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Abstract
Recent progress in deep learning has primar-
ily been fueled by the availability of large
amounts of annotated data that is obtained
from highly expensive manual annotating pro-
cesses. To tackle this issue of availability
of annotated data, a lot of research has been
done on unsupervised domain adaptation that
tries to generate systems for an unlabelled
target domain data, given labelled source do-
main data. However, the availability of anno-
tated or labelled source domain dataset can’t
always be guaranteed because of data-privacy
issues. This is especially the case with med-
ical data, as it may contain sensitive informa-
tion of the patients. Source-free domain adap-
tation (SFDA) aims to resolve this issue by us-
ing models trained on the source data instead
of using the original annotated source data. In
this work, we try to build SFDA systems for se-
mantic processing by specifically focusing on
the negation detection subtask of the SemEval
2021 Task 10. We propose two approaches -
ProtoAUG and Adapt-ProtoAUG that use the
idea of self-entropy to choose reliable and high
confidence samples, which are then used for
data augmentation and subsequent training of
the models. Our methods report an improve-
ment of up to 7% in F1 score over the baseline
for the Negation Detection subtask.

1 Introduction

The availability of large scale datasets has been the
main driving factor behind the success of super-
vised deep learning in the recent times. However,
the process of data annotation is very expensive
and time consuming, being one of the major chal-
lenges in extending deep learning techniques for
new tasks.

One possible way to solve this problem is to
train a machine learning model using an annotated
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source dataset to assist the annotation process over
some unlabelled target dataset. However, there may
be differences in the source and target domain dis-
tributions, which may lead to inaccuracies. Thus
the challenge is to update the weights of the source
classifier to generalize it well on the target domain.
This aligns with the well studied problem of Un-
supervised Domain Adaptation (UDA) (Kouw and
Loog, 2019; Wang and Deng, 2018; Ramponi and
Plank, 2020)

A common denominator across many popular
UDA methods is their dependence on large amounts
of labelled source domain data (Ganin and Lem-
pitsky, 2015; Saito et al., 2018). However, many a
times it is not possible to release the source domain
dataset because of privacy concerns. This prob-
lem becomes particularly relevant when working
with clinical Natural Language Processing (NLP)
datasets because they contain highly sensitive in-
formation which cannot be freely distributed. To
tackle these data sharing constraints, the frame-
work of Source-Free Domain Adaptation (SFDA)
is gaining interest (Laparra et al., 2020). In SFDA,
instead of sharing the source domain data, only a
model that has been trained on the source domain
data is shared. This model is then used for solving
the original task for the unlabelled target domain.

SemEval 2021 Task 10 (Laparra et al., 2021)
asks participants to develop SFDA models for two
subtasks. The first subtask involves Negation
Detection, where we are required to determine
whether or not a clinical entity (diseases, symp-
toms, etc.) mentioned in a sentence is negated in
the given context. The second subtask is of Time
Expression Recognition, where the objective is to
detect and label all time expressions mentioned in
a given document. In this work we have focused on
the negation subtask. For solving this subtask our
strategy is to make use of high-confidence proto-
types from the target domain to reinforce the target-
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specific features of the source model. We propose
a simple augmentation technique that makes use
of these high-confidence prototypes to generate la-
belled artificial datapoints. These augmented sam-
ples are then used to perform supervised fine-tuning
of our source model. Using our methods, we were
able to obtain upto a 7% improvement in F1 score
over the baseline. The code for models and experi-
ments is made available via GitHub.1

2 Background

In source free domain adaptation (SFDA) problem
for semantic analysis, the goal is to create accurate
systems for un-annotated target domain data. For
these tasks, we are provided with un-annotated
target domain data, and a model trained on the
annotated source domain data for a similar task.

The shared task is further divided into 2 sub-
tasks – Negation detection and Time expression
recognition. In this work we focus only on the first
subtask.

Negation Detection: The task is to classify clin-
ical event mentions for whether they are negated
by their context. This is essentially a “span-in-
context” classification problem, where both the en-
tity to be classified and its surrounding context are
to considered. For example, the sentence - “Has no
<e>diarrhea <\e>and no new lumps or masses”
has the entity diarrhea which is negated by its con-
text, and the model’s task is to correctly identify
this entity as negated.

Pretrained Models: For negation detection, a
given pre-trained classification model has been fine-
tuned on the 10,259 instances in the SHARP Seed
dataset(Rea et al., 2012) of de-identified clinical
notes from Mayo Clinic of which 902 instances are
negated.

Practice Data: The development data for the nega-
tion task is a subset of the i2b2 2010 Challenge
(Uzuner et al., 2011) on concepts, assertions, and
relations in clinical text. The practice dataset is
further divided into train and dev splits. The train
split contains 2886 unlabeled sentences while the
dev split is composed of 5545 labeled sentences.

Test Data: A part of the MIMIC III corpus v1.4
(Johnson et al., 2016),is used as the test set for the
negation detection subtask. The processed test data
contains around 600K instances.

1https://github.com/purug2000/protoAug.git

2.1 Prior Work
The limitations in creating large scale annotated
datasets have led to a large amount of work on un-
supervised domain adaptation in the recent years
(Ganin and Lempitsky, 2015; Ganin et al., 2016;
Tzeng et al., 2017; Saito et al., 2018). However,
most of this work assumes free availability of
source domain data. In source free domain adapta-
tion (SFDA) problems, when no annotated source
data is available, and only a pretrained model is
provided, the domain adaptation problem becomes
rather difficult, and this remains a largely unex-
plored area in the NLP community. However, there
have been some recent works in the computer vi-
sion domain that attempt to solve this problem.
Hou and Zheng (2020) propose a model to trans-
fer the style of source images to that of the target
images by exploiting the information stored in the
batch normalization layers of the pre-trained model.
In another work, (Kim et al., 2020) observed that
the target domain data points with lower entropy
are generally classified correctly and are reliable
enough to generate pseudo labels for the entire tar-
get dataset.

The two sub-tracks for the current SemEval task
are well studied problems in the supervised setting
and a lot of work has been done on developing
models for both the negation detection in clinical
settings (Chapman et al., 2001; Cotik et al., 2016)
and the time expression recognition taak (Laparra
et al., 2018). However, in this work, we attempt
to approach the negation detection task from the
perspective of SFDA, and not on improving these
techniques in general.

3 System Overview

In this paper we offer a novel perspective on the
problem of domain adaptation for the negation
detection task in clinical NLP. The proposed ap-
proaches attempt to utilize some of the aspects of
both self-learning and semi-supervised learning, as
explained next.

Class Prototypes: If there was any access to the
labeled target data then the most intuitive approach
would have been the fine-tuning. But for unlabeled
case, in order to fine-tune the pre-trained network
S, it would become necessary to generate a labeled
set of data from the given unlabeled target domain
data. One way to approach this would be through a
concept from self-learning, i.e., by finding the most
reliable samples from the target data over which the

https://github.com/purug2000/protoAug.git
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model S is sufficiently confident and using these
predictions as the corresponding ground truth. In
order to find reliable target samples, self-entropy H
can be used to quantify the prediction uncertainty:

H(x) = −
K∑
k=1

pSk (x)log(p
S
k (x)) (1)

Here, S refers to the network (pre-trained classi-
fier), K are total number of classes, and pSk (x) is
the probability of the instance x belonging to the
class k.

Figure 1: For any point P on the x-axis, the y-axis
shows the performance scores on the data points hav-
ing their self-entropies in the lowest P percentile.

The samples with smaller self-entropy indicate
that the classifier is more confident over them, and
these are referred to as Prototypes. The relation-
ship between the self-entropy value and certainty
in the prediction can be clearly observed in fig-
ure 1. Due to very high confidence of the model
and accuracy over these prototypes, we can safely
consider their predicted labels as their actual true
labels. Here, one crucial hyperparameter to con-
sider is the self-entropy threshold below which the
residing target samples will be identified as pro-
totypes. The key issue faced while determining
the value of this hyperparameter is the disparities
and highly imbalanced data distribution between
the classes. Especially, in the negation task, the
presence of the negated sentences in the practice
data itself is in a very small proportion than that of
non-negated sentences making negated a minority
and non-negated a majority class. Analysis of the
practice data (figure 2) further showed that the low-
est self-entropy achieved by the negated class is
far higher than that of non-negated class. For now,
the self-entropy threshold value is defined by the
50th percentile (median) self-entropy value of the

minority class i.e. negated class. The rationale for
this is provided in the Analysis section (section 5).

Unfortunately, the fine-tuning of the pre-trained
network S with the prototypes identified from the
target samples, didn’t enable the trained network
to generalise its performance over unseen target
data as it made it highly likely to overfit on the
prototypes without any early intervention. With
this approach, we were able to get improvement
of about 1% in F1 score over the baseline but that
too with the highly unstable and unreproducible
training results. Only using the reliable samples
became a major issue as the trained model seemed
to be unaware of the samples over which the model
was less confident before.

Augmentation: To address the issue of lack of
generalisation of the model towards the unseen
and not-so-reliable target data, we propose the use
of augmentation, inspired by the Mean Teacher
model proposed by Tarvainen and Valpola (2018).
The basic idea is to regularize the network by in-
troducing noise to the prototypes in a way that can
keep the label same and thereby creating new data
points with the known labels. Mean Teacher model
uses similar strategy for the labeled data points,
instead here we apply that to the identified proto-
types from the target data. This way, the pre-trained
network can be subjected to a further constructive
training by introducing a set of new labelled sam-
ples, which could help with the generalisation for
the trained model.

Another use of the augmentation here is to ad-
dress the issue of highly skewed and imbalanced
distribution of data between the classes. Here, the
augmentation is utilized not just to generate new
samples to regularize the network but also to make
the data distribution balanced across the classes by
adding new samples in accordance with the pre-
ferred proportions.

Although there could be many possible ways to
augment the samples so that their labels can be
maintained, for this specific task, since we have a
highlighted concept term in each sentence, we have
used the augmentation by replacing that concept
term. The new sentences are generated from their
parent prototype sentences by replacing the con-
cept term with a concept term from any randomly
selected sentence of the same class in the data set.
Here we have assumed that most of the concept
terms will represent medical condition and thus
nouns. Even when the grammar and the sentence
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structure is preserved, the result of the augmenta-
tion might still not be perfect due to the possible
ambiguity in the concept term selection or incor-
rect grammar in the original sentence itself. For
example, consider the sentence “...<e> cortisol
</e> is currently pending.”. Here it is not clear
if the entity “cortisol” is negated or non-negated.
However, it should be noted that such ambiguities
are relatively less frequent which in turn implies
that the augmentation will suffice its purpose for
the majority of the time.

ProtoAUG and Adapt-ProtoAUG: Combining
the concepts discussed above, here we propose our
two approaches ProtoAUG and Adapt-ProtoAUG,
both of which share the same set of concepts of
class prototypes and augmentation as explained be-
fore. For both ProtoAUG and Adapt-ProtoAUG,
the common underlying procedure is as follows:
first the prototypes are identified from the target do-
main data and then the augmentation follows with
the intent of regularizing the network and to cre-
ate a more balanced distribution of samples across
the classes. Now both the prototypes and their
augmented samples with their respective labels are
used with cross entropy loss to update the weights
of the feature extractor module F of the pre-trained
network S, with classifier module C of the pre-
trained network being frozen.

The fundamental difference between ProtoAUG
and Adapt-ProtoAUG is about the adaptive nature
of Adapt-ProtoAUG in recognizing the prototypes
from the original target domain dataset after every
epoch, which ProtoAUG does only at the beginning
of the training. Adapt-ProtoAUG makes incremen-
tal changes to the percentile score (initially 50) for
the self-entropy threshold. The intuition behind
using this strategy is that as the training proceeds,
model will become more confident on the training
samples and the entropy values for all the samples
will significantly decrease. A possible drawback
of using a fixed percentile criteria for the threshold
at every epoch would likely exclude some reliable
samples even when they achieve objectively quite
lower values of self-entropy. To avoid such sce-
narios, apart from repeating the same process of
prototype identification followed by augmentation
after every epoch, we also propose to increase the
percentile score for determining the self-entropy
threshold in an uniform manner throughout the
training with some fixed upper bound (70). This is
also explained further in the Analysis (section 5).

4 Experimental Setup

Model: The pre-trained model used in subtask-1
is a RoBERTa (Liu et al., 2019) based sequence
classification model2 provided by organizers after
training on source domain data inaccessible to us.
It has two modules - a feature extractor and a classi-
fier that operates over the output [CLS] token from
the feature extractor.

Data: In the practice phase, train split of the prac-
tice dataset was used to further train the pre-trained
model whereas the dev split was used as a vali-
dation set for the hyper-parameter tuning. In the
evaluation phase, due to our computational con-
straints, we were only able to utilize a randomly
selected subset of 25k samples from around 600k
sentences of the test dataset, for retraining of the
pre-trained model. For evaluation the organisers
use an annotated subset of the test dataset. During
the evaluation phase this subset was kept hidden
from the participants.

Hyper-parameters setting: For ProtoAug, self-
entropy percentile threshold is set to 50% whereas
as for Adapt-ProtoAUG it is uniformly increased
after every epoch from being 50% at the first to
being 70% at the final epoch. Using augmentation,
the final number of samples per class is set to be
x times the number of prototypes belonging to the
majority (non-negated) class. In our experiments,
we choose x to be 4. For both the approaches, the
model training is performed for 10 epochs. Dur-
ing the test phase, we reuse the hyper-parameters
obtained from the practice phase. Further details
about hyper-parameter selection can be found in
Appendix A.

5 Results

Table 1 shows results on the development data
for the two approaches - ProtoAUG and Adapt-
ProtoAUG. For reference, results obtained from
the pre-trained model are shown as the baseline.

Model F1
score

Precision Recall

Baseline 0.834 0.850 0.818
ProtoAUG 0.877 0.948 0.816
Adapt-ProtoAUG 0.888 0.959 0.827

Table 1: Results obtained on dev data of practice phase

2Model is available on https://huggingface.co/
tmills/roberta_sfda_sharpseed

https://huggingface.co/tmills/roberta_sfda_sharpseed
https://huggingface.co/tmills/roberta_sfda_sharpseed
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Table 2 shows results of our two proposed ap-
proaches with the baseline model on the test set. In
evaluation phase, the observed improvement in F1-
score was of roughly 7% from the original baseline.

Model F1
score

Precision Recall

Baseline 0.66 0.917 0.516
ProtoAUG 0.706 0.939 0.566
Adapt-ProtoAUG 0.729 0.876 0.624

Table 2: Results obtained on test data of evaluation
phase

Analysis: To ascertain the relationship between
self-entropy and a prediction’s reliability, we anal-
yse the baseline performance scores for the data
points within the varying self-entropy percentile
threshold as shown in figure 1. For the baseline,
we observe a direct correlation between a lower
self-entropy and a higher prediction score on the
respective data points. This further supports the use
of low self-entropy data points as class prototypes
in our proposed approaches.

As shown in figure 2, the lowest self-entropy
achieved by minority (negated; label 1) class is far
higher than that of majority (non-negated; label
-1) class. This may be attributed to the skewed na-
ture of the target dataset and potentially the source
dataset as well.

Another interesting observation from figure 2
is that most of the majority class samples have
a self-entropy lower than the lowest self-entropy
achieved by the minority class. Thus, for selecting
the threshold for prototype selection, we apply the
percentile-based criteria only on the self-entropy
values of the minority class.

For prototype selection, instead of using an abso-
lute threshold value, we have chosen a percentile-
based entropy threshold as it adapts relatively well
across different domains. This follows from the
fact that confidence of the model may vary from
domain to domain due to which a threshold chosen
for one domain might not be a good criteria for
another domain.

For Adapt-ProtoAUG, as the upper bound for the
self-entropy threshold is increased beyond 70, we
observed a gradual decline in the model’s perfor-
mance for the dev set. This may be due to the 85%
precision of the baseline. Precision here refers
to the proportion of correctly classified negated

samples to the model’s total number of negated
predictions. So, it could be the case that as the
threshold reaches near or get past the precision
score, the probability of identifying a wrongly la-
belled sample as a prototype will rapidly increase.
Compared to ProtoAUG, as the percentile thresh-
old was increased from 50 to 70, we observed an
overall increment of recall for both the dev and test
dataset. Furthermore, introducing augmentation
in the framework drastically increased the stability
and reproducibility of the training process.

Figure 2: Cumulative number of sample vs entropy
threshold curve

Appendix B provides some insights from t-SNE
analysis, visually justifying the performance im-
provement. It analyses the predictions of the base-
line model and Adapt-ProtoAUG over a fixed two-
dimensional feature-space, comparing the similar-
ities of their respective predictions with the orig-
inal ground-truth labels. We observe that Adapt-
ProtoAUG can capture the label distribution better
than the baselines by performing well on various
non-trivial data-points.

6 Conclusion

In this work, we carefully explored the problem
of source-free domain adaptation for the Negation
Detection subtask. We studied the importance of
the confidence that a model places on its predic-
tion and analyzed its formulation in terms of the
samples’ self-entropy scores. Further, using those
insights, we proposed two simple and intuitive ap-
proaches, namely ProtoAUG and Adapt-ProtoAUG
for the Negation Detection Subtask and got an im-
provement of 7% on the test set with respect to the
baseline model.
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A Training Hyper-parameters

We train our models with a batch size of 32 us-
ing SGD optimizer with initial lr = 0.0005 which
decays after every iteration by multiplying it with
(1 + 10 ∗ itr/max iter)−0.75 (where itr is cur-
rent iteration and max iter is maximum itera-
tion of training), weight decay = 0.0005 and
momentum = 0.9.

B t-SNE Analysis

We performed low dimensional analysis of the mod-
els using tsne. In the following figures, we took
the 768 dimensional output of the baseline roberta
model for the test dataset, and projected it in two
dimensions using tsne.
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Figure 3: Ground truth labels. Blue points correspond
to negation = 1.

• Figure 3 shows the the 2-dimensional tsne plots
with the original ground truth labels.The blue
points are the true positives and reds are the true
negative points. We broadly observe two clusters
- a smaller one with majority of points being true
positives and a larger cluster with a majority of
points being negatives. We also observe some
blue points scattered in the red cluster and vice-
versa.

• Figure 4 shows the predictions of the baseline
model on the target domain. We see that the
baseline classifier segregates the test data into
almost perfect clusters, and thus misclassifies the
scattered points.

• Figure 5 shows the prediction results of adapt-
protoaug. In this case the F1 score improved
from the baseline score by around 7%. Looking
at the figure, we clearly see an improvement
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Figure 4: The predictions of the baseline model on the
test set of the target domain.

−60 −40 −20 0 20 40 60 80
−60

−40

−20

0

20

40

60

80
tsne on testset, Predicted labels

-1
1

Figure 5: Visualisation of the predictions of an im-
proved model

with respect to the baseline model, as we are
now able to correctly capture some of the points
that randomly fall within in the opposite cluster.


