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Abstract

We present the TAPAS contribution to the
Shared Task on Statement Verification and Ev-
idence Finding with Tables (SemEval 2021
Task 9, Wang et al. (2021)). SEMTABFACT
Task A is a classification task of recognising
if a statement is entailed, neutral or refuted by
the content of a given table. We adopt the bi-
nary TAPAS model of Eisenschlos et al. (2020)
to this task. We learn two binary classification
models: A first model to predict if a statement
is neutral or non-neutral and a second one to
predict if it is entailed or refuted. As the shared
task training set contains only entailed or re-
futed examples, we generate artificial neutral
examples to train the first model. Both models
are pre-trained using a MASKLM objective, in-
termediate counter-factual and synthetic data
(Eisenschlos et al., 2020) and TABFACT (Chen
et al., 2020), a large table entailment dataset.
We find that the artificial neutral examples are
somewhat effective at training the first model,
achieving 68.03 test F1 versus the 60.47 of a
majority baseline. For the second stage, we
find that the pre-training on the intermediate
data and TABFACT improves the results over
MASKLM pre-training (68.03 vs 57.01).

1 Introduction

Recently, the task of Textual Entailment (TE) (Da-
gan et al., 2005) or Natural Language Inference
(NLI) (Bowman et al., 2015) has been adapted to
a setup where the premise is a table (Chen et al.,
2020; Gupta et al., 2020). The Shared Task on
Statement Verification and Evidence Finding with
Tables (SemEval 2021 Task 9, Wang et al. (2021))
follows this line of work and provides a new dataset
consisting of tables extracted from scientific arti-
cles and natural language statements written by
crowd workers. In this paper, we discuss a system
for tackling task A, which is a multi-class classi-
fication task that requires finding if a statement is

Step 1: Pretrain with MLM

[CLS] Statement [SEP] Header 1 [MASK] [MASK] ...

Step 2: Intermediate Pretrain with
Counterfactual+Synthetic data

Sum of wins when Country is U.S is 7 — Entailed
Steve has the highest earnings — Refuted

Step 3: Intermediate Pretrain on TabFact

Real TabFact Instance — Entailed / Refuted

Step 4a: Fine-tune neutral detector

Real SemTabFact Instance — Relevant

Corrupted SemTabFact Instance — Neutral

Step 4b: Fine-tune binary entailment

Real SemTabFact Instance — Entailed / Refuted

Figure 1: Overview of the training pipeline use in our
system. We use intermediate pre-training on Counter-
factual+Synthetic data (Eisenschlos et al., 2020) and
then fine-tune on TABFACT (Chen et al., 2020).

entailed, neutral or refuted by the contents of a
table. The training set contains only entailed and
refuted examples and requires data augmentation
to learn the neutral class. Additionally, this data set
is composed of English language data and requires
sophisticated contextual and numerical reasoning
such as handling comparisons and aggregations.
A successful line of research on table entailment
(Chen et al., 2020; Eisenschlos et al., 2020; Gupta
et al., 2020) has been driven by BERT-based mod-
els (Devlin et al., 2019). These approaches reason
over tables without generating logical forms to di-
rectly predict the entailment decision. Such models
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are known to be efficient on representing textual
data as well reasoning over semi-structured data
such as tables. In particular, TAPAS-based models
(Herzig et al., 2020) that encode the table structure
using additional embeddings, have been success-
fully used to solve binary entailment tasks with
tables (Eisenschlos et al., 2020).

I Statement + Table ]

]—’I Neutral |

[ Stage 1

]—’I Refuted |

[ Stage 2

Entailed

Figure 2: Overview of the complete system. Stage
1 classifies into neutral and non-neutral statements.
Stage 2 into entailed and refuted. Both stages are based
on binary TAPAS classifier models.

To address multi-class classification entailment
we decompose the main task into two sub-tasks and
use two TAPAS models as described in Figure 2. A
first model classifies the statement into neutral or
non-neutral, and a second into entailed or refuted.
The two models are learned separately: we created
artificial neutral statements to fine-tune the first
model. Examples are extracted by randomly pair-
ing statements and tables from the SEMTABFACT
training set. We also generate harder examples by
creating new tables from the original tables by re-
moving columns that contain evidence to refute or
entail the statement. This procedure is discussed in
Section 3.

We follow Eisenschlos et al. (2020) and pre-train
the two TAPAS models with a MASKLM objective
(Devlin et al., 2019) and then with counterfactual
and synthetic data as shown in Figure 1. We ad-
ditionally fine-tune both models on the TABFACT
dataset. Details are given in Section 4.

We find that our artificial neutral statement cre-
ations out-performs a majority baseline and that
pre-training help for both the first and the second
stage. Our best models achieve 68.03 average mi-
cro f1-score on the test set.

2 Related Work

Entailment on Tables Recognizing textual en-
tailment (Dagan et al., 2010) has expanded from a
text only task to incorporate more structured data,
such knowledge graphs (Vlachos and Riedel, 2015),
tables (Jo et al., 2019; Gupta et al., 2020) and im-
ages (Suhr et al., 2017, 2019).

The TABFACT dataset (Chen et al., 2020) for
example, uses tables as the premise, or source of
information to resolve whether a statement is en-
tailed or refuted. The TAPAS architecture intro-
duced by Herzig et al. (2020) can be used to obtain
transformer-based baselines, as shown in Eisen-
schlos et al. (2020), by using special embeddings
to encode the table structure. Zhang et al. (2020);
Chen et al. (2020) also use BERT like models but
obtain less accurate results due possibly to not us-
ing table-specific pre-training.

Intermediate Pre-training Our system relies on
intermediate pre-training, a technique that appears
in different forms in the literature. Language model
fine-tuning (Howard and Ruder, 2018), or domain
adaptive pre-training (Gururangan et al., 2020) are
useful applications for domain adaptation. In a
similar manner than Pruksachatkun et al. (2020),
we use the Counterfactual+Synthetic tasks from
Eisenschlos et al. (2020) to improve the discrete
and numeric reasoning capabilities of the model
for Table entailment.

Synthetic data The use of synthetic data to im-
prove learning in NLP is ubiquitous (Alberti et al.,
2019; Lewis et al., 2019; Wu et al., 2016; Leo-
nandya et al., 2019). Salvatore et al. (2019) focus
on textual entailment and probes models with syn-
thetic examples. In semantic parsing Wang et al.
(2015); Iyer et al. (2017); Weir et al. (2020) use tem-
plates to augment the training data for text-to-SQL
tasks and Geva et al. (2020) do so to improve nu-
merical reasoning, as do Eisenschlos et al. (2020)
on tabular data. They also create minimal con-
trastive examples (Kaushik et al., 2020; Gardner
et al., 2020) by automatically swapping entities in
the statements by plausible alternatives that exists
elsewhere in the table.

3 System

Our system is a two stage process that first decides
whether a statement is neutral, and then decides
if non-neutral statements are entailed or refuted.
Both stages are implement using a binary TAPAS
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Dataset ‘ Statements Tables Entailed Refuted Neutral
Crowdsourced Train 4,506 981 2,818 (62.54%) 1,688 (37.46%)
Auto-generated Train 179,345 1,980 92,136 (51.37%) 87,209 (48.63%)
Stage 1 train ‘ 9,012 1,915 4506 (50%) 4506 (50%)
Dev 556 52 250 (44.96%) 213 (38.31%) 93 (16.73%)
Test 653 52 274 (41.96%) 248 (37.98%) 131 (20.06%)

Table 1: SEMTABFACT (Wang et al., 2021) statistics. The training data for the first stage was created from
the crowdsourced training data using artificial neutral statements created by deleting columns with evidence or
swapping statements randomly. For the second stage we use the crowdsourced training data.

classifier. TAPAS (Herzig et al., 2020; Eisenschlos
et al., 2020) is a variation of BERT (Devlin et al.,
2019), extended with special token embeddings
that give the model a notion of the row and column
a token is located in and what is its numeric rank
with respect to the other cells in the same column.

3.1 Pre-training

The original TAPAS model (Herzig et al., 2020)
was pre-trained with a Mask-LM objective (Devlin
et al., 2019) on tables extracted from Wikipedia.
It was later found (Eisenschlos et al., 2020) that
its reasoning capabilities can be improved by fur-
ther training on artificial counter-factual entailment
data. This led to substantial improvements on the
TABFACT dataset (Chen et al., 2020), a binary ta-
ble entailment task similar to SEMTABFACT. On
that dataset the test set accuracy for a BERT-base-
sized model improved from 69.6 to 78.6. In this
work, we use models fine-tuned on TABFACT as the
foundation for both stages. We also experimented
with using models fine-tuned on INFOTABS (Gupta
et al., 2020) and SQA (Iyyer et al., 2017) as the
initial models but did not find that to achieve better
accuracy. The overall pre-training strategy is de-
scribed in Figure 1, where we also show how we
use these checkpoints to use the two classification
models described below.

3.2 Neutral Identification Stage

As discussed, the first stage of the system identi-
fies if a statement is neutral. Training a system for
this task is challenging as the SEMTABFACT train-
ing data does not contain neutral statements. We
therefore created artificial neutral statements from
two sources. Following the recommendation of
the shared-task organizers, we created neutral state-
ment by randomly pairing statements from the train-
ing set with new tables. Additionally, we created
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neutral statements by identifying columns that con-
tained evidence for deciding whether a statement is
entailed and then randomly removing one of these
columns. Our assumption is that it should not be
possible to decide whether the statement is entailed
when an evidence column has been removed. We
do not remove the first column of a table since that
often contains the name of the row entries. In or-
der to detect the columns containing the evidence,
we trained an ensemble of 5 TAPAS QA models on
the automatically generated SEMTABFACT training
set. Note that the auto-generated data is generated
from templates and in contrast to the crowdsourced
training data does have evidence cell annotations.
The models are trained to predict the binary en-
tailment decision as well as the evidence cells at
the same time, and are initialized using a TAPAS
model fine-tuned on SQA. The model is trained
to predict the binary entailment decision as well
as the evidence cells at the same time. Our mod-
els take as input [C'LS]s1...8,[SEP]t;...t,, where
s1, ..., Sy, represents the tokenized statement and
t1, ..., tm the tokenized table. For each token ¢ of
the table the model outputs a score for the token to
be an evidence for the statement S, s(t € S) € R.
Additionally, it outputs the scores of the entailment
decision using the [C'LS] tokens s([C'LS]) € R.

We use the same hyper-parameters as SQA (as
discussed in Herzig et al. (2020)). We then run
these models over the crowdsourced training data
and for all examples where the majority of the
models correctly predicts the entailment label, we
extract all columns for which a majority of the en-
semble predicted at least one evidence cell. Evalua-
tion on the SEMTABFACT development set showed
that the precision of this column selection process
is 0.87 (87% of the extracted columns contain a
reference cell). For each column, we then create
a new artificial neutral example by removing the



Stage 1 Stage 2 Dev Test
fl 2-way fl 3-way f1 2-way fl 3-way
Median  Ensemble =~ Median  Ensemble | Median  Ensemble = Median  Ensemble

Majority Majority 51.44 42.80 52.41 42.15
Majority TABFACT 78.33 Lo45 80.25 66.40 o 66 68.29 75.33 1079 75.21 60.64 1065 60.47
MASKLM TABFACT 74.98 +0.39 78.38 70.81 +0.66 72.80 74.32 +0.84 74.84 67.76 4+0.50 67.67
BERT TABFACT 75.54 1075 77.01 70.33 1059 72.04 72.73 £o36 73.18 66.15 1038 67.70
Inter TABFACT 75.77 +0.50 78.28 71.21 134 72.79 72.94 1083 74.01 67.99 o738 67.98
TABFACT (drop) TABFACT 78.02 4045 80.06 67.88 +0.87 69.47 74.92 +0.76 75.02 62.41 +0.51 61.67
TABFACT (random) TABFACT 7597 1073 78.50 69.62 1093 71.81 T4.77 +0.97 74.67 66.64 10 16 67.11
TABFACT BERT 54.41 +0.51 55.09 52.00 +0.96 52.87 56.14 +0.45 56.49 53.29 +1.17 54.15
TABFACT MASKLM | 61.76 4106 65.09 58.95 1064 61.62 58.49 1015 60.04 55.89 1040 57.01
TABFACT Inter 74.00 1032 76.68 68.86 048 71.33 71.08 078 72.14 64.94 1034 66.43
TABFACT TABFACT ‘ 75.74 40.18 78.33 70.76 +0.55 72.95 ‘ 73.74 +0.95 74.01 67.67 4+0.96 68.03

Table 2: Stage 1 and 2 ablation at 20,000 steps. majority, TABFACT (drop) and TABFACT (random) use majority
voting (always predicting non-neutral), only the artificial data created by removing columns and only the random

neutral statements respectively. All other models use both kinds of artificial statements.

respective column from the table. This procedure
yields 651 unique new instances from the 4506
training examples. However, similarly to the first
approach of pairing random statements and tables,
the process is not perfect. It may happen that re-
futed statements continue to be refuted after remov-
ing some of the evidence, but in practice we find it
beneficial to generate examples in this fashion.
The final training data is then created by tak-
ing the original crowdsourced training examples
as positive examples and randomly sampling an
equally-sized set of negative examples, where half
of the negatives are random combinations of a state-
ment with a table and the other half are drawn with
replacement from the 651 artificial examples.

3.3 Entailment Stage

Training the entailment stage is rather straight-
forward, we train the model on the crowdsourced
training data using the same hyper-parameters as
Eisenschlos et al. (2020).

3.4 Calibration and Ensemble

As our training data for stage 1 is balanced but the
development data is skewed we find it to improve
accuracy if we trigger for examples with a logit
larger than 4.0 (rather than 0.0). Empirically we
also find the threshold of 4.0 to work better for
the second stage. This could be explained by the
fact that the development set has a different label
distribution than the training set.

We train 5 models per stage and use them as an
ensemble. The ensemble score is defined as the
median of all the model scores. Using the median
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worked better than the mean and voting in prelimi-
nary experiments.

4 Experimental Setup

In this section we explain the SEMTABFACT task
and dataset and give additional details about the
experimental setup we used.

The SEMTABFACT dataset consists of state-
ments and tables from the scientific literature. It
is much smaller than similar datasets such as TAB-
FACT (Chen et al., 2020) and INFOTABS (Gupta
et al., 2020). It is note-worthy that the training set
only contains entailed and refuted statements while
the dev and test set also contain neutral (unknown)
statements. The statements were written by crowd
workers, which presented with 7 different types of
statements were instructed to write one statement
of each type. The types of statements were using
aggregation, superlatives, counting, comparatives,
unique counting and the usage of the caption or
common-sense knowledge.

The main metric of the task is the micro f1-score
computed over the statements belonging to a table.
The 3-way score takes all statements into account
while the 2-way score is restricted to refuted and
entailed statements.

5 Results

Table 2 compares our system to multiple baselines.
Unless stated otherwise all baselines have been
trained with the same neutral data generation as
discussed above and for 20,000 steps. All numbers
are based on 5 independent model runs. For all se-
tups we report the median of the individual runs as



well as the results for a system based on the median
logit of the 5 models. We report error margins for
the medians as half the inter-quartile range.

Looking at the first stage of the system in Table
2, we see that the system based on TABFACT is the
best choice for the initialization, out-performing a
simple BERT model as well as models trained with
only the mask-lm and intermediate pre-training on
both dev and test ensemble accuracy. However, the
model trained on the intermediate data gives higher
median dev and test accuracy (e.g. 72.12 vs 70.76).

With respect to the data generation we ob-
serve that any kind of neutral data generation out-
performs the majority baseline. Combining the
column removal and random statements yields the
best results. The drop in the 2-way metrics go-
ing from the majority Stage 1 model to a learned
model is expected as that metric ignores all neutral
statements in the eval set.

On the second stage of our system (Table 2),
we see that a TAPAS model based on TABFACT
outperforms the other baselines by a bigger margin
than for Stage 1. For example, a model based on
only MASKLM pre-training achieves 57.01 test f1
score while the TABFACT-based modle achieves
68.03. We also found that for this stage there is
a more pronounced difference between BERT and
MASKLM (54.15 vs 57.01) and MASKLM and
intermediate pre-training (57.01 vs 66.43).

Table 5 in the appendix shows the results for
different number of steps and thresholds showing
that results can be slightly tweaked by tuning them.

6 Analysis

Table 3 shows that the recall and precision on the
neutral class are 37.6 and 71.4, respectively. In-
specting some instances of false positives, we find
that the system is quite easily fooled; for exam-
ple classifying the statement “The lowest Factor
8 is 0.027” as non-neutral for a table that has 5
columns labeled as Factor 1 to 5. False negatives
are sometimes caused by failing to map words with
typos (“paramters” vs “parameters’) or abbrevi-
ations (“measurement errors” vs “ME”). Adding
harder examples of neutral statements to the train-
ing set could potentially further improve the identi-
fication. We also see that the recall on the refuted
class (74.3) is lower than the recall of the entailed
class (85.2) while there precision values are similar.

In Table 4 we construct mutually excluded
groups of the validation set. Each set is identified

Prediction Non-neutral ~ Neutral Recall
Reference
Non-neutral 449 14 97.0
Neutral 58 35 37.6
Precision 88.6 71.4
Prediction Refuted Entailed Recall
Reference
Refuted 153 53 74.3
Entailed 36 207 85.2
Precision 81.0 79.6

Table 3: Confusion matrix for Stage 1 and Stage 2 on
the development set.

Size | Acc Baseline  ER
Overall 100.0 | 71.0 45.0 29.0
Superlatives 15.8 | 73.9 50.0 4.1
Aggregations 13.8 | 61.0 46.8 5.4
Comparatives 12.2 | 58.8 47.1 5.0
Negations 3.1 | 824 41.2 0.5
Multiple of the above 5.9 | 72.7 63.6 1.6
Other 49.1 | 75.1 43.6 12.2

Table 4: Accuracy and total error rate (ER) for different
question groups derived from the same word heuristics
defined in Eisenschlos et al. (2020). The baseline is
simple class majority and the error rate in each group
is taken with respect to the full set. Comparatives show
the biggest margin for future improvements comparing
with the overall system accuracy.

by specific keywords appearing in the statement,
for example Comparatives must contain “higher”,
“better”, “than”, etc. The full list is defined in the
appendix of Eisenschlos et al. (2020). We observe
that comparatives and aggregations have the largest
total error rates, meaning that the biggest gains in
overall accuracy can be made by improving those
reasoning skills. Between these two, Comparatives
have the lowest in-group accuracy. Table 6 and
Table 7 in the appendix show the some anaylsis for
Stage 1 and Stage 2, respectively. The trend for
Stage 2 is similar to the overall trend whereas Stage
1 accuracy is relatively stable across the different
groups except for comparatives where the accuracy
drops from 87% overall to 81%.

Another class of examples with relatively low
accuracy are statements around unique counting.
We find that statements containing the word differ-
ent have an accuracy of 51.3 (vs. 71% overall) and
account for 3.4 percentage points of the total er-
ror rate. Examples include “There are six different
classes” and “They have ten different parameters”.
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7 Conclusion

We presented our contribution to the SEMTABFACT
task (Wang et al., 2021) on table entailment. Our
system consists of two stages that classify state-
ments into non-neutral or neutral and refuted or
entailed. Our model achieves 68.03 average mi-
cro fl-score on the test set. We showed that our
procedure for creating artificial neutral statements
improves the system over a majority baseline but re-
sults in a relatively low recall of 37.6. Other meth-
ods for creating harder neutral statements might
further improve this value. In line with Eisenschlos
et al. (2020), we find that pre-training on interme-
diate data improves the system accuracy over a
system purely pre-trained with a MASKLM objec-
tive. While these initial results look promising, we
find that the model struggles with statements that
involve complex operations such as comparisons
and unique counting.
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Appendix

The appendix contains additional results and analy-
sis tables.

A Results

Table 5 shows the results for different number of
steps and thresholds showing that results can be
slightly tweaked by tuning them.

Steps  Thresh fl 2-way fl 3-way
Median Ensemble Median Ensemble
20K 0.0 74.97 1035 76.41 69.96 1105 71.03
10K 4.0 75.97 1148 76.47 70.68 1136 72.19
10K 0.0 75.84 1133 76.55 70.63 1121 72.27
20K 4.0 75.74 1918 78.33 70.76 1955 72.95

Table 5: Ablation of steps and threshold on the dev set.

B Analysis

Table 6 and Table 7 show the error rate contribu-
tions of different types of statements for Stage 1
and Stage 2, respectively. The trend for Stage 2 is
similar to the overall trend (Table 4) whereas Stage
1 accuracy is relatively stable across the different
groups except for comparatives where the accuracy
drops from 87% overall to 81%.

Size | Acc Baseline ER
Overall 100.0 | 87.1 83.3 129
Superlatives 15.8 | 90.9 89.8 1.4
Aggregations 13.8 | 88.3 87.0 1.6
Comparatives 12.2 | 80.9 79.4 2.3
Negations 3.1 | 88.2 64.7 0.4
Multiple of the above 5.9 | 93.9 87.9 0.4
Other 49.1 | 86.1 81.7 6.8

Table 6: Accuracy and total error rate (ER) for different
question groups for Stage 1.

Size | Acc Baseline ER
Overall 100.0 | 80.2 54.1 19.8
Superlatives 16.9 | 80.3 53.9 3.3
Aggregations 14.0 | 66.7 54.0 4.7
Comparatives 11.6 | 71.2 59.6 3.3
Negations 2.4 1 90.9 63.6 0.2
Multiple of the above 6.2 | 75.0 71.4 1.6
Other 48.8 | 86.3 53.0 6.7

Table 7: Accuracy and total error rate (ER) for different
question groups for Stage 2.
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