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Abstract

This paper describes our system for verifying
statements with tables at SemEval-2021 Task
9. We developed a two-stage verifying sys-
tem based on the latest table-based pre-trained
model GraPPa. Multiple networks are de-
vised to verify different types of statements in
the competition dataset and an adaptive model
ensembling technique is applied to ensemble
models in both stages. A statement-slot-based
symbolic operation module is also used in our
system to further improve the performance and
stability of the system. Our model achieves
second place in the 3-way classification and
fourth place in the 2-way classification evalu-
ation. Several ablation experiments show the
effectiveness of different modules proposed in
this paper.

1 Introduction

Verifying whether a statement is entailed, refuted,
or unknown with the given table is a challenging
task, which requires the system to understand the
statement and table jointly and reasons from the
two information resources. The studies on this task
could benefit several downstream applications, e.g.
fake news detection. Recently, with the release of a
large-scale dataset for table-based fact verification
named TABFACT (Chen et al., 2019), this task re-
ceived several studies. Verifying statements based
on tables is a challenging task since the researches
on understanding tables are not enough compared
with works on free-texts, and the methods to train
models understanding free-text and table jointly
need further studies as well.
While TABFACT contains a huge number of state-
ments and tables, the tables in the TABFACT
dataset are relatively simple since they do not have
hierarchical column heads as tables in scientific
papers do and the contents in the tables are easier
to understand compared to the tables in scientific

papers as well. In the SemEval task 9 (Wang et al.,
2021), the goal is to develop a system that can
verify statements (subtask A) and find evidence
(subtask B) based on the tables extracted from sci-
entific tables. Our team is more interested in the
verifying task and only participated in subtask A.
Different from data in TABFACT, in subtask A, we
are also required to classify a new type of state-
ment that cannot be entailed or refuted based on
the given table, named “unknown” type. Since no
statements of this type are given in the training data,
the classification of this type of statement becomes
a core difficulty of the subtask.
This paper describes our two-stage table-based ver-
ifying system based on the latest table-based pre-
trained language model GraPPa (Yu et al., 2020).
The system leverages the model ensembling tech-
nique to ensemble different verifying models which
are designed to solve different types of statements
in the dataset in both two stages of the system. The
statement-slot technique is also used to capture and
solve a small part of the data by symbol calculation,
which helps to increase the performance and stabil-
ity of our system. Our system achieves a two-way
score of 84.55 and a three-way score of 83.76 in
subtask A respectively.

2 Related Work

2.1 GraPPa

GraPPa is a pre-trained model for table-based se-
mantic parsing task, proposed by Yu et al. (2020).
It is pre-trained on the synthetic question-SQL
pairs with a novel text-schema linking objective,
where the SQL queries are generated by a syn-
chronous context-free grammar(SCFG). The text-
schema linking objective makes the model predict
the syntactic roles of the columns in the SQL to
encourage the model to notice the link between
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Figure 1: The flowchart of the system. Statements and tables are first sent into the symbolic-calculation module,
where statements with simple sentence structures are verified by symbol calculation. Statements that are not
processed by the calculator are then sent into the two-stage deep-learning-based verifying system, where the first
stage’s models verify whether the statement cannot be verified by the given table, and the second stage’s models
verify whether the statement can be entailed by the given table.

natural language phrases and the corresponding
logical form constituents.
The authors of GraPPa use 475k synthetic exam-
ples to pre-train GraPPa. On four popular semantic
parsing benchmarks, GraPPa consistently achieves
state-of-the-art results, which shows the powerful
table understanding ability of GraPPa. In this work,
we find that GraPPa’s ability of understanding ta-
bles can also be migrated to the table-based fact
verification task and achieves great performance on
this task.

2.2 Mixture-of-Experts layer

In Shazeer et al. (2017) the authors proposed a
sparsely mixture-of experts layer applied on the
stacked LSTM model which achieves new state-of-
the-art results on language modeling and machine
translation benchmarks with lower computational
cost and larger model capacity. In this work, we
applied this MoE layer on the top of the GraPPa
model as a part of our verifying system.

3 System Description

This section mainly describes the details of the
two-stage table-based verifying system. The first
stage classifies unknown type statements from the
other two types of statements, while the second
stage further classifies the entailed type statements
from refuted type statements. We find that the
proposed two-stage system works better than a
direct three-way classification system, because 1)
no unknown type statements are provided in the

train set, which brings difficulty to the training
process of the three-way classification system; 2)
the two-stage system is closer to the processing
procedure of human since you have to decide
whether the table knowledge is enough to entail or
refute the given statement before the further rea-
soning. Before the two-stage deep-learning-based
system, a symbolic-calculation module is added to
capture and process some statements with simple
sentence structures. The symbolic-calculation
module has the features of low recall and high
precision and is used to process some numerical
type statements (the verifying process involves
numerical operations) since we find that the
deep-learning-based system is unstable when
processing such type of statements. The flowchart
of the whole system is displayed in Figure 1.

3.1 Statement-table joint encoder

In both stages of our system, multiple binary clas-
sifiers are ensembled together to verify statements.
All of the binary classifiers used in the system are
constructed based on the table-based pre-trained
model GraPPa. In the system, the GraPPa model
works in two way: 1) encoding the statement
and the pruned table by following the table-BERT
method and the table pruning algorithm proposed
in Chen et al. (2019); 2) encoding the statement
and each row of the table separately by the same
method. While the first way is the standard encod-
ing method of NLI tasks, we found the second way
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also has its advantages and will explain later. After
encoding the table and statement by GraPPa, mul-
tiple networks are devised to do reasoning based
on the encoded representations. The following sec-
tions provide further details of these models, named
pruned-table-based models and whole-table-based
models separately.

Figure 2: The structure of verifying model is based on
the types of statements. An MLP manager activated by
the softmax function takes the joint representation as
input and outputs the probability distribution that the
statement belongs to different types of statements. Mul-
tiple MLP experts process the joint representation and
output the classification logits, which are further aver-
aged by the statement type probability from the man-
ager to achieve the final classification logits.

3.2 Pruned-table-based models
As introduced before, we simply substitute BERT
by GraPPa in the Table-BERT method to get the
joint representation of the statement and table. Mul-
tiple networks are devised to process the joint
representation: 1) a simple linear layer, same as
Table-BERT; 2) three MLP processing different
types of statements (statements that need to count
rows/columns, statements related with the superla-
tive operation, other statements) with a softmax
activated MLP manager outputs the probability
that the statement belongs to each type of state-
ments. The final output distribution is the weighted
average of different MLP experts’ output distribu-
tion; 3) same structure as 2), but the statements
are separated based on the language style (nat-
ural/artificial) and the MLP manager is trained
based on the natural statement ids provided in
the train set; 4) sparsely MoE layer introduced
in Shazeer et al. (2017) with applying the imple-
mentation on https://github.com/davidmrau/

mixture-of-experts. Figure 2 shows the basic
model structure of networks 2) and 3).

3.3 Whole-table-based models
As serialized tables obtained by language template
are usually too long to be encoded by transformer-

based model, the above methods use a table prun-
ing algorithm to choose statement-related columns
from the table, while the algorithm is not perfect
and it may discard some useful columns in tables.
Even if the pruning algorithm chooses all the re-
lated columns, the pruned serialized table may still
be too long. The whole-table-based models regard
the table as the set of rows and serialize each row
by the same method. Then each row is concate-
nated with the statement and sent in GraPPa to get
the representation of tokens in the statement and
each row. Two different reasoning networks are
applied after the encoding process. The first one is
a simple attention network across all tokens in the
statement and table, the final output distribution is
produced by the following:

Q = RRT , Q
′
= softmax(Q), F = Q

′
R (1)

att = RWa + b (2)

out = MLP (F T att) (3)

where R ∈ Rn×e is the representation matrix of
all the tokens in the table and statements, n is the
product of row numbers and the maximum token
numbers of the concatenation between the state-
ment and different rows, e is the embedding size.
Softmax is applied to the attention matrix, where
Q

′
ij represents the jth token’s contribution to the

ith token. F is the attended representation matrix,
and att is the importance score of tokens in state-
ment and table achieved by a linear layer where
Wa ∈ Re×1 and b ∈ Re×1 are trainable param-
eters. Follow the equation 3, the representations
are further aggregated by the importance score and
sent into an MLP classifier to get the output distri-
bution.
Another choice of reasoning network is the GAT
network proposed in Liu et al. (2019) to aggregate
evidence from different sources. GAT hierarchi-
cally aggregates information (first in token-level
and then in sentence-level) which is more reason-
able compared to the simple attention network men-
tioned before. For the convenience of presentation,
all the models mentioned in this section are named
and listed in Table 1.

3.4 Adaptive model ensembling
An adaptive model ensembling technique is ap-
plied to both stages of our verifying system, where

https://github.com/davidmrau/mixture-of-experts
https://github.com/davidmrau/mixture-of-experts
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Model Description
Table-GraPPa GraPPa with a linear layer

NumGuide
GraPPa with three MLP experts for verifying

different numerical type statements

StmtGuide
GraPPa with two MLP experts for verifying

statements with different language styles
MoE GraPPa with sparsely MoE layer (8 MLP experts)

RowAtt GraPPa with attention layer across all tokens
RowGAT GraPPa with GAT aggregation module

Table 1: Name and description of models used in the system

different weights of models are searched in differ-
ent subsets of the development set. Such ensem-
bling technique works well in our system since
models work differently on different types of data
(e.g. A model may perform better on shorter state-
ments while B model may perform better on longer
statements). In the first stage, the weight of each
model is searched on two subsets of development
set based on the length of the statement and seri-
alized table (we found that some models have a
better performance on longer input sequences than
others, and set 300 words as the threshold).
In the second stage, the type of each statement
is first recognized by some language features and
then the model weights are searched on each sub-
set of the development set. Three types of state-
ments are defined: 1) “count” type statements, in
which the model needs to count the specific rows
or columns in the table; 2) ”superlative” type state-
ments, in which the model need to find the maxi-
mum or the minimum value of one row/column; 3)
“same/different” type statements, which the model
need to decide whether some cells’ value are the
same or different. The first two types of statements
are recognized by statement slots, while the third
type is recognized by trigger words (“same”, “dif-
ferent”, “equal”). We apply the weights searched
from the development set on these three statement
types and simply do averaging ensemble to the
rest of the statements. The ensembling weights
are searched on the development set without the
participation of models trained with train and devel-
opment set, while we replaced some models with
the version that retrained on both train and develop-
ment set in the evaluation period and direct applied
the weights searched on the development set. More
details of the models involved in ensembling are
presented in the appendix.

Type Statement slot
Count there be () value(s) in the table
Count there be () different ()

Superlative () lowest () in the table be ()
Superlative () has highest value(s) of ()

Table 2: Examples of the statement slots used in the
system

3.5 Statement-slot based
symbolic-calculation module

To further increase the performance and the stabil-
ity of the system, a statement-slot-based symbolic-
calculation module is developed to solve some nu-
merical type statements which are relatively dif-
ficult to deep models. The symbolic-calculation
module is added before the two-stage system with
a low recall and high precision. Several state-
ment slots are devised to capture “count” and “su-
perlative” type statements. After the capture, the
symbolic-calculation module parses the table and
extracts the corresponding rows/columns based on
a designed entity linking algorithm, and then do the
related logical calculation based on the category of
the statement and the parsing result of the table. Ta-
ble 2 shows some examples of the statement slots
used in our system.

3.6 Training method

In the first stage, the unknown type training data
are created from three source:1) from other tables’
statements under the same XML file, 1685 state-
ments in total; 2) automatic generated statements
by language templates, 1378 statements in total; 3)
the statements from the related scientific papers (ex-
tracted from the related papers of training set tables,
near the references of the tables by programming),
1272 statements in total. All of the statements in
the train set are used as the known type data to train
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models. Training processes are stopped when mod-
els reach the highest accuracy on the development
set.
In the second stage, we first use the train set to
train models and stop the training process at the
maximum development set accuracy checkpoint
and the minimum development set loss checkpoint.
Then we add the development set into the train set
and retrain some of the models, stopping at a fixed
epoch to make the most use of data.
Almost all of the models are trained with the cross-
entropy loss function except the NumGuide, Stmt-
Guide, and MoE. For the NumGuide, we use trig-
ger words to recognize the “counting” and “su-
perlative” types statements in the train set and use
the recognization result as labels to calculate the
cross-entropy between the manager’s output and
labels. For StmtGuide, we used the provided nat-
ural statement ids in the train set to calculate the
cross-entropy between the manager’s output and la-
bels. For MoE, an extra loss mentioned in Shazeer
et al. (2017) is applied to avoid the local optimum.
The extra loss functions mentioned above are sim-
ply added on the origin cross-entropy loss with a
weight of 0.01. Models in the second stage are
pre-trained on the TABFACT dataset before further
trained on the competition dataset. More details
about model training can be found in the appendix.

4 Evaluation

To evaluate our proposed verifying system, we per-
form two ablation studies regarding the adaptive
ensembling method and the statement-slot-based
symbolic-calculation module used in our system
on both the development set and test set.
Table 3 shows the evaluation of our system on both
development set and test set, compared with differ-
ent ways of ensembling. We found that the adaptive
ensembling on both stages achieves the highest two-
way and three-way scores on the development set,
while it only improves the three-way classification
performance on the test set and slightly regresses
on the two-way classification. We assume that it
may because of the difference between the data
distributions of the development set and the test
set.
Besides the ablation experiment on ensembling,
we also perform an ablation experiment on the
statement-slot-based symbolic-calculation module.
Table 4 shows the result of the ablation experiment.
The result of the experiment shows that the pro-

posed symbolic-calculation module increases the
performance on both the development set and test
set by around 5 percent, which shows the benefit
of the symbolic-calculation module on verifying
numerical type statements.

Ensembling type
Dev set Test set

2-way 3-way 2-way 3-way
W+W 87.81 86.93 84.55 83.76
W+A 86.77 86.09 84.92 82.45
A+W 86.50 84.31 85.41 81.58
A+A 85.46 83.47 85.22 81.41

Table 3: Ablation experiment regarding the ensembling
in the two stages of the system, where W refers to the
adaptive ensembling and A refers to the simple averag-
ing ensembling. The sequence of the letter refers to the
ensembling setting of two stages, e.g. W+A means the
first stage applies adaptive ensembling and the second
stage applies average ensembling.

Ensembling type
Dev set Test set

2-way 3-way 2-way 3-way
w/ sym-cal 87.81 86.93 84.55 83.76
w/o sym-cal 82.31 82.36 78.94 77.79

Table 4: Ablation experiment regarding the symbolic-
calculation module (sym-cal). The result of the ex-
periment shows that the proposed symbolic-calculation
module consistently improves the performance on both
the development set and the test set.

5 Conclusion

This paper describes our two-stage verifying sys-
tem developed for SemEval-2021 Task 9, which
leverages the latest table-based pre-trained model
GraPPa. The two-stage verifying structure allows
us to develop more targeted models on both stages
of the system. Multiple reasoning networks are
applied behind the GraPPa model, and an adaptive
model ensembling technique is used in both stages
of the system. A statement-slot-based symbolic-
calculation module is also added at the top of the
whole system to further improves the performance
and stability of the system. Ablation experiments
show the effectiveness of the methods proposed in
the paper.
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A Weight searching in adaptive
ensembling

We use a grid search method to search the weight of
each model in adaptive ensembling. The searching
algorithm can be expressed as follows:

1. Initialize total weight T=15 (larger T may
cause overfitting on the dev set and larger
searching cost as well).

2. Generate all possible weight combinations L,
where every element W in L needs to satisfy
the constraint:

∑n
i=1Wi = T where n is the

number of models joining in the ensembling.

3. For each W in L, apply the normalized
weights W/T on models’ results on the dev
set to get the accuracy of ensembling. Save
the set of weights with the highest accuracy as
the best weights. If multiple sets of weights
achieve the same best accuracy, calculate the
variance of each set of weights and choose
the set with the lowest variance as the best
weights.

B Models involved in adaptive
ensembling

The following sections introduce the details of mod-
els involved in the two-stage ensembling. We re-
vised the entity linking algorithm proposed in Chen
et al. (2019) to get better-pruned tables. The new
algorithm works better on some models, while we
found some models with the origin entity linking
algorithm also perform well and we keep them as
a part of ensembling. In the following description,
the model applies the revised entity linking algo-
rithm if not mentioned specially.
For the simplicity of presentation, we define the
following usage of symbols: a “+” symbol added
behind the name of the model means the model is
trained on train set and stopped when reaching the
maximum accuracy on dev set; a “-” symbol added
behind the name of the model means the model
is trained on train set and stopped when reaching
the minimum loss on dev set; no symbol added
behind the name of the model means the model is
trained on both train and dev set and stopped at
fixed epochs.

B.1 Models involved in the first stage’s
ensembling

A total of 8 models participate in the first stage’s
ensembling, while some models are trained by bi-
ased CE loss (we adjusted the weight of different
classes with 1.5:1 for unknown and other classes)
to reach a more balance recall and precision. They
are: 1) Table-GraPPa+ ;2) RowGAT+; 3) RowAtt+;
4) MoE+; 5) StmiGuide+; 6) RowAtt+ trained
with weight added to the loss function; 7) Table-
GraPPa+ trained with weight added to the loss func-
tion; 8) RowGAT+ trained with weight added to
the loss function.

B.2 Models involved in the second stage’s
ensembling

A total of 9 models participate in the second stage’s
ensembling, they are: 1) Table-GraPPa; 2) Stmt-
Guide; 3) Table-GraPPa+ with origin entity linking
algorithm; 4) MoE; 5) RowGAT; 6) NumGuide;
7) RowAtt; 8) MoE-; 9) Table-GraPPa with origin
entity linking algorithm.
When searching the ensembling weights on the
dev set, we simply do the following replacements:
change Table-GraPPa with Table-GraPPa+; change
StmtGuide with StmtGuide+; change MoE with
MoE+; change RowGAT with RowGAT+; change
NumGuide with NumGuide+; change RowAtt with
RowAtt+; change Table-GraPPa with origin entity
linking algorithm with Table-GraPPa- with origin
entity linking algorithm. Ensembling weights are
searched on these models without training on the
dev set and directly apply to the corresponding
model trained on both train and dev sets.

C More details about model training

All models are trained with AdamW optimizer (im-
plemented by Huggingface) with a warmup ratio be
0.3 and learning rate be 2e-5, and all models in the
second stage are pre-trained first on the TABFACT
dataset.


