to eval-
uate systems in their ability to identify different
senses of the word. The task involves selecting the
correct sense (meaning) of a target word from a list
of senses listed in a sense inventory like WordNet
(Fellbaum, 2012). Pilehvar and Camacho-Collados

∗ Authors equally contributed to this work.

(2018) proposed a novel benchmark (WiC - Word
in Context Disambiguation) for the task casting the
problem as a binary classification task, wherein it
has to be identified whether a word common to a
sentence pair is used in the same sense or not. The
WiC task frees up the word sense disambiguation
task from being tied to any sense inventory.

The SemEval 2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambiguation
(Martelli et al., 2021) extends the WiC frame-
work proposed by Pilehvar and Camacho-Collados
(2018) to more languages. The task is divided into
two subtasks - the Multilingual task and the Cross-
Lingual task. The sentence pair, with a word in
common, which is to be disambiguated, is drawn
from the same language in the MultiLingual task,
whereas the pair is drawn from two different lan-
guages in the Cross-Lingual Task. The task is
posed as binary classification task over a pair of
sentence wide contexts sent1 and sent2, contain-
ing word sequences w1 and w2 respectively. The
word sequences, w1 and w2, have a common word
in lemmatized form lemma. When w1 and w2

invoke the same sense of the lemma in their respec-
tive contexts, it is to be labeled as ‘T’ (True) class,
else it labeled ’F’ (False). As mentioned before,
for the Multilingual setting, sent1 and sent2 are
from the same language; for the Cross-lingual set-
ting, sent1 is from English, and sent2 is from a
non-English language. The languages considered
for the Task are Arabic (AR), English (EN), French
(FR), Russian (RU), and Chinese (ZH). Therefore
for the Multilingual evaluation, we have AR-AR,
EN-EN, FR-FR, RU-RU, and ZH-ZH settings, and
for the Cross-Lingual evaluation, we have EN-AR,
EN-FR, EN-RU, and EN-ZH settings. An example
of Cross-Lingual sentence pair is given in figure
1. This task provides an evaluation benchmark for
word sense disambiguation systems in languages
other than English, a direction that has been less
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explored.
For this task, the training data is only provided

for the EN-EN setting, and the development sets
are provided only for the Multilingual task. As we
are proposing supervised systems, it is essential to
consider if we have training data or not. Therefore,
splitting the Multilingual task, we propose systems
for three components - (i) EN-EN (train and dev
data available), (ii) Non-English Multilingual (only
dev data available), and (iii) Cross-Lingual (nei-
ther train nor dev data available). Our models and
implementations are available here1.

Figure 1: An demonstrative example for the English-
French Cross-lingual dataset. This pair will be classi-
fied as a ’False’ pair.

2 Related Work

Word Sense Disambiguation: The techniques
for the WSD task are broadly divided into
knowledge-based and supervised approaches. The
supervised approaches include fine-tuning BERT
for sequence classification (Wang et al., 2019),
EWISE (Kumar et al., 2019), and BiLSTM with
attention (Raganato et al., 2017b). The knowledge-
based methods use the information present in sense
inventories such as WordNet (Fellbaum, 2012), Ba-
belNet (Navigli and Ponzetto, 2012) and Wikipedia
to derive semantic knowledge, assisting in the task
of WSD. These include building sense embed-
dings for each sense of the word and disambiguate
the target word using the nearest neighbour sense
embedding: SensEmBERT (Scarlini et al., 2020),
(Loureiro and Jorge, 2019), or augmenting the pre-
training objecting of BERT to take into account
the sense information available in the WordNet:
SenseBERT (Levine et al., 2019).

There are two existing benchmarks to evaluate
the performance of WSD systems. One method
is linked to the sense inventories, and the task is
framed as a multi-class classification among the
senses of a word listed in the inventory (Raganato
et al., 2017a). The other is the WiC framework, not
tied to any sense inventory, and asks if a target word
has the same sense or not in the two given sentences.

1https://github.com/dipakamiitk/Crosslingual-WSD.git

Multilingual
(EN-EN)

Multilingual
(Others)

Cross-
Lingual

Train
Data

8000 7 7

Dev
Data

1000 1000 (each) 7

Table 1: Available data for this task. All datasets are
balanced, that is, equal number of ‘True’ and ‘False’
pairs.

Recently, transformer-based architectures(Vaswani
et al., 2017) (e.g., T5 (Raffel et al., 2019)) have
outperformed all existing approaches when fine-
tuned on the WiC task.
Cross-Lingual NLP: There are many NLP tasks
for which the data is present in only some high re-
source language (often English), but the task needs
to be solved for other languages. Some existing
methods involve - (i) using multi-lingual language
models (like mBERT (Devlin et al., 2018), XLM-R
(Conneau et al., 2019)) to train on the high resource
language and transfer the learning to other lan-
guages, or (ii) the translation approaches where we
can translate train or test data to a target language
and train a language-specific model. These meth-
ods have shown good performance on benchmarks
like XGLUE (Liang et al., 2020) and XTREME
(Hu et al., 2020), which have been designed to test
this cross-lingual transfer performance of systems,
with train data being present majorly in English,
while the testing is to be done in other languages.

3 Corpus Description and Data
Augmentation

A brief summary of the available data is shown in
Table 1. This data is manually curated and covers
four parts of speech - Nouns, Verbs, Adjectives,
and Adverbs. In addition, we augmented the data
by utilizing WiC, XL-WiC, and SemCor.
WiC: We use the data provided by the WiC task
(Pilehvar and Camacho-Collados, 2018), which
proposes the same problem as this task but only
in English. They collected their data semi-
automatically from WordNet (Fellbaum, 2012), and
covered only Nouns and Verbs.
XL-WiC: It is a dataset that is an extension of
the WiC dataset to multiple languages (equiva-
lent to our multilingual setting) (Raganato et al.,
2020) . Again, the data was collected automati-
cally from WordNet and Wiktionaries of various
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languages. We are only interested in a few lan-
guages, from the WordNet development sets, the
ones with good human performance, because we
often note that this data does not accurately rep-
resent human distinguishable senses, which our
manually collected task data set does. Specifically,
we use Chinese(ZH), Danish(DA), Croatian(HR),
and Dutch(NL). Farsi(FA) also has good human
performance but we could not include it due to a
pre-processing error.
AuSemCor: We created our own augmented
dataset AuSemCor from the SemCor (Miller et al.,
1993) dataset, which is a sense annotated corpora
in English, with senses tagged using WordNet as
its sense inventory. To generate data points for the
same sense (T class), we pair up sentences contain-
ing a common lemma, whose WordNet senses are
identical. For the other class (F class), we pair up
sentences with a common lemma, but this lemma
has different WordNet sense across the sentence
pair. In addition, for the F class, we make sure
that the WordNet supersense is also different for
creating coarser sense distinctions as suggested by
Pilehvar and Camacho-Collados (2018). We ob-
tain 4986 datapoints with 2520 unique words. It
is approximately balanced (2495 ‘F’ and 2491 ‘T’
pairs). Like WiC, it covers only Nouns and Verbs.

4 Proposed Approach

We shall now describe our proposed approaches for
the two subtasks, multilingual and cross-lingual.
We deal with English separately because training
data is available in English and not in any other
language. Since the data across the two tasks dif-
fer only in the language pairs, some general ap-
proaches apply to both settings. We finally submit
an ensemble of models in all the tasks. The ensem-
bling was done by taking average of the probability
scores of the models (Probability Sum Ensemble).

4.1 Task Agnostic Proposals

Signals: We use a data preprocessing step of
applying a signal to indicate the word to be dis-
ambiguated. This can be done in two ways - (i)
Signal 1: encoding the target word (the word to
be disambiguated) in both the sentences of a pair
within double quotes (e.g., Click the right “ mouse

” button) as suggested by Huang et al. (2019), or
(ii) Signal 2: append the target word at the end of
the second sentence, similar to what was done by
Wang et al. (2019). Note, for the former method;

we need the character spans of the target word to
apply double quotes at the correct position.

Sentence Reversal Augmentation: For the mod-
els proposed in this task, the sentence pair is fed to
the model in a manner such that the results do de-
pend on which order the sentences are fed (i.e. the
network parameters are not symmetric with respect
to the two sentences). In such a case we propose
the following augmentation - for every data point
(sent1, sent2, lemma, label), add another data point
(sent2, sent1, lemma, label) to the set of data points.
A similar notion can be extended to making more
robust predictions - at inference, before threshold-
ing on the probability scores returned by the model,
take into account the reversed sentence order, and
average both the results. If such an averaging pol-
icy is followed for a particular model on the dev set,
we follow the same policy on the test set. The rev
subscript shall be used with dataset names to indi-
cate that the data has been doubled using sentence
reversal augmentation or with a model name to in-
dicate that the model performs the reverse sentence
averaging at inference for more robust predictions.

Transformers+Logistic Regression: Here we
use the transformer-based pre-trained language
model as an encoder network, feeding it with the
sentence pairs concatenated with a separator token
([CLS]E(xi

sent1[SEP ]xi
sent2[SEP ]) ). We then extract

the word level embeddings (last layer hidden state)
for each instance of the word (from both sentence
1 and sentence 2). If the word gets sub-tokenized,
we pick the embedding of the first sub-token. We
finally feed their concatenation to a logistic regres-
sion head, with binary cross-entropy as the loss
function. The architecture can be seen in Figure 2.
We used ELECTRA (Clark et al., 2020), ALBERT
(Lan et al., 2019), XLM-R (Conneau et al., 2019)
for English only data, and XLM-R for all other
language data. Unless otherwise mentioned, we
use the ‘large’ variant for ELECTRA and XLM-R,
and the ‘xxlarge’ variant for ALBERT.

Siamese Architecture: Here, we cast our prob-
lem as a similarity problem. Similarity being mea-
sured by the closeness of the senses of the target
word in each of the sentence. We, therefore, use
a Transformer-based Pretrained Language Model
to obtain the contextualized representations of the
target word across the two sentences (using same
model weights for both sentences), and optimize
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Cats follow mouse Connect the mouse

Cats follow “ mouse ” Connect the “ mouse ”

Cats follow “ mouse ” [SEP] Connect the “ mouse ”

Cats follow Connect[SEP]mouse the mouse

BERT

Logistic Regression Head (1 layer) 

T / F

[CLS] [SEP]“ “ “ “

Figure 2: The Transformers + Logistic Regression Ar-
chitecture (+ Signal 1). This is our proposed architec-
ture.

the contrastive loss (Hadsell et al., 2006) -

L =

|T |∑
i

D2
i +

|F |∑
j

max(0,m−Dj)
2

Where the set T is a set of same meaning sentence
pairs, and F has different meaning pairs. Di is
the distance metric between the contextualized rep-
resentations obtained for the target word by the
language model for the pair of sentences. A small
Di would mean that the senses of the common
word across the two sentences are the same. m
is the margin parameter of the loss. We experi-
ment with L2 and Cosine distances. We found this
method to be good but not competitive with the
Transformers+Logistic Regression method.

4.2 English (EN-EN) Task Proposal

For English language pair, we have dedicated train-
ing data (which we shall abbreviate as MCL-EN)
that is used to train models. We used the proposed
Transformers+Logistic Regression architecture and
the preprocessing method of including signals us-
ing double-quotes.

In addition to sentence reversal augmentation,
we augment the data using WiC and AuSemCor
(Section 3). Both the WiC and the AuSemCor
data have been automatically created using certain
heuristics (Section 3), which make the sense dis-
tinctions in both the dataset a little different than
what a human annotator would do. This is evi-
denced by the fact that human performance on the
WiC benchmark is only 80%, while it is 97% on the
Farsi dataset from the XL-WiC corpus, which was
manually annotated. As this task’s data is human
annotated, we do not use sentence reversal augmen-
tation with WiC and AuSemCor data to avoid an

over-representation of the automatically annotated
data in our training set.

4.3 Multilingual Task (except EN-EN)
Proposal

For this task as well, we use Transformers+Logistic
Regression architecture (the transformer being the
multilingual XLM-R (Conneau et al., 2019)), with
double-quote signal preprocessing and sentence
reversal augmentation.
Data: For the four languages under this task, we
have no training data. To address that, we split the
development set for each of the language pairs into
a 9:1 train-dev split. The split can be done in two
ways - a random split or an out-of-vocabulary split
(the 1 split will primarily have words not present
in the 9 split). The latter’s motivation is to simu-
late the test set because the test set’s words will be
unseen (not seen during training). The former may
be useful as well because the model can see and
learn more words during training. This distinction
is based on Raganato et al. (2020)’s observation
that models tend to perform better on seen words
than unseen words during evaluation. We experi-
ment using both split types. All languages’ data
is concatenated together, and we solve the task for
these four languages together by a single XLM-R
model. We also use the EN-EN data of our task
during this training. For development, we finally
have 100 × 4 data points, which we augment again
by sentence reversal augmentation, thereby finally
obtaining a dev set of 800 pairs. Since we perform
sentence reversal on dev set, at test inference, we
follow the reverse averaging policy as described
before. This is denoted by a subscript rev in the
model names. In our further discussion, we shall re-
fer to this multilingual train data as MCL-MNrand,
for the random split method, or MCL-MNoov for
the out-of-vocabulary split method.

We augment our data using XL-WiC (Section 3).
However, we do not use the XL-WiC data on all
models, and whenever we do, we do not perform
sentence reversal, to prevent higher representation
of lower quality data. Sentence reversal is also not
performed with English to have as much propor-
tion of non-English data as possible in the training
phase.

4.4 Cross-Lingual Task Proposal
For this task, we have no training or development
data. We propose two methods - (i) Translate-Test,
(ii) Multilingual Zero-Shot.
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Translate-Test: In this method, we use Microsoft
Translator2 to translate the second sentence (in ei-
ther AR, FR, RU, ZH) of the test set to English,
thereby reducing it to an EN-EN task. However,
this method is bound to introduce inaccuracies
from translation, and we lose positional informa-
tion about the target word in the translated sen-
tence. So we cannot use word-level embeddings ,
and therefore the Transformer+Logistic Regression
Model (Section 4.1) cannot be used. We, therefore
tweak the Transformers+Logistic Regression archi-
tecture a little - we use the [CLS] token embedding
instead of the word-level embeddings, keeping the
Logistic regression head intact. For development,
we use a back-translated EN-EN dev set (EN to FR
to EN) for the second sentence to simulate inac-
curacies of translation that will be induced in the
second sentence in the test set. For training as
well, we back translate 50% of the second sentence
(12.5% to each AR, FR, RU, and ZH and back to
en). Due to the loss of positional information about
the target word after translation, we experiment
with using Signal 2 - appending the target word at
the end of the second sentence. We use ELECTRA
(Clark et al., 2020) as the encoder for this sub-task.
Multilingual Zero-Shot: In this method, we di-
rectly use the models obtained from our Multilin-
gual task (section 4.3) on the Cross-Lingual test
data.

5 Experiments and Results

We ran various experiments to test out the efficacy
of the different approaches. All experiments have
been carried out with a learning rate set at 10−5,
using AdamW (Loshchilov and Hutter, 2017) op-
timizer, with batch sizes varying in {8, 16, 32}.
We noticed that using a batch size of 32 was ideal.
However, limited compute availability prevented
us from trying it out. We trained our models for 10
epochs. To choose our best model, we performed
validation multiple times during an epoch - 5 times
an epoch for the EN-EN sub-task and 4 times an
epoch for all other tasks. In all tables, we report ac-
curacy, which the task’s official evaluation metric.

The results and experimental set up of various
models on the English set are summarized in Ta-
ble 2. We obtain a total of 9 models for the EN-
EN sub-task, four of them being rev variants. We
submitted various ensembles, and the details are

2https://azure.microsoft.com/en-us/services/cognitive-
services/translator/

present in the lower half of the table. For the three
listed ensembles, we violated our averaging policy;
we do not average probability scores of the model
with reverse sentence pair, even if the model was
saved with such a policy on the dev set as these
were overall best performing models on the dev
set. At 93.3% on the test set, our model was the
best performing model in the EN-EN task. Also
noteworthy is an ensemble of models trained only
on the data provided by the task, scoring 92.6% on
the test set.

The results and experimental set up of various
models on the Non-English Multilingual set are
summarized in Table 5 for the development sets,
and Table 3 for test set performance (where we
show scores of various ensembles). As described
in section 4.3, the OOV models refer to the mod-
els that were created by training on the out-of-
vocabulary split method, while the RAND models
refer to the models obtained by training on data
created by the random split method. All models
are based on XLM-R+Logistic Regression, with
double quotes signal (indicated by + Signal 1). For
evaluation on the test set, we ensemble a combina-
tion of models determined by the best performance
on the joint dev set and language-wise dev set.

The performance of various translate-test models
is shown in Table 4. We formed an ensemble of
these models and submitted it to the leaderboard,
which can be seen in Table 6. Also, in Table 6, we
note that the best results are obtained by zero-shot
application of the models trained in the multilingual
sub-task to the cross-lingual sub-task.

6 Ablation Study

We perform an analysis of the various proposed
approaches (Table 7), specifically paying heed to
the EN-EN task, starting with a baseline of a BERT
base model with a logistic regression head over the
[CLS] token (the ‘cls’ models in the table). We see
an improvement in performance by switching to
target word embeddings (the last layer hidden state
corresponding to the first sub-word token). Adding
the signal in the form of double quotes (Signal
1) improves performance, probably by emphasiz-
ing the word to disambiguate, that, otherwise, the
model does not know. Signal 2 however, is not as
effective, but it still improves performance over the
non-signal model. Utilizing sentence reversal data
augmentation, we see an improvement in perfor-
mance. The model’s weights are not symmetric
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Model Trained On/Ensembled On Dev Test
XLM-R MCL-ENrev + WiC 89.1 89.5
XLM-Rrev MCL-ENrev + WiC 89.3 89.5
XLM-R MCL-MNoov

rev + MCL-EN 89.1 89.9
ELECTRA MCL-ENrev 91.1 90.3
ELECTRArev MCL-ENrev 90.8 91.7
ELECTRA MCL-ENrev + WiC + AuSemCor 89.7 91.6
ELECTRArev MCL-ENrev + WiC + AuSemCor 90.5 90.9
ALBERT MCL-ENrev 87.8 89.6
ALBERTrev MCL-ENrev 89.7 92.2
Probability sum ensemble All above models 92.8 93.3
Majority vote ensemble All above models 92.7 93.3
Probability sum ensemble Only MCL models 91.9 92.6

Table 2: Accuracies of the models on English (EN-EN) DataSet. All are + Signal 1 models.

Submission Ensemble Details Dev Multilingual Test
AR FR RU ZH

1 OOV 88 84.5 86.2 86.1 86.4
2 OOVrev 88 84.4 87.5 85.4 85.6
- OOV2

rev 88.88 85.5 87.8 85.4 85.5
- RANDrev 89.38 86.0 86.6 86.2 86.2
- RAND2

rev 90.5 85.7 86.7 86.9 86.0
- Prob Sum (RAND2

rev and OOV2
rev) NA 85.5 87.6 86.7 87.3

Table 3: Final Ensembles Non-English Multilingual. A “-” indicates model not submitted to the leaderboard.

Model Accuracy
ELECTRA+Signal 2 86.4

ELECTRA Back-T+Signal 2 86.1
ELECTRA Back-Trev 85.6

Table 4: Translate Test Models evaluated on Back Translated EN-EN dev set. Back-T Models refer to models
where 50% training data was also back translated.

Model Trained on Dev Language-Wise Dev
AR FR RU ZH

RAND XLM-R +Signal 1 MCL-EN+MCL-MNrand
rev 87.38 89 85 91 96

RAND XLM-R +Signal 1 MCL-EN+MCL-MNrand
rev +XL-

WiC(ZH, DA, HR, NL)
88.13 88 84.5 91 95.5

OOV XLM-R +Signal 1 MCL-EN+MCL-MNoov
rev 87 89 91.5 91 83.5

OOV XLM-R +Signal 1 MCL-EN+MCL-MNoov
rev+XL-

WiC(ZH, DA, HR, NL)
87 87.5 91 92.5 82

Note: The development sets for RAND and OOV models are different and hence are incomparable in performance.

Table 5: Non-English MultiLingual Development Set Accuracies. The Dev columns indicates the performance on
the joint dev set, while the Language-Wise column lists down score for that particular language’s dev.

with respect to sentence 1 and 2, and ideally, we should train the model to lose its sense of order
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Submission Ensemble Details Dev Cross-Lingual Test
AR FR RU ZH

- OOVrev - 86.9 87.5 87.6 87.6
- OOV2

rev - 85.6 86.8 87.1 87.5
- RANDrev - 83.9 85.4 86.0 86.1
- RAND2

rev - 85.4 86.7 86.9 84.5
- Prob Sum - 85.9 86.6 88.0 86.2
1 TT Ensemble 1 87.1 83.7 85.3 86.0 86.1
- TT Ensemble 2 87.3 83.9 84.8 85.1 86.5
- Adjusted Threshold RANDrev - 87.1 88.5 89 90.6

Table 6: Final Ensembles Non-English Cross-Lingual Test. Translate Test models have been abbreviated as TT.
The Dev column is only relevant to indicate the performance of TT models on the Back Translated EN-EN dev.
The adjusted threshold model is purely for the purpose of analysis (Section 7).

and probably make better internal representations
in the process. We do not observe a significant
change in model performance on using the aug-
mented data. In fact, for BERTbase, it decays a
little. Running models trained exclusively on WiC
and AuSemCor, we note that the AuSemCor model
performs better, but both models lag behind the
model trained on MCL-EN. We note strong im-
provements in performance by ensembling various
models (Table 2). The use of different transformers
give us a diversity in our ensemble, with different
models canceling each other’s mistakes. We also
observe that the ensemble of models trained using
only MCL data lag behind the ensemble of models
trained using the augmented data (Table 2). This
means that the augmented data is of benefit to our
models. This was not clear with just a single model,
BERTbase, as mentioned before, with performance
remaining around the same mark. As mentioned
before, the Siamese models (83.5%) trail the Lo-
gistic Regression models (86.8%). Note that for
Siamese models, the sentence order is irrelevant, so
we cannot perform sentence reversal augmentation,
and so 83.5% is their best with all our methods.

The analysis done on dev data is shown in Table
7. We finally took the models which were giving
dev accuracy greater than 89% for the ensembles.
That is XLM-R, ALBERT and ELECTRA. Another
interesting point is that an XLM-R model trained
for Non-English Multilingual subtask (using MCL-
MNrev + MCL-EN) could also slightly improve
itself (at the very least, it did not degrade) than
when it trained on MCL-ENrev data.

For the Multilingual setting, we note that there
is not much difference between the performance
of OOV and RAND models (Table 3). The OOV

Model Accuracy
cls BERTbase 83.9
BERTbase 84.6
cls BERTbase+Signal 1 85.3
cls BERTbase+Signal 2 84.3
BERTbase+Signal 1 86.1
BERTbase +Signal 1 (WiC) 72.6
BERTbase +Signal 1 (AuSemCor) 77.5
BERTbase +Signal 1 (MCL-EN + WiC
+ AuSemCor)

85.7

BERTbase+Signal 1(MCL-ENrev) 86.8
BERTLarge+Signal 1 (MCL-ENrev) 87.7
RoBERTa +Signal 1(MCL-ENrev) 87.7
XLM-R +Signal 1(MCL-ENrev +
WiC)

89.1

XLM-R +Signal 1 (MCL-EN + MCL-
MNrand

rev )
89.3

ALBERT +Signal 1 (MCL-ENrev) 89.8
ELECTRA +Signal 1 (MCL-ENrev) 91.1
Sia. BERTbase + Signal 1 , L2 dist. 81.8
Sia. BERTbase + Signal 1 , Cosine dist. 83.5

Table 7: An analysis of performance of models on EN-
EN Dev. The training data was MCL-EN unless other-
wise specified.

method works better for FR, while RAND works
better for AR, RU, and ZH. On average, RAND
scores are slightly better, but not by a large margin.

We note that some pre-trained language models
perform better for this task, especially ELECTRA
and ALBERT, which improve upon the scores of
RoBERTa (Liu et al., 2019), and BERT. We also
note that their ‘large’ variants are always better
performers than the ‘base’ variants.
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Actual
Predicted

True False

True 478 22
False 45 455

Table 8: Confusion Matrix of English (EN-EN) Sub-
Task

Actual
Predicted

True False

True 1773 227
False 344 1656

Table 9: Confusion Matrix of Multi-Lingual (Non-
English) Sub-Task (Model OOVrev).

7 Error Analysis

The confusion matrices for our best model are
shown in Tables 8, 9, 10 and 11. On the Multilin-
gual task, we found that number of false positives
is higher than the number of false negatives for all
languages.

In contrast, for the Cross-Lingual task, using
the multilingual models in the zero-shot setting
gives significantly lower false positives than false
negatives (Table 10). The Translate-Test method
offered a fairly balanced prediction, albeit with
lower overall accuracy. (Table 11).

We observed that the probability scores returned
by the multilingual models, when tested on the
cross-lingual dataset, fell. We also observe a much
lower number of false positives on this test data
than the multilingual test data. This suggests that
we need to tweak the prediction threshold value, in
particular, to bring it down to adjust for the lower
scores on this data set. Since we do not have a dev
set for the cross-lingual sub-task, we perform the
analysis on the test set itself. In Table 6, we can
see a model’s performance in a threshold tuning
experiment, where the threshold was brought down
to 0.17 from 0.5 for all language pairs (i.e. 0.17
was used commonly for all language pairs). A
significant spike in performance is observed (an
average rise of 3.45% across all the cross-lingual
language pairs). This suggests that models trained
on multilingual data can competitively distinguish
senses in the cross-lingual setting as well, provided
we take into account the fall in probability scores,
induced by the transfer, by threshold moving. As
a control, a similar threshold tuning experiment
for the same model on the multilingual test data

Actual
Predicted

True False

True 1627 373
False 131 1869

Table 10: Confusion Matrix of Zero-Shot model in
Cross-Lingual Sub-Task (Model RANDrev).

Actual
Predicted

True False

True 1700 300
False 289 1711

Table 11: Confusion Matrix of Translate-Test model in
Cross-Lingual Sub-Task (Model TT Ensemble 1).

POS Accuracy
Adverb 86.67

Adjective 91.6
Noun 93.37
Verb 94.63

Table 12: POS wise accuracy analysis.

yielded only an average of 0.075% improvement
for the four Non-English language pairs.

We also analyzed the Parts-Of-Speech (POS)
wise performance of our English Model in Table
12. We see a lag in performance for Adverbs and
Adjectives that have less number of training data
points.

8 Conclusion

In this work, we presented our approach to solving
the SemEval Task 2: Cross-Lingual and Multilin-
gual Word in Context Disambiguation. We pro-
posed different models based on transformers for
the English, Non-English Multilingual and Cross-
Lingual tasks. The application of signals and sen-
tence reversal augmentation helped us improve per-
formance across all tasks. Utilising the existing
SemCor dataset, we created AuSemCor for the EN-
EN sub-task. Due to the unavailability of training
data in the Non-English Multilingual and Cross-
Lingual task, we proposed methods to obtain the
training data from the dev sets or external resources.
We finally submitted ensembles for all tasks.
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