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Abstract

This paper describes PTST, a source-free un-
supervised domain adaptation technique for
sequence tagging, and its application to the
SemEval-2021 Task 10 on time expression
recognition. PTST is an extension of the cross-
lingual parsimonious parser transfer frame-
work (Kurniawan et al., 2021), which uses
high-probability predictions of the source
model as a supervision signal in self-training.
We extend the framework to a sequence pre-
diction setting, and demonstrate its applicabil-
ity to unsupervised domain adaptation. PTST
achieves F1 score of 79.6 % on the official test
set, with the precision of 90.1 %, the highest
out of 14 submissions.1

1 Introduction

SemEval-2021 Task 10 presents source-free unsu-
pervised domain adaptation (SFUDA) for semantic
processing.2 The goal of unsupervised domain
adaptation is to transfer a model from a source
domain to another, different domain — called tar-
get domain — using only unlabelled data in the
target domain. Source-free unsupervised domain
adaptation additionally assumes no access to source
domain data: only the source model pre-trained on
the source domain data is available. This situation
may occur when the source domain data contains
protected information that cannot be shared, or
even if it can, requires signing a complex data use
agreement. While there are numerous works on
SFUDA outside NLP (Hou and Zheng, 2020; Kim
et al., 2020; Liang et al., 2020; Yang et al., 2020),
SFUDA research for NLP is severely lacking in
spite of its importance in, for example, clinical

∗Work done outside Amazon.
1Our code is available at https://github.com/

kmkurn/ptst-semeval2021.
2https://competitions.codalab.org/

competitions/26152

NLP (Laparra et al., 2020). There are two tasks
involved in SemEval-2021 Task 10: negation de-
tection and time expression recognition. We partic-
ipate only in the latter.

Our approach is an extension of the parsimo-
nious parser transer framework (PPT; Kurniawan
et al. (2021)). PPT allows cross-lingual trans-
fer of dependency parsers in a source-free man-
ner, requiring only unlabelled data in the target
side. It leverages the output distribution of the
source model to build a chart containing high prob-
ability trees for each sentence in the target data.
We extend this work by (1) formulating PPT for
chain structures and evaluating it on a semantic
sequence tagging task; and (2) demonstrating its ef-
fectiveness in a domain adaptation setting. We call
our method Parsimonious Transfer for Sequence
Tagging (PTST).

We find PTST effective for improving the preci-
sion of the system in the target domain. It ranks 7th
out of 14 submissions in the official leaderboard
in terms of F1 score, but 1st in precision, with a
gap of 3 points from the second best. Drawing on
the model calibration literature, we provide a way
to combat the problem of model overconfidence
which is key to make PTST outperform a simple
transfer of a source model to the target domain.
However, we also find that PTST struggles in im-
proving recall. In conclusion, our results suggest
that PTST can be used for SFUDA, but further
work is required to improve the precision-recall
trade-off in the target domain.

2 Background

In the SemEval-2021 Task 10 time expression
recognition task, the input is a single sentence, and
the output is a sequence of tags indicating the time
entity type of a word (if any). There are 32 time
entities in total (e.g., Year, Hour-of-Day), and

https://github.com/kmkurn/ptst-semeval2021
https://github.com/kmkurn/ptst-semeval2021
https://competitions.codalab.org/competitions/26152
https://competitions.codalab.org/competitions/26152
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A woman was killed Thursday evening
B-Day-of-Week B-Part-of-DayOOOO

Figure 1: An example input sentence and its output se-
quence of tags for the time expression recognition task.

the tags are coded in BIO format. Fig. 1 shows an
example input sentence and its output. The task
organisers provided a pre-trained source model for
the task. This source model is RoBERTa-base (Liu
et al., 2019) that is pre-trained on more than 25K
time expressions in English clinical notes from
Mayo Clinic in SemEval-2018 Task 6. The model
is distributed online via HuggingFace Models,3

which can be obtained with HuggingFace Trans-
formers library.4 The organisers also released trial
data for the practice phase containing 99 annotated
English articles from the news domain. The official
test data released by the organisers in the evalua-
tion phase contains 47 articles that are in a different
domain from the source and development data.

The time expression recognition task is for-
malised as a sequence tagging task. The litera-
ture on sequence tagging in NLP is massive (Jiang
et al., 2020; He and Choi, 2020; Rahimi et al.,
2019; He et al., 2019; Xie et al., 2018; Clark
et al., 2018, inter alia). One closely related task
is named-entity recognition (NER) whose goal
is to detect mentions of named entities such as
a Person or Organisation in an input sen-
tence. Lample et al. (2016) introduced a now
widely adopted neural architecture for this task,
where input word embeddings are encoded with
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) before they are passed through per-word
softmax layers. In recent times, it is common to
replace the LSTM with a Transformer (Vaswani
et al., 2017). With the advancements of large pre-
trained language models, the standard is to use a
model such as BERT (Devlin et al., 2019) as the en-
coder and fine-tune the model on labelled data. The
source model of the time expression recognition
task provided by the organisers was also trained in
this manner.

In the context of unsupervised domain adapta-
tion, a popular approach is domain adversarial train-
ing. Introduced by Ganin et al. (2016), it leverages
multi-task learning in which the model is optimised

3https://huggingface.co/clulab/
roberta-timex-semeval

4https://github.com/huggingface/
transformers

not only on the main task objective but also a do-
main prediction objective. The learning signal for
the latter is passed through a gradient reversal layer,
ensuring that the learnt parameters are predictive
for the main task, but general across domains. With
pre-trained language models, Han and Eisenstein
(2019) proposed to continue pre-training on the
unlabelled target domain data, prior to finally fine-
tuning on the labelled source domain data. Un-
fortunately, these approaches require access to the
source domain data.

There is relatively little work on SFUDA in NLP,
however, some works on source-free cross-lingual
transfer exist. Wu et al. (2020) employ teacher-
student learning for source-free cross-lingual NER.
A teacher model trained on the source side pre-
dicts soft labels on the unlabelled target side data,
and a student model is trained on those soft labels.
Their method outperforms a simple direct transfer
method where the source model is directly applied
on the target side. More recently, a method for
source-free cross-lingual transfer of dependency
parsers was introduced by Kurniawan et al. (2021).
The key idea is to build a chart of high probability
trees based on arc marginal probabilities for each
unlabelled sentence on the target side, and treat all
those trees as a weak supervision signal for training.
Their method outperforms direct transfer as well as
a variety of recent cross-lingual transfer methods
that are not source-free. That said, the effective-
ness of their method on (a) semantic (sequence
labelling) tasks and (b) in a domain adaptation set-
ting is unexplored, which is what we aim to address
in this work.

3 System Description

We first describe our sequence tagging model (Sec-
tion 3.1), before we present parsimonious transfer
for sequence tagging (PTST) in Section 3.2.

3.1 Model
Our model is a linear-chain conditional random
field (CRF) over tag sequences. It assigns a score
s(x,y) to a pair of input sentence x and output tag
sequence y, which can be expressed as

s(x,y) =
∑
j

π(x, j, yj) + φ(yj , yj+1) (1)

where π(x, j, t) is the emission score of word xj
having tag t and φ(t, t′) is the transition score of
having tag t followed by tag t′. The probability of

https://huggingface.co/clulab/roberta-timex-semeval
https://huggingface.co/clulab/roberta-timex-semeval
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Figure 2: Illustration of our method. Given an unlabelled sentence x from the target domain, we build the set of
high probability tag pairs Ã(x) using the source model, which may contain correct tag pairs that do not occur in
the predicted tag sequence (in orange). From these tag pairs, we build the chart Ỹ (x) containing tag sequences
that can be assembled from tag pairs in Ã(x). The single predicted tag sequence from the source model (bottom)
is also included in the chart, but it may contain an incorrect tag (in red) as it is noisy.

y given x is then

P (y | x) ∝ exp s(x,y). (2)

The emission score function π is parameterised by
a neural network whose parameters are initialised
with the source model. Specifically, the emission
score function is the RoBERTa model provided by
the task organisers. The transition score function
φ is a T × T parameter matrix that is learned dur-
ing training, where T is the number of tags. Note
that with dynamic programming, we can efficiently
compute quantities such as the marginal probabil-
ities of tag pairs P ((j, yj , yj+1) | x) or the parti-
tion function Z(x) =

∑
y∈Y(x) exp s(x,y) where

Y(x) is the set of all possible tag sequences for x.

3.2 Unsupervised Adaptation
To perform unsupervised adaptation on the unla-
belled target domain data, we extend PPT, our past
work for source-free cross-lingual parsing (Kurni-
awan et al., 2021), to chain structures. Given a
set of unlabelled sentences D in the target domain,
we build a chart of high probability tag sequences
Ỹ (x) by leveraging the output distribution in the
source model. The model then treats all sequences
with sufficiently high predicted probability as pos-
sible tag sequences for x for training. Concretely,
it minimises the loss:

`(θ) = −
∑
x∈D

log
∑

y∈Ỹ (x)

Pθ(y | x) (3)

where θ denotes the target model parameters. The
set Ỹ (x) is defined formally as

Ỹ (x) = {y|y ∈ Y(x) ∧A(y) ⊆ Ã(x)} (4)

where Y(x) is the set of all possible tag sequences
for x, A(y) = {(j, yj , yj+1)|1 ≤ j < |y|} is the
set of consecutive tag pairs in tag sequence y, and
Ã(x) =

⋃
j Ã(x, j) where Ã(x, j) is the set of

high probability consecutive tag pairs (j, tj , tj+1)
for words xj and xj+1 (see Fig. 2 for illustration).
Analogous to PPT, this set is constructed by adding
tag pairs (tj , tj+1) in order of decreasing marginal
probability until their cumulative probability ex-
ceeds a threshold σ. The predicted tag sequence
from the source model is also included in Ỹ (x) so
the chart is never empty.

Note that the method above is very similar to
self-training where the predictions from the source
model are used as supervision signal for training. In
contrast to self-training, however, we build a chart
of high probability predictions for each sample
instead of just a single best prediction. We expect
these predictions to be more useful than a single
best prediction because it is more likely for the
correct tag sequence to be in the chart than equal to
the single best prediction. Even when this is not the
case, we expect the partially correct tag sequences
occur frequently enough in the chart so the model
is still able to learn what the correct tag sequence
is.



448

Team F1 P R

BCLUFIGHT-1 81.5 84.7 78.5
Self-Adapter-1 81.1 87.3 75.7
BLCUFIGHT-2 81.0 83.4 78.7
Baseline-2 80.4 82.7 78.2
YNU-HPCC-2 80.3 81.7 79.1
Self-Adapter-2 79.7 83.9 76.0
PTST-UoM-1 (ours) 79.6 90.1 71.3
Boom-1 79.5 86.9 73.2
UArizona-1 79.5 78.6 80.4
UArizona-2 79.5 78.3 80.7
Baseline-1 79.4 84.9 74.6
KISNLP-1 79.3 81.0 77.7
KISNLP-2 78.1 79.8 76.4
YNU-HPCC-1 74.8 87.2 65.5

Table 1: TIMEX leaderboard on the test data.

In our preliminary experiments, we find that it
is crucial to introduce temperature scaling to the
emission scoring function in order to achieve good
performance. Thus, for our main result, we define
a new emission scoring function π′ as

π′(x, j, yj) = π(x, j, yj)/τ (5)

where τ is the temperature scale hyperparameter.
We discuss and provide an analysis of this temper-
ature scaling in Section 5.

4 Experimental Setup

We use the pre-trained source model and data pro-
vided for SemEval-2021 Task 10. We only use the
model and data for the time expression recognition
task (TIMEX hereinafter) as we only participate
in that task. We use the practice data as the de-
velopment set to tune the hyperparameters of our
model with random search.5 We set the threshold
σ = 0.95 following the setup of Kurniawan et al.
(2021). We do not use any data sets other than
those provided by the task organisers for TIMEX.

We train PTST on the unlabelled test data for
5 epochs. As described in Section 3.1, we ini-
tialise the neural network for the emission scoring
with the source RoBERTa model provided by the
task organisers. We enforce the BIO constraints
by initialising the transition matrix φ with −∞
for entries corresponding to illegal transitions, and
zero otherwise.6 We use the linear CRF implemen-
tation provided in the Torch-Struct library (Rush,
2020). To avoid out-of-memory error, we discard

5Best learning rate and τ are 9 × 10−6 and 2.56 respec-
tively.

6The constraints require an inside tag be always preceded
by an inside or beginning tag of the same entity.

sentences longer than 30 tokens. Additionally, we
find that it is useful to freeze the embedding and
the first few layers of the RoBERTa encoder. Thus,
in our main result, we freeze the embedding layer
and the first 6 (out of 12) layers of the encoder. An
analysis is provided in Section 5.

5 Results and Discussion

Table 1 shows the TIMEX leaderboard on the offi-
cial test data in the evaluation phase.7 Our model
PTST is ranked 7th out of 14 submissions in terms
of F1 score, below the baseline model submission
by the task organisers which ranks 4th. This base-
line model is the pre-trained source model fine-
tuned on the labelled development data. Despite the
relatively low F1 score, PTST achieves 90.1 % pre-
cision, which is the highest among all submissions,
and markedly above the second highest precision
of 87.3 % achieved by the second best performing
model. Looking at recall, our model has the sec-
ond lowest score of 71.3 %, which is fairly below
the third lowest one of 73.2 %. This result sug-
gests that our model is sacrificing recall in favour
of precision, which may be a desirable property for
downstream tasks where making the right predic-
tion is more critical.

Model overconfidence As mentioned in Sec-
tion 3.2, in our preliminary experiments, we find
that the source model is extremely confident about
its predictions, making the marginal probability dis-
tribution of tag pairs at any position j very sharp.
This sharpness results in Ỹ (x) containing mostly
just a single tag sequence, which is the predicted se-
quence from the source model, rendering the whole
approach no different from simple self-training.
To remedy this problem, we introduce tempera-
ture scaling in the emission score, which has been
shown to be a simple but effective trick in model
calibration (Geman and Geman, 1984; Guo et al.,
2017). We define the new emission scoring func-
tion as shown in Eq. (5). Table 2 shows how the
performance of PTST changes when τ is varied.
We see that as τ increases, precision does too, but
recall decreases, although in a relatively slower
rate so the F1 score tends to increase as well. Also
reported in Table 2 is the median number of tag
sequences and the fraction of gold tag sequences

7Also available on https://
machine-learning-for-medical-language.
github.io/source-free-domain-adaptation/
leaderboard.

https://machine-learning-for-medical-language.github.io/source-free-domain-adaptation/leaderboard
https://machine-learning-for-medical-language.github.io/source-free-domain-adaptation/leaderboard
https://machine-learning-for-medical-language.github.io/source-free-domain-adaptation/leaderboard
https://machine-learning-for-medical-language.github.io/source-free-domain-adaptation/leaderboard
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τ F1 P R n p (%)

1.0 77.0 ± 0.4 76.5 ± 1.0 77.5 ± 0.3 1 54.1
1.5 77.4 ± 0.2 77.5 ± 0.1 77.4 ± 0.5 1 56.9
2.0 77.6 ± 0.1 79.1 ± 0.5 76.1 ± 0.4 1 64.0
2.5 77.8 ± 0.5 81.2 ± 0.2 74.7 ± 1.0 9.2 × 1013 79.7
3.0 26.7 ± 7.9 96.3 ± 2.9 15.7 ± 5.3 2.2 × 1017 86.9

SRC 77.1 77.5 76.8 — —

Table 2: Model performance on the development data as τ changes. SRC is the pre-trained source model directly
applied on the development data. F1, precision (P), and recall (R) scores are averages (± std) over 3 runs. n is
the median number of high probability tag sequences in the chart Ỹ (x). p is the fraction of gold tag sequences
contained in the chart.

F1 P R

SRC 77.1 77.5 76.8

No freezing 77.8 ± 0.5 81.2 ± 0.2 74.7 ± 1.0
Freeze emb 77.7 ± 0.2 81.0 ± 0.4 74.7 ± 0.6
Freeze emb + 6 layers 78.2 ± 0.2 80.3 ± 0.3 76.2 ± 0.0
Freeze emb + 12 (all) layers 77.2 ± 0.0 77.7 ± 0.0 76.7 ± 0.0

Table 3: Model performance on the development data when the RoBERTa embedding and encoder layers are
frozen during training. SRC is the pre-trained source model directly applied on the development data. Scores are
averages (± std) over 3 runs.

contained in the chart. The two quantities grow as
τ does, which indicates that increasing τ indeed
allows the chart to contain more tag sequences,
and thus increasing the coverage of correct tag se-
quences in the chart. However, when τ is too large
(τ = 3.0), the model breaks down, presumably be-
cause Ỹ (x) contains too many noisy tag sequences
to be useful.

The decline in recall might be explained by the
nature of the task, where in a single sentence most
of the words are not time entities. When τ grows,
the number of high probability tag sequences in
Ỹ (x) does too. In the majority of these tag se-
quences, a word in x is likely to be tagged as a
non-entity because time entities are naturally rare.
Since tag sequences are treated uniformly (i.e. no
tag sequence weighs more than the others), this pro-
vides a strong signal for the model that the word
is a non-entity. Therefore, the model’s capability
of recognising entities is reduced. Conversely, a
similar argument may explain the rise in precision.
When the model predicts a word as an entity, it is
likely that in the majority of tag sequences in Ỹ (x),
the word is tagged as the same entity, providing
a strong signal that the word is indeed that entity.
In other words, if the model predicts an entity, the
model is very confident about it. When confidence
is high, it is more likely that the prediction is cor-
rect, thus resulting in higher precision.

Freezing layers We also find that it is helpful to
freeze the embedding layer and the first few layers
of the RoBERTa model’s encoder during training,
presumably because they encode low-level linguis-
tic information that is invariant across domains. Ta-
ble 3 reports how the model performance changes
with varying numbers of layers frozen (τ is fixed to
2.5). We observe that freezing the embedding and
first several encoder layers gives a small boost to
performance, with best performance reached with
6 frozen layers (the setting adopted in the model
reported in the main results).

Error analysis To better understand the errors
of PTST, we present the confusion matrix of the
model on the test data in Fig. 3. We see that the
majority of the errors arise from the model not
recognising actual time entities, consistent with
the relatively low recall. The model has serious
difficulties in recognising Season-Of-Year,
for example, in fragments like:

The increase in food aid beneficiaries is
partly attributed to Meher harvest loss [...]

(1)

The increase, which follows a seasonal
trend, is seen in all regions except Tigray.

(2)

The model also seems to struggle with recog-
nising Between and This. Example sentence
fragments where the model wrongly predicts a
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Figure 3: Confusion matrix on the test data.

non-entity are:

In Gambella region, between 1 and 12 April,
3,346 South Sudanese refugees arrived [...]

(3)

where the model fails to recognise Between, and

[...] to prevent a potential national outbreak
of AWD during this rainy season

(4)

where the model fails to recognise This. Al-
though the model has good precision, we
still see that it misclassifies non-entities and
Calendar-Interval as Period relatively
often. For example, in the fragment

[...] the malnutrition situation is expected
to aggravate in the coming months (5)

the word months is a Calendar-Interval
but the model predicts it as Period. Another
example, the model predicts the word period in the
sentence fragment

During the reporting period, an estimated
1,000 south Sudanese arrived [...]

(6)

as Period, while the word is actually not a time
entity.

6 Conclusions

We present PTST, our submission to the time ex-
pression recognition task of SemEval-2021 Task 10.
We describe our sequence tagging model as a CRF
over chain structures, parameterised by a neural
network. Our domain adaptation approach lever-
ages the output distribution of the source model to
build a chart of high probability tag sequences for
every sentence in the unlabelled target domain data.

PTST ranks 7th in terms of F1 score in the official
leaderboard, but achieves the highest precision out
of 14 submissions. We provide analyses on the im-
portance of temperature scaling to mitigate model
overconfidence and the patterns of errors.
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