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Abstract

This paper describes the Duluth system that
participated in SemEval-2021 Task 11, NLP
Contribution Graph. It details the extraction
of contribution sentences and scientific enti-
ties and their relations from scholarly articles
in the domain of Natural Language Process-
ing. Our solution uses deBERTa for multi-
class sentence classification to extract the con-
tributing sentences and their type, and depen-
dency parsing to extract phrases from each sen-
tence and format into subject-predicate-object
triples. Our system ranked fifth of seven for
Phase 1: end-to-end pipeline, sixth of eight for
Phase 2 Part 1: phrases and triples, and fifth of
eight for Phase 2 Part 2: triples extraction.

1 Introduction

The rapid rate at which scientific literature grows
makes it difficult to keep up with new research
even in one’s own field. Automated solutions are
challenging since text formatted and written for
human consumption does not lend itself to machine
processing.

(Jaradeh et al., 2019) have proposed a knowl-
edge graph based system for collecting and struc-
turing articles in a machine-readable format. This
requires the annotation of many scholarly articles,
a task that is time consuming to do by hand. The
purpose of this SemEval task (D’Souza et al., 2021)
is to enable the construction of a scholarly contribu-
tions graph over English language NLP articles by
automating the task of annotating scientific papers.

This annotation processes consists of:
1. selecting sentences that describe the contri-

bution of the article and outputting them to a
sentences.txt file,

2. extracting scientific entities and relations from
the selected sentences and outputting them to
an entities.txt file,

3. and structuring the entities and relations into
triples of the form subject-predicate-object.
These triples are sorted into one of twelve in-
formation units, which are labels that describe
the type of contribution being made by the
sentence outlined in the triples file.

Following is an example of the annotation pro-
cess using a sentence taken from the training data
with the human–labeled entities in braces:

We [apply] [dropout] of [0.4] [to layers],
[0.3] [to RNN layers], [0.4] [to input em-
bedding layers], [0.05] [to embedding
layers], and [weight dropout] of [0.5] [to
the RNN hidden-to-hidden matrix].

This task requires the 1) identification of this
sentence as a contribution sentence belonging to
the information unit HYPERPARAMETERS, 2) the
extraction of the entities in braces, and 3) the for-
matting of those entities into triples. This example
and various others will be used throughout this
paper to help contextualize our system description.

SemEval-2021 Task 11 was organized into three
phases, called Phase 1: end-to-end pipeline, Phase
2 Part 1: phrases and triples, and Phase 2 Part 2:
triples extraction. Phase 1 tested the entire system,
scoring for sentence extraction, phrases extraction,
and triples extraction. The gold sentences.txt files
were released for use in Phase 2 Part 1, in order
to test phrases and triples extraction given perfect
sentence selection. The gold entities.txt files were
released for use in Phase 2 Part 2, in order to test
triples extraction given perfect phrases selection.

There are four datasets mentioned in this paper.
Gold data refers to the sentences.txt, entities.txt,
and triples folders released by the organizers after
each phase of the task. Test data refers to the data
used to test the system during evaluation phases.
Training data refers to the entire training dataset
provided by the organizers. The trial dataset is the
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segment of the training dataset that we used to test
the Duluth system during validation, before the first
evaluation phase began. For more information on
how this dataset was created, see Appendix B.

Our approach1 employs a variety of techniques
to address each component of the task. The se-
lection of contribution sentences was done by fine-
tuning the base deBERTa model (He et al., 2021) on
the training data, as fine-tuned BERT (Devlin et al.,
2019) models have been found to perform well on
multi-class text classification tasks (Liu and Wang-
perawong, 2019). The fine-tuned model is used to
classify each sentence as either non-contributing,
or one of the twelve information units.

The selected contribution sentences were then
tagged to indicate likely scientific entities using a
Maximum Entropy Markov Model (MEMM) (Bird
et al., 2009) that was trained on the noun phrases
selected as entities in the training data.

A dependency parse (Manning et al., 2014) was
then found for each sentence. The dependency
parse and entity tags were then leveraged to select
contributing phrase spans and triples by using the
entity tags to determine whether a subject or object
noun phrase ought to be considered, and using the
dependencies to extract Subject–Predicate–Object
patterns from sentence.

2 Previous Work

Two previous SemEval tasks were also concerned
with the extraction of relations and key phrases
from scientific publications: SemEval 2017 Task
10: (ScienceIE - Extracting Keyphrases and Re-
lations from Scientific Publications) (Augenstein
et al., 2017), and SemEval 2018 Task 7: (Semantic
Relation Extraction and Classification in Scientific
Papers) (Gábor et al., 2018).

Many of the approaches in these tasks use neural
models to extract entities and their relations. The
AI2 system (Ammar et al., 2017) at SemEval-2017
Task 10, which ranked first and second for task
scenarios one and three respectively, approached
this by building separate entity and relation models,
each of which contain layers of LSTMs. The ETH-
DS3Lab system (Rotsztejn et al., 2018) at SemEval-
2018 Task 7, which ranked first in three of four
subtasks, built an entity and relation classifier using
a combination of RNNs and CNNs.

Other approaches used supervised machine

1Code is available at https://github.com/
anmartin94/DuluthSemEval2021Task11.

learning algorithms while leveraging grammatical
features. The LIPN system (Hernandez et al., 2017)
approached SemEval-2017 Task 10 by first filter-
ing possible keyphrases by labeling phrases with
their POS sequence. Candidate keyphrases are fil-
tered by comparing the POS tags of the phrase with
POS sequences developed from the training data.
They then trained a CRF model using the candidate
phrases labeled with IOB tags. They were able to
improve recall for keyphrase extraction by filtering
candidate sentences before using a CRF.

3 Selection of Contribution Sentences

We approached the selection of a contribution sen-
tence as a multi-class sentence classification prob-
lem with 13 classes, where each of the twelve in-
formation units is a class, and class 0 represents
non-contributing sentences. Although the subtask
of sentence extraction could be performed using
a binary classifier to label sentences as either con-
tributing or non-contributing, we decided to sort
the sentences further into their information units.
The alternative would require classifying phrases
or triples further down the pipeline; the benefit to
classifying the contributions during the sentence
extraction step is that the whole context of each
sentence is taken into account.

The main challenge with this approach was in
the unbalanced nature of the data; 90.11% of the
sentences used to train the classification model for
Phase 1: end-to-end pipeline were non-contributing
sentences, and the standard deviation of the fre-
quencies of contributing classes was 8.59%. These
frequencies can be seen in Appendix D.

Logistic regression and decision tree classifiers
(Pedregosa et al., 2011) were not able to iden-
tify the underrepresented classes such as TASKS

and DATASET, and were heavily skewed towards
the dominant class of non-contributing sentences.
During initial experiments using the trial dataset
described in Appendix B, decision tree classifier
earned a macro-F1 score of 0.1736 and the logis-
tic regression classifier earned a macro-F1 score
of 0.1738. The base deBERTa model performed
better than both decision tree and logistic regres-
sion classifiers on the trial dataset, resulting in a
macro-F1 score of 0.3079.

https://github.com/anmartin94/DuluthSemEval2021Task11
https://github.com/anmartin94/DuluthSemEval2021Task11
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3.1 Phase 1: Classifying Sentences using
DeBERTa

For Phase 1: end-to-end pipeline testing, we fine-
tuned the base deBERTa model on sentences from
the training dataset to create a thirteen-class sen-
tence classification model, using HuggingFace
transformers’ deBERTa for Sequence Classifica-
tion model (Wolf et al., 2020). Hyperparameter
settings can be found in Appendix E.

The provided training dataset includes sentences
files that contain a list of the indexes of contribut-
ing sentences for each scholarly article. It also
contains files for each information unit provided
in json format; each of these files include the full
sentences belonging to its specified information
unit. We labeled the contributing sentences with
their information units by looking up each sentence
in the information unit json files. Sentences from
the articles in the training dataset that were not in-
cluded in the sentences files were labeled as non
contributing.

3.2 Phase 2: Classifying Given Sentences

During evaluation Phase 2 the gold contribution
sentences for the test data were given to all par-
ticipants by the task organizers in sentences files
containing the indexes of contributing sentences.
Given this, we altered the sentence classification
step by fine tuning deBERTa only on contribution
sentences from the training data. This resulted in
a twelve-class classifier that labeled the test data
sentences according to their predicted information
unit. The reason why a classification step was still
required here is that the triples extraction task fur-
ther down the pipeline require the sentences to be
classified according to their information unit. With-
out the information unit json files, the information
unit labels must be predicted.

Observing that the sentence indexes in the given
sentences files appeared to be sorted by informa-
tion unit, we adjusted the output from the sentence
classifier so that chunks of consecutive sentence
indexes would all receive the same label. This was
performed by searching the classifier output for
spans of consecutive sentences where the classifier
vacillated between two commonly confused infor-
mation units, such as EXPERIMENTAL SETUP and
HYPERPARAMETERS. For each of these spans, the
information unit that was more frequent within the
span would be assigned to every sentence.

4 Entity and Relation Extraction

The Duluth system for Phase 1: end-to-end pipeline
combined statistical and rule-based approaches for
extracting scientific entities and their predicates
from the contribution sentences. We used a depen-
dency parser to extract noun phrases and their pred-
icates, and trained an maximum-entropy Markov
model (MEMM) on the training data entities files
to predict whether each noun phrase contains a
scientific entity.

4.1 MEMM Entity Extraction

For Phase 1, in order to tag likely scientific entities
in the test data, we trained a MEMM on the pro-
vided training data. The features we used include:

• current word type,

• current part-of-speech tag,

• current word shape,

• current IOB tag (I or B if present in the scien-
tific entities list, O if not), and

• the above features for the previous word.

We generated the scientific phrases list from the
training data entities files, by extracting the noun
phrases from the phrase spans and inputting them
into a file to be looked up by the MEMM entity
extractor.

For Phase 2 Part 1: phrases and triples, the
model was altered to only perform IO tagging. This
change was made to address the fact that sometimes
individual words appear in different positions in
different phrases. For example, the noun “loss”
appears in 41 different phrases in the scientific
phrases list, sometimes in the beginning of a phrase
as in “loss function”, and sometimes in the end of
a phrase as in “cross entropy loss”.

We used these features to train NLTK’s Maxent-
Classifier method (Bird et al., 2009) with maximum
iterations set to 40. The model achieved a testing
accuracy of 0.995. We used the Viterbi algorithm
to derive the most likely IO tags for every word in
each sentence.

The model was able to identify some scientific
entities in the test data that aren’t present in the
scientific entities list derived from the training data.
However, a complicating factor is that not all en-
tities that must be found can be considered to be
exclusively scientific entities. For example, terms
like ReLU, and SCIBERT are clearly specific to
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Figure 1: This is a dependency parse of example sentence from corenlp.run/, which shows the information provided
to the phrase extraction system by the dependency parser. The dependencies are traced by the Duluth system in
order to extract subject-predicate-object phrases from each sentence.

natural language processing and machine learn-
ing, but words such as image, action, humans, and
other common nouns were also present in the en-
tities training data. Since there is a wide range of
specificity in the terms that must be extracted as
entities, filtering the sentences through the MEMM
entity tagger ultimately worsened the system’s per-
formance in Phase 2 Part 1: phrases and triples
from a total F1 score of .4634 to .4299. This is
because it filtered out sentences which were con-
tribution sentences but whose subject phrases did
not contain nouns tagged as scientific entities by
the classifier.

4.2 Dependency Parsing

We used Stanford Core NLP’s dependency parser
(Manning et al., 2014; Chen and Manning, 2014) to
generate a dependency parse for each contribution
sentence. We used the dependency parse of each
sentence to extract the root verb phrase from each
sentence, its noun subject phrase, and dependent
object phrases. In Phase 1, if neither the subject of
the sentence nor the words dependent on it within
its noun phrase were tagged as scientific entities,
then the sentence would be ignored. Any object
noun phrases not containing a scientific entity were
also ignored. The intention was to create an outline
of each contribution sentence that included only
the relevant noun phrases and the relation between
them.

Figure 1 illustrates the dependency parse of our
running example. The system would extract the
verb phrase “is employed” as the relation by finding
the ROOT of the sentence (“employed”), finding
the adjacent dependency (“is”), and concatenating
the two into the phrase “is employed”. Next, it
would extract the dependent nsubj “Dropout” as
the subject entity by searching for nsubj types de-
pendent on “employed”. Lastly, the system would
extract the noun phrase which is dependent on
the verb phrase “is employed” as the object entity.
This would be accomplished by finding the noun

dependent on “employed”, which is “layer”, and
building the noun phrase “word embedding layer”
from the words dependent on “layer”. The phrases
“Dropout” and “word embedding layer” would be
labeled as scientific phrases, which means that this
subject-predicate-object phrase would be kept.

In Phase 2, we altered our system so that it would
not throw away any sentences, since it was pro-
vided with the gold contribution sentences made
available by the task organizers. Rather, if the sub-
ject was a pronoun and the subject phrase did not
contain a scientific entity, then the subject phrase
would be removed. If there was a previously se-
lected noun phrase from the same information unit,
that phrase would replace the removed subject
phrase. Otherwise, the name of the information
unit would be used instead. The intention was to
handle cases where a pronoun referring to an entity
from the previous sentence was the subject of the
verb phrase.

5 Triples Extraction

During evaluation Phase 1: end-to-end pipeline, al-
most all of the task of extracting Subject–Predicate–
Object triples into information units files was al-
ready performed by previous steps. The entity ex-
tractor described in section 4 extracts phrase spans
three at a time, following the subject-predicate-
object format needed to organize phrase spans into
triples. The sentence extractor described in sec-
tion 3 classifies sentences into their information
units, so the class label for the sentence that the
triple is extracted from can be used to determine
the information unit that the triple belongs to.

For Phase 1: end-to-end pipeline and Phase 2
Part 1: phrases and triples, the system formed
triples based on the subject, predicate, and object
phrases determined by the entity selection process
described in section 4.

For example, if the sentence “Dropout, with a
rate of 0.5, is employed on the word embedding
layer” is classified by the sentence extractor as
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belonging to the information unit EXPERIMENTAL

SETUP, and the phrases “Dropout”, “is employed”,
and “word embedding layer” were selected as a
subject-predicate-object pattern, then triples would
be formatted in the experimental-setup.txt triples
file like so:

(Contribution||has||Experimental Setup)
(Experimental Setup||has||Dropout)

(Dropout||is employed ||word embedding layer)

5.1 Triples Formatting

While most of the information units’ triples were
formatted in the training data following the pat-
tern in section 5, the information units Code and
Research Problem were formatted following these
patterns, respectively:

(Contribution||Code||url)
(Contribution||has research problem||phrase)

The triples files for information units Code and
Research Problem were handled separately from
the others in order to reflect these differences.

5.2 Phase 2 Part 2: Adapting to the Released
Entities Files

The main problem with the method for building
triples described in section 5 is that it does not
address the fact that triples often build on each
other and overlap. Triples build on each other in
two ways: the first item of a triple may be the last
item in the previous triple; and the first item of a
triple may be the first item in a previous triple.

The Duluth system solution for Phase 2 Part 2:
triples extraction attempts to imitate these patterns
by following these rules: while items in the entities
file alternate between noun phrases and predicates,
then triples are formed where the middle item for
each triple is a predicate phrase and the phrases on
either side of it are the noun phrases in the entities
file on either side of the predicate in the entities file.
This creates the first pattern identified above. How-
ever, if two consecutive noun phrases are found
in the entities file, then the second noun phrase
is paired with the previous subject-predicate pair,
rather than the previous noun phrase. If there is
no previous subject-predicate pair, then the second

Information Unit F1
None .9494

Ablation Analysis .1516
Approach .0000
Baselines .2559

Code .7857
Dataset .0000

Experimental Setup .2466
Experiments .0000

Hyperparameters .2358
Model .1778

Research Problem .4192
Results .3165
Tasks N/A

Table 1: F1 scores for each information unit based
on evaluation on test data. Macro-F1 score = .2949.
Weighted-F1 score = .8866.

noun phrase is paired with the name of the infor-
mation unit and the predicate has. This creates the
second pattern identified above.

6 Sentence Selection Results

The official competition F1 score on the gold stan-
dard test data for selection of contribution sen-
tences in Phase 1: end-to-end pipeline was 0.38095.
This score evaluates the results as a binary classi-
fication problem, where sentences are either con-
tributing or non-contributing. Because our sen-
tence selector performs multi-class classification,
labeling each sentence as either non-contributing
or belonging to one of twelve information units, we
provide a confusion matrix in Table 2 that shows
the detailed results by information unit, as well as a
break down of individual F1 scores for each infor-
mation unit in Table 1. The official competition F1
score for information units in Phase 1 was 0.6441.

6.1 Confusion Matrix Analysis

The high frequency of false positives and false neg-
atives for the non-contribution class (None in Table
2) is likely due to its high frequency, as 90.11% of
the sentences from the training dataset belong to
this class. This shows that using a BERT model
without any filtering or sampling techniques is not
sufficient to accurately handle the unbalanced na-
ture of this dataset. We will focus our discussion
here on the most frequently confused information
units.

30.19% (109 of 361) of sentences describing
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Predicted Gold Class
Class N AA A B C D ES E H M RP R T
None 27,922 113 123 55 7 10 178 223 59 446 230 405 0

Ablation Analysis 72 21 0 0 0 0 0 8 0 0 0 14 0
Approach 0 0 0 0 0 0 0 0 0 0 0 0 0
Baselines 146 0 0 38 1 0 1 5 2 5 2 2 0

Code 10 0 0 0 33 0 0 0 0 0 0 0 0
Dataset 0 0 0 0 0 0 0 0 0 0 0 0 0

Experimental Setup 125 0 0 0 0 0 73 5 27 1 0 0 0
Experiments 0 0 0 0 0 0 0 0 0 0 0 0 0

Hyperparameters 136 0 0 0 0 0 109 4 52 0 0 0 0
Model 222 0 7 2 0 0 0 2 0 75 2 3 0

Research Problem 88 0 0 0 0 0 0 1 0 3 118 0 0
Results 327 28 0 0 0 0 0 87 0 1 1 201 0
Tasks 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Confusion matrix for thirteen-class sentence classification. The quantities in bold face correspond with
the boldfaced quantities in section 6.1.

EXPERIMENTAL SETUP were falsely labeled as
belonging to the information unit HYPERPARAM-
ETERS by our classifier, and 19.28% (27 of 140)
of sentences describing HYPERPARAMETERS were
falsely labeled as EXPERIMENTAL SETUP. This
makes sense, as sentences describing experimental
setup may include discussion of hyperparameters.

Sentences belonging to the information unit AB-
LATION ANALYSIS were incorrectly labeled as RE-
SULTS 17.28% (28 of 162) of the time (the clas-
sification of RESULTS was more successful, only
being incorrectly classified as ABLATION ANALY-
SIS 2.24% (14 of 625) of the time). This confusion
makes sense, as ablation analysis may often be dis-
cussed alongside analysis of results. Furthermore,
the information unit RESULTS appears almost 3.65
times as often as the information unit ABLATION

ANALYSIS, another example of how the uneven dis-
tribution of information units impacts the accuracy
of our classifier.

Similarly, sentences describing EXPERIMENTS

were incorrectly labeled as belonging to RESULTS

25.97% (87 of 335) of the time, and RESULTS ap-
pears in the training data 3.16 times as often as
EXPERIMENTS. This resulted in experiments sen-
tences never being positively identified by our sys-
tem in Phase 1. Lastly, our system was not able to
positively identify sentences belonging to the infor-
mation unit APPROACH, either classifying them as
non-contributing, or as belonging to the informa-
tion unit MODEL.

6.2 Implications for Future Work

Because the frequently confused sentences often
have many features in common, in future work
we will investigate a document-level classification
approach, to explore whether there is information
in the paper as a whole that can point towards one
information unit over another. For example, the
information units APPROACH and MODEL never
appear together in the same article in the training
data, because they describing the model used is
equivalent to describing the approach taken. One
might be able to determine whether a paper is likely
to discuss a model rather than a general approach
by looking at features of the whole document.

One type of feature that might be leveraged for
better results is section headers. For example, sen-
tence 5 in Table 3 is found in a section with the
header “Our Approach”, which indicates the gold
label of APPROACH. Often, the contribution sen-
tences describing results are under a section header
with the word “Results” in it, as is the case for sen-
tence 3 in Table 3. Similarly, sentence 2 in Table 3
is found in a section labeled “Experimental Setup”.
However, the correct information unit is not always
consistent with the section header. Sentence 1 in
Table 3 is labeled with the information unit HYPER-
PARAMETERS, though it is found in a subsection
called “Set-Up” under the section “Experiment Re-
sults”. Sentence 4 in Table 3 is found in a section
called Experimental Results, but has the gold label
ABLATION ANALYSIS.
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Predicted True Sentence
1 Experimental Setup Hyperparameters The initial learning rate is 0.0004 and the batch size is 32 .
2 Hyperparameters Experimental Setup Word2vec is used to produce the word embeddings .
3 Ablation Analysis Results Furthermore , using pseudo entity annotations boosted the

accuracy by 0.3 % .
4 Results Ablation Analysis The best performance is achieved by Faceness , with a recall

below 20 % .
5 Model Approach Crucially , the BiLSTM is trained with the rest of the parser

in order to learn a good feature representation for the parsing
problem .

Table 3: Examples of mislabeled sentences

Error Common Words Top POS
(frequency) (probabilty)

B-miss our (124), all (17), PRP$ (.2255)
to (14), each (14)

E-miss model (20), to (17), NN (.2411)
using (13), method (8)

B-extra best (3), use (2), NN (.4235)
set (2), the (2)

E-extra . (24), on (8) in (7), IN (.2784)
than (7), by (6)

Table 4: For each error type, this table shows the most
frequent words either missed by predicted phrase spans,
or added (extra) by predicted phrase spans. Column 3
contains the most frequent POS tag for each error type
(e.g. 22.55% of all words missed from the beginning of
a span were possessive pronouns).

7 Entity and Relation Extraction Results

The gold test data had 13,028 total phrase spans,
of which our system identified 4,277. 39.72% of
these predicted phrase spans were exact matches
with gold phrase spans. 29.97% of predicted phrase
spans were complete false positives, not overlap-
ping with any gold phrase spans. 30.30% of pre-
dicted phrase spans were not perfect matches, but
did overlap with gold phrase spans. The majority of
partial matches were missing a word, reflecting the
fact that the average span length for the gold data
was 12.37 characters but the average span length
for the predicted data was 10.49 characters. 42.44%
of partial matches were missing characters in the
beginning of the phrase span, 52.11% were missing
characters in the end of the phrase span, 6.56% had
extra characters in the beginning of the phrase span,
and 14.97% had extra characters in the end of the
phrase span.

7.1 Partial Phrase Matches
In this section we first look at the characteristics
of the partial matches to discover the cause of
these errors. Because the Duluth system selected
phrase spans using grammatical features, we look
at the parts of speech of the words that were either
missed by the Duluth system or erroneously added
to phrase spans. Then, we look at the grammatical
characteristics of the gold phrase spans that were
entirely missed by the Duluth system.

The most common errors and their frequencies
are shown in Table 4. The part-of-speech that was
most likely to be missing from the end of a span
(E-miss) in the Duluth system output was NN. Our
system misses these noun phrases because the Du-
luth system outlines sentences starting with the
verb labeled as ROOT by Stanford Core NLP’s de-
pendency parser, and identifying the nsubj of that
root and its dependencies as an entity 2.

However, there are some cases where the word
identified as the ROOT is not the verb that the sub-
ject of the sentence is directly dependent on. In
these cases, the sentence subject goes undetected
by our system. For sentence 1 in Table 5, if the verb
improves were properly identified as the ROOT, the
sentence might be outlined like so: Built on top of
the model in but excluding ELMo, base reinforced
model (ENTITY) improves (RELATION) the aver-
age F 1 score (ENTITY). However, Built is identi-
fied by the dependency parser as the ROOT, so the
Duluth system fails to extract the noun phrase our
base reinforced model, which is the nsubj phrase
dependent on improves. Notice also in this exam-
ple the omission of the possessive pronoun our in
the system outline; this illustrates the most com-
mon part-of-speech missing from the beginning of

2ROOT refers to the root of the dependency parse tree. The
nsubj of a parse is the nominal subject dependent on the root.
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1 Built on top of the model in but excluding ELMo, our base reinforced model improves the
average F1 score around 2 points [...]

1 System: base, built on, top Gold: our base reinforced model, improves,
the average F2 score, around, 2 points

2 Finally, the baseline model, EDA, is largely outperformed by all other examined methods.
2 System: baseline model, outperformed

by, other examined methods
Gold: EDA, largely outperformed, by, all other
examined methods

3 We also compare with Tagspace ( Weston et al. , 2014 ) , which is a tag prediction model
similar to ours [...]

3 System: We, compare with, Tagspace Gold: compare with, Tagspace (Weston et al.,
2014), tag prediction model

Table 5: Example sentences with phrase spans improperly extracted by the Duluth system. The phrase spans are
shown separated by commas.

a phrase span, as 24.11% of words missing from
the beginning of phrase spans have POS tag PRP$.

27.84% of words that were erroneously ap-
pended to the end of phrase spans by the Duluth
system were prepositions (IN). This is because
the Duluth system includes prepositions in verb
phrases, while the gold data contains some phrase
spans where the preposition is separated from the
verb, and others where the preposition is included
in the same phrase span as the verb. Sentence 2
in Table 5 shows the Duluth system incorrectly
including the preposition by with the verb outper-
formed, while sentence 3 in 5 shows our system
correctly including the preposition with with the
verb compare.

Phrase
(Frequency)

of (502), with (295), on (274),
for (260), in (190), to (129),
from (87), using (85), by (80),
as (66), than (60), at (52), is
(46), between (44), results (39),
over (36), achieves (36), based
on (32), outperforms (31), train-
ing (26)

Table 6: Most frequently missed phrases.

Phrase spans that improperly capture additional
words can have a ripple effect when the additional
word is supposed to belong to a different phrase
span, like the additional word by in the phrase
span outperformed by. Because by is included in
a phrase span already, it does not exist in its own
phrase span as it does in the gold data, which means
that the phrase span by is completely omitted by
the Duluth system.

This error is quite common; 97% of the phrase
spans in the gold data consisting of a single prepo-
sition were not identified by the Duluth system, due
to the fact that these words tend to get absorbed
by other phrases. This continues to have a detri-
mental effect further down the pipeline, as whether
the prepositions are alone or chunked with other
phrases affects the formation of triples.

7.2 Missed Phrases
To determine the possible causes of missing phrase
spans, we looked at the error rates by part-of-
speech. Since 77.31% of the total phrase spans
in the gold standard data were missed by our sys-
tem, we are only considering POS patterns that
were missed over 77.31% of the time. We are also
only looking at POS patterns that occurred at least
100 times in the gold data.

Phrase spans made up of a single preposition
were frequently not identified by the Duluth sys-
tem. This is apparent in Table 6; the top 5 phrases
most commonly ignored by the Duluth system are
all prepositions. Table 7 shows the phrase types
(phrases described by the POS tag for each word)
that are least likely to be captured in their entirety
by the Duluth System. In addition to prepositions,
infinitive verbs (TO VB) are also frequently omit-
ted by the Duluth system. This is because the Du-
luth system bases the outline of the sentence off
of the ROOT, which is almost always a finite verb.
For this reason, infinitives are frequently ignored.

Our grammar-based approach might be im-
proved on by changing the rule that outlines the
sentences based on the ROOT verb of the sentence,
in order to focus more on noun phrases that are
more likely to be scientific entities. This would
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POS Pattern Missed/Total Example
IN .9735 for
TO .9416 to
CD .9364 99.60

TO VB .9098 to compute
RB .9040 jointly

VBG .8837 using
NN NNS .8750 feature maps

Table 7: These are the POS patterns that are most likely
to be ignored by the Duluth system, and the conditional
probability that they will be omitted.

require developing a method for tagging likely sci-
entific entities that improves on our MEMM en-
tity tagger. However, entities extraction might be
better addressed with a neural approach since our
grammatical approach (without semantics) does
not capture the nuances in the training data.

8 Triples Extraction Results

The official F1 score on the gold standard test
data for triples extraction from Phase 2 Part 2 was
0.2762, and the F1 score for information units was
0.7556. The Duluth system scored the lowest at ex-
tracting triples for the information units DATASET,
TASKS, EXPERIMENTS, receiving F1 scores of 0.0,
0.0, and 0.0597 respectively. The extracted triples
are input into files named for the information unit
they belong to.

Triples extracted from a sentence classified as
RESEARCH PROBLEM are output into a file named
research-problem.txt. The gold data does not con-
tain any tasks.txt files, so all tasks.txt files gener-
ated by our system were false positives. The gold
data contained two dataset.txt files, both of which
were missed by our system. These scores are con-
sistent with the initial results from sentence clas-
sification, as seen in Table 1. Because our system
deals with information unit classification during
the sentences extraction step rather than the triples
extraction step, we focus our discussion here on
errors related to our triples extraction methodology.

Our triples extraction system relies heavily on
part-of-speech tagging to determine whether an en-
tity belongs to the edge of a triple or the middle (for
example, noun-phrases are more likely to be sub-
jects or objects, and verb-phrases are more likely
to be predicates). In order to determine the efficacy
of this approach, we look at the words that were
improperly positioned in our system triples.

One pattern that emerged is that many words
were wrongly positioned in the Duluth system data.
Some phrases and their POS tags that only exist
in the middle position in the gold data that are
found in the edges of triples in the system data
include “achieves” (VBZ), “propose” (VB), “per-
forms” (VBZ), and “uses” (VBZ). Other phrases
that only exist in the edges of triples in the gold
data that are found in the middle position in the sys-
tem data include “outperformed” (VBG), “worse”
(JJR), “outperforming” (VBG), and “randomly ini-
tialized” (RB VBN).

This observation is consistent with the POS dis-
tributions found for the gold triples not identified by
the system and the system triples that were wrongly
identified; 70 of the 792 phrases belonging to the
edge of the gold triples missed by the Duluth sys-
tem have the POS pattern RB VBN, while 46 of the
730 phrases that were wrongly positioned in the
middle of triples by the Duluth system also have
the pattern RB VBN. Similarly, 324 of the 1,656
phrases belonging to the middle of gold triples
missed by the Duluth system have the POS tag
VBZ, while 712 of the 4,242 phrases that were
wrongly positioned at the edge of triples by the Du-
luth system have the same POS tag of VBZ. This
shows that the Duluth system sometimes shifts the
phrases to the left or right of where they ought to
be in the triple pattern.

9 Future Work

One weakness of this system is that the selection
of contributing sentences only uses sentence-level
information; the classifier misses useful contextual
information such as headers and the predicted class
of preceding and following sentences. Future work
may be able to address this problem by fine-tuning
BERT to classify sequences of sentences rather
than isolated sentences (Cohan et al., 2019). Gener-
ally, a document-level approach could be beneficial
in terms of capturing important context.

Another issue is that the end of the system does
not have the ability to provide feedback to earlier
parts of the pipeline; the only agency it has in terms
of contributing sentence selection is the ability to
discard a sentence provided by the sentence classi-
fier. Future work could incorporate a neural entity
classification model into the entity and triple ex-
traction subsystem, which could be used to validate
or invalidate the classification made at the sentence
level (Rotsztejn et al., 2018).
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Kismihók, Markus Stocker, and Sören Auer. 2019.
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A Ethical Considerations

The use of knowledge graphs to process, organize,
and display information comes with some ethical
implications, due to the fact that such a system
acts as an intermediary between human readers and
academic research. Overall such a system, if inte-
grated into academia, may benefit authors of schol-
arly work by making their articles easier to find. It
may also benefit readers, by making the process
of literature exploration more efficient. However,
unintentional harm may arise if there is bias in the
training used to annotate the articles. Since the
Open Research Knowledge Graph is structured so
that contributions are interconnected in the graph
across papers, there may be a risk that different
kinds of contributions are more easily found than
others.

Another concern is whether such an infrastruc-
ture could affect how people design and report their
research, and if that effect is harmful. If researchers
know that their work will be read by a machine and
then integrated into the knowledge graph accord-
ing to its most likely contributions, they could be
consciously or unconsciously motivated to favor
some methods and terms over others, in an attempt
to optimize the likelihood that their work is seen.
There is also the potential for bias to become em-
bedded in the machine reader, that could influence
what kinds of researchers have work that is easily
discoverable in the knowledge graph.

B Task Data

Prior to Phase 1, most of the data used to train the
models was extracted from the original training
dataset, and most of the provided trial dataset was
used for evaluation. Six of the eight articles in the
trial data that contained the information unit TASKS

were moved to the training dataset so that it would
contain enough examples to learn the patterns as-
sociated with this information unit. These folders
were folder 7 from machine-translation, folders 3,
4, and 8 from named-entity-recognition, folder 8
from question-answering, and folder 2 from text-
classification. For all evaluation phases, the models
were retrained on the combined training and trial
datasets.

C System Architecture

The system architecture is organized into three sec-
tions: preprocessing, training, and testing. The
preprocessing section is responsible for :

1. extracting noun and noun phrases from the
training data entities.txt files,

2. extracting each sentence from the training data
and labeling them with their information unit
(or 0 for non-contributing sentences), and

3. extracting sentences from the evaluation phase
data and labeling each one with its file path
and sentence index.

The training pipeline is responsible for fine-
tuning the deBERTa model using the sentences
extracted from the training data, and training the
MEMM using the extracted sentences and the list
of nouns extracted from the training entities files.

The testing pipeline is responsible for taking
the sentences extracted from the evaluation phase
data and labeling each sentence with their predicted
information unit, entity tags, and dependency parse.
The data is passed between each step of the pipeline
in a dictionary, which is added to at each step.

D Information Unit Class Distributions

Phase 1 Class Distributions
None .9011

Ablation Analysis .0062
Approach .0030
Baselines .0083

Code .0010
Dataset .0010

Experimental Setup .0091
Experiments .0072

Hyperparameters .0102
Model .0166

Research Problem .0123
Results .0228
Tasks .0012

Table 8: Distribution of classes in the 59,755 training
sentences provided by the training data.

E DeBERTa Hyperparameters

optimizer AdamW
learning rate 5e-5

max sequence length 128
epochs 8

batch size 32

Table 9: Hyperparameters used to fine-tune deBERTa


