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Abstract

Scientific documents are replete with measure-
ments mentioned in various formats and styles.
As such, in a document with multiple quanti-
ties and measured entities, the task of associ-
ating each quantity to its corresponding mea-
sured entity is challenging. Thus, it is neces-
sary to have a method to efficiently extract all
measurements and attributes related to them.
To this end, in this paper, we propose a novel
model for the task of measurement relation ex-
traction (MRE) whose goal is to recognize the
relation between measured entities, quantities
and conditions mentioned in a document. Our
model employs a deep translation-based archi-
tecture to dynamically induce the important
words in the document to classify the relation
between a pair of entities. Furthermore, we in-
troduce a novel regularization technique based
on Information Bottleneck (IB) to filter out the
noisy information from the induced set of im-
portant words. Our experiments on the recent
SemEval 2021 Task 8 datasets reveal the effec-
tiveness of the proposed model.

1 Introduction

One of the key indicators of scientific writing is the
quantities description of various experiments and
results. While the mentions of all measurements
could provide a rigorous understanding of the topic,
it might make the reading and automatic process-
ing of the text more difficult. As such, designing
effective methods to recognize the mentions of mea-
surements and also the conditions in which they
are valid is necessary. According to the definition
of the SemEval 2021 Task 8 (Harper et al., 2021),
a measurement might consist of the following com-
ponents: (i) Measure Entity: A span referring to
an entity that one of its properties has been mea-
sured and its value is provided in the document; (ii)
Measured Property: A span referring to the charac-
teristics of an entity that has been measured; (iii)

[ME1] samples [/ME1] have been generated
with Coronin and Dystrophin proteins. In the
filtration experiments, some of them with a
[PR1] diameter[/PR1] [QT1] less than 2 mm
[/QT1] have been filtered out using [QT2]
200-degree [/QT2] filtering [ME2] radiation
[/ME2], resulting in [QT3] 20% [/QT3] [ME3]
utilization [/ME3]. These results are
obtained in a [QL1] dry climate [/QL1].

Figure 1: A document annotated with the measured en-
tities (i.e., [ME]), quantity (i.e., [QT]), measured prop-
erty (i.e., [PR]) and qualifier (i.e., [QL]) (best viewed
in color).

Quantity: A span in the document that refers to a
value and possibly it comes with a unit; and (iv)
Qualifier: A span referring to a condition in which
more information about the Quantity, Measured
Property or Measured Entity is provided. Figure
1 shows a sample document annotated with the
aforementioned entities. In this paper, we collec-
tively name all of these four types as measurement
component.

As it is shown in the provided example, docu-
ments might contain multiple entities, properties,
quantities and qualifiers that are scattered in differ-
ent parts of the document. As such, finding which
measurement components are associated with each
other is not straightforward. In this paper, this task
is called measurement relation extraction (MRE)
that aims to recognize what is the relationship be-
tween two given measurement components. More
specifically, the following relation types are con-
sidered: (i) Has-property: Indicates the selected
property is one of the characteristics of the selected
entity; (ii) Has-Quantity: Indicates the selected
quantity is provided for the selected entity or prop-
erty; (iii) Qualifies: Indicates the selected qualifier
provides more information about the selected entity
or quantity; (iv) None: Indicates that there is no
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relation between the selected measurement compo-
nents. For instance, in the given example document
in Figure 1, the following relations between differ-
ent measurement components exist: (1) ME1 has
property PR1; (2) PR1 has quantity QT1; (3) ME2

has quantity QT2; (4) ME3 has quantity QT3; and
(5) QL1 qualifies ME3;

Finding the relation between a pair of measure-
ment components is challenging and it requires con-
sideration about the position of the given entities
and the context in which they are used. Generally,
this task can be formulated as a typical Relation
Extraction (RE) task whose goal is to identify the
semantic relation between two given named entity
mentions. For RE, it has been shown that contex-
tual information such as dependency path between
the two given entities is important. As such, in this
paper, we also aim to exploit the contextual infor-
mation for a pair of measurement entities to predict
the relation between them. To this end, the main
question to answer is how we can extract the con-
textual information that is helpful for this task. One
simple solution is to use the dependency path be-
tween the two measurement components. However,
this might not be perfect due to various reasons
such as lack of high-quality dependency parser de-
signed especially for scientific domain and the fact
that the dependency tree is ignorant of the down-
stream task (i.e., MRE) thus might not be efficient
to extract important context from. Therefore, in this
paper, we aim to propose a novel method to dynam-
ically infer the important context for the MRE task.
More specifically, we introduce a deep architecture
to infer which words should be selected from the
given document to form the important context from
which the relation between the given measurement
components can be inferred. The proposed deep ar-
chitecture exploits a translation-based perspective
to achieve this goal.

In addition, in this paper, we propose a novel
method to efficiently regularize the representations
of the input words based on the inferred impor-
tant context. In particular, our method is based on
the Information Bottleneck (IB) theory in which
the inferred context is treated as information bot-
tleneck to exclude noisy information in the input
document representation. We conduct extensive
experiments on the SemEval 2021 Task 8 dataset.
Our experiments reveal the effectiveness of the pro-
posed model for the task of MRE.

2 Model

Task Definition: The input to the model is the
document D = [w1, w2, . . . , wn] consisting of
n words and also the positions of the two enti-
ties of interest, ws and wo where s and o are the
indices of the first (i.e., subject) and the second
(i.e., object) entities, respectively. The input doc-
ument is annotated with the label l from the set
L = {hasQuantity, hasProperty, qualifies,None}.
Our proposed model for this task consists of four
major components: (1) Input encoder to convert the
input text into high dimensional word vectors; (2)
Dependency Path Reasoning: This component em-
ploys the word vector representations and extract a
path between the two entity mentions in the given
document; (3) Regularization: This component em-
ploys the extracted dependency path as the infor-
mation bottleneck to filter out noisy information
from the input document; (4) Prediction: Finally
the regularized representations of the dependency
path will be used to make the final prediction. The
rest of this section provides details for the afore-
mentioned components.

2.1 Input Encoder

To represent each wordwi in the input documentD,
we use the concatenation of the following compo-
nents: Contextualized Embedding, We feed the
input document D, i.e., [CLS]w1w2 . . . wn[SEP ]
to the pre-trained BERTbase transformer and take
the hidden states of the last layer of the BERT
model, i.e., E = [e1, e2, . . . , en], as the contex-
tualized word embedding of the input document.
Note that for the words that have multiple word-
pieces, we take the average of their word-piece
embeddings obtained from the BERT model. Po-
sition Embedding For each word wi, we compute
its distance to the subject ws and the object wo, i.e.,
dis = ‖i− s‖ and dio = ‖i− o‖, respectively. The
distances are represented using high dimensional
vectors esi and eoj obtained from randomly initial-
ized embedding tables. During training, the embed-
ding tables are being updated. Entity Type Em-
bedding The type of the two entities (i.e., Quantity,
Measured-Entity, Measured-Property, and Quali-
fier) are represented using high dimensional vec-
tors obtained from randomly initialized embedding
tables. The embedding tables will be fine-tuned
during training.

The concatenation of the aforementioned embed-
ding vectors, i.e., X = [x1, x2, . . . , xn], are used
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to represent the words of the input document. It
is noteworthy that since the parameters of the pre-
trained BERTbase are fixed during training, in order
to tailor the contextualization of the word embed-
dings to this task, we feed the vectors X to a Bi-
directional Long Short-Term Memory (BiLSTM)
network and we use the hidden states of the BiL-
STM neurons, i.e., H = [h1, h2, . . . , hn], as the
final vector representations of the input document
D. The vectors H will be used by the subsequent
components.

2.2 Dependency Path Reasoning

To find the dependency path between the subject
and the object entities, we employ a translation-
based perspective. More specifically, given the
vector representations of the subject entity, i.e.,
hs, and the object entity, i.e., ho, the dependency
path should be represented using the vector P such
that using this vector, the subject representation
hs is transferred (i.e., translated) to the object rep-
resentation ho, under the operation Φ. Formally,
ho = Φ(hs, P ). Using this definition, we can de-
fine the path representation by P by exploiting
the inverse operation Φ−1, i.e., P = Φ−1(hs, ho).
After obtaining the path representation P , we com-
pare it with the representations of the other words
of the document D to assess their likelihood to
be included in the dependency path. Concretely,
the similarity between the vector hi and the vec-
tor P could be used to estimate the probability
of the word i to be used in the dependency path.
However, one limitation of this method is that the
likelihood of the word wi is computed regardless
of the other words wj where j /∈ {i, s, o}. To
address this issue, we propose to compute the like-
lihood of the word wi based on the interaction be-
tween the representation of the word wi, i.e., hi,
the representations of the other words, i.e., hj for
j /∈ {i, s, o}, and the path representation P . To
this end, we first compute a vector representation
for the words wj by applying MAX POOL op-
eration on all words wj for j /∈ {i, s, o}: h̄−i =
MAX POOL(h1, h2, . . . , hj). Afterwards, we
apply the function Φ−1 on the vectors P and h̄−i:
ĥi = Φ−1(h̄−i, P ). The vector ĥi represents the
path for transferring (i.e., translating) the vector
h̄−i to P . As such, the similarity between ĥi and
hi could reveal how important is the word wi to
convert the representation of the context wj for
j /∈ {i, s, o} to the representation of the depen-

dency path P . Therefore, we use this similarity,
i.e., Simi =

∥∥∥ĥi − hi∥∥∥, as the score of the word
wi to be included in the dependency path. The
words that their score is above a pre-defined thresh-
old will be used as the inferred dependency path.

It is worth noting that to learn the function Φ−1,
in this work, we use a feed forward neural net-
work. In particular, the concatenation of the vec-
tors hs and ho are fed into a 2-layer feed forward
neural network with |P | neurons at the final layer:
P = FF ([hs : ho]), where [:] represents concate-
nation and FF represents the feed-forward neural
network. To train the FF network for the RE task,
we use the vector P to predict the probability dis-
tribution PΦ(·|D, t, a) using another feed-forward
network FF2 whose final layer dimension equals
the number of labels, i.e., |L|. We use negative
log-likelihood to train the FF and FF2 networks:
LΦ = −log(PΦ(l|D, t, a)) where l is the gold la-
bel.

Finally, to represent the induced path, we take
the max-pooled representation of the words in the
path: hP = MAX POOL
(h1, h2, . . . , hp) where p is the number of words in
the induced dependency path. The path representa-
tion hp will be used by the subsequent components.

2.3 Regularization

Although the induced dependency path from the
previous component is intended to contain the im-
portant information for the RE task, it might still
contain some noisy information due to the contex-
tualization in the input encoder. To overcome this
noisy information, in this work, we propose to ex-
ploit the induced path as the information bottleneck
(IB) (Tishby et al., 2000). IB’s goal is to reduce the
mutual information between the input and the bot-
tleneck, meanwhile, to increase the mutual informa-
tion between the bottleneck and the output. For the
second goal, the bottleneck (i.e., the dependency
path representation hp) will be used by the pre-
diction component, and the increase of its mutual
information with the output is enforced by reduc-
ing the training loss (e.g., negative log-likelihood).
To fulfill the first goal, i.e., decreasing the mutual
information between the input and the bottleneck,
we resort to a contrastive learning paradigm to es-
timate the mutual information between two high-
dimensional vectors using the classification loss
of a binary-discriminator. More specifically, the
path representation hp is concatenated with the



400

max-pooled representation of the input document
D, i.e., hd = MAX POOL(h1, h2, . . . , hn),
and this concatenation, i.e., hpos = [hp : hd],
serves as the positive sample for the contrastive
learning. To construct the negative samples, we
first take the max-pooled representation of a ran-
domly chosen document D′ from the same mini-
batch, i.e., hd′ = MAX POOL(h′1, h

′
2, . . . , h

′
m)

where h′i is the representation of the i-th word in
the document D′ and m is the total number of
words in D′. Afterwards, the concatenation of
hp and hd′ is employed as the negative sample:
hneg = [hp : hd′ ]. Finally, a feed-forward dis-
criminator is employed and trained to distinguish
the positive samples from the negative ones, i.e.,
Ldisc = log(1+e(1−D(hpos)))+ log(1+eD(hneg)).
By adding the discriminator loss Ldisc to the final
loss function and decreasing it, the estimated mu-
tual information between the input and the bottle-
neck (i.e., the path representation hp) is decreased
too.

2.4 Prediction

To make the final prediction on the relation be-
tween the given subject and object entities, we
employ the representations of the induced depen-
dency path (i.e., hp), the subject entity (i.e., hs),
and the object entity (i.e., ho) to construct the fi-
nal vector V = [hp : hs : ho] where [:] repre-
sent concatenation. The vector V is finally con-
sumed by a feed-forward neural network to pre-
dict the distribution P (·|D, t, a). The loss func-
tion to train the main RE task is thus defined as:
Lpred = −log(P (l|D, t, a)) where l is the gold
label. The overall loss function to train the entire
model is: L = Lpred +αLΦ +βLdisc where α and
β are the trade-off parameters.

3 Experiments

3.1 Dataset, Hyper-Parameters & Baselines

In order to demonstrate the effectiveness of the pro-
posed model, i.e., Dynamic Path Reasoning (DPR),
we evaluate it on the recent SemEVal 2021 Task 8
dataset. This dataset provides measurement anno-
tation for 233 training documents, 65 development
documents, and 130 testing documents, all in En-
glish. Note that we do experiments only on the train
and trial set (as the gold entities are not available
for test set). Also, we evaluate the model only for
relation extraction, not the entire task (as such, we
did not make a submission during MeasEval evalu-

ation phase). More specifically, for each document,
the positions of the measured entities, measured
properties, quantities, and qualifiers are provided.
Furthermore, for each measurement component, its
relations with the other components or extra infor-
mation (e.g., unit of quantity) is available. Note that
in our experiments, we do not use the annotation
set information which indicates which components
belong to the same measurement.

We fine-tune the hyper-parameters of the pro-
posed model on the development set of the Se-
mEval 2021 Task 8 dataset. The model with the
best performance on the development set is evalu-
ated on the test set. Based on our experiments, the
following hyper-parameters are selected: 50 dimen-
sions for the position embedding and entity type
embedding; 200 dimensions for the hidden layer
of the BiLSTM and all feed-forward networks; 0.1
and 0.05 for the trade-off parameters α and β; 0.7
for the threshold in the dynamic path reasoning
component; Adam optimizer with learning rate 0.3;
batch-size 50; and early stopping with the patience
of 10.

To comprehensively evaluate the proposed
model, we compare its performance against the
following baselines: (i) Sequential Models, specifi-
cally we compare with BiLSTM which takes the
non-contextualized word embeddings of the input
document (i.e., GloVe) and encode the sequence of
the words. Moreover, we also compare with BERT
model fine-tuned during training for the MRE task.
(ii) Structure-aware models, these models employ
the structure of the input document (e.g., depen-
dency trees of the sentences). Specifically, we com-
pare with iDepNN (Gupta et al., 2019) which em-
ploys the dependency trees of the sentences of the
document. This baseline adds an edge between the
roots of the trees to create a connected graph, Fur-
thermore, it prunes the tree along the dependency
path between the two entities of interest. Finally,
we compare our model with LSR which dynami-
cally infer a graph structure for the input document
using the representations of the entities and other
words on the dependency path between the entities.

3.2 Results

The results on the test set are presented in Table 1.
There are several observations from this table. First,
the proposed model significantly (with p < 0.01)
outperforms the baselines. It indicates the impor-
tance of using dynamic path reasoning and also the
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Model Precision Recall F1
BiLSTM 65.3 71.1 68.1
BERT 70.4 71.8 71.1
iDepNN 69.4 75.0 72.4
LSR 72 75.9 73.9
DPR (Ours 70.1 83.4 76.2

Table 1: Performance on Test set

proposed regularization method. Second, Compar-
ing the structure-aware and sequence-based base-
lines, it is evident that the structure of the input
document is necessary for achieving better results.
However, between the iDepNN and the LSR base-
line, the latter has better performance due to its
capability of inferring the structure of the docu-
ment instead of relying on external parse trees as in
iDepNN. Finally, this experiment shows that using
the pre-trained language model BERT substantially
improves the performance compared to a sequence-
based model that utilizes GloVe embedding. This is
on par with the recent advancement on NLP using
contextualized word embeddings.

3.3 Ablation Study
In this section, we provide more insight into the
effectiveness of different components of the pro-
posed model. The major two components in our
model are dynamic path reasoning and regulariza-
tion. To study their importance, we evaluate the
performance of the following baselines on the de-
velopment set of the SemEVal 2021 Task 8 datasets:
(i) Full−DPR, this baseline completely removes
the dynamic path reasoning component. More
specifically, the vector hp is removed from the fi-
nal prediction vector V and the loss function LΦ

is also removed from the overall loss function L;
(ii) FullDPRS , this baseline employs the dynamic
path reasoning component. However, to compute
the similarity score Simi, instead of considering
the context if the word wi, it directly computes the
score by Simi = ‖P − hi‖; (iii) Full−Reg, this
model complete remove the regularization com-
ponent, i.e., by removing the loss function Ldisc
from the overall loss function L; (iv) Fulldot, this
ablated model preserves the regularization com-
ponent. However, instead of using Information
Bottleneck, it directly decreases the similarity be-
tween the path representation, i.e., hp, and the input
document representation, i.e., hd, by replacing the
Ldisc by Ldot = hp · hd.

The results are presented in Table 2. This table
shows that all components of the proposed model

Model Precision Recall F1
Full 73.2 86.7 79.4
Full−DPR 71.1 79.1 74.9
FullDPRS 70.2 82.3 75.8
Full−Reg 72.9 80.6 76.6
Fulldot 73.8 76.4 75.1

Table 2: Performance of the ablated models on the de-
velopment set

are necessary to achieve the highest performance.
More specifically, the dynamic path reasoning has
the highest impact on the performance as remov-
ing it will hurt the most. Also, it shows that the
consideration of the context to compute the score
for each word to be included in the induced path
is necessary. Finally, it shows that regularization
is helpful for exclude noisy information from the
input. More interestingly, replacing the IB with a
dot product to enforce the regularization hurts more
than removing the regularization itself. It indicates
the necessity of using IB for regularization.

4 Related Work

Measurement Relation Extraction (MRE) is one
specific formulation of the general Relation Ex-
traction (RE) task. In the literature, RE has been
tackled by feature-based methods (Zelenko et al.,
2003; Zhou et al., 2005; Sun et al., 2011; Nguyen
and Grishman, 2014; Nguyen et al., 2015c) and
advanced deep learning models (Zeng et al., 2014;
Wang et al., 2016; Lee et al., 2017; Zhang et al.,
2017; Nguyen et al., 2019; Jin et al., 2018; Vey-
seh et al., 2020b). Recently, structure-aware deep
models have shown significant improvement for
RE (Peng et al., 2017; Song et al., 2018; Xu et al.,
2015; Liu et al., 2015; Miwa and Bansal, 2016;
Nguyen and Grishman, 2018a; Zhang et al., 2018).
For a thorough review of the prior works, refer
to the recent work (Gupta et al., 2019; Nan et al.,
2020; Veyseh et al., 2020a)

5 Conclusion

We proposed a new model for the MRE task. The
introduced model employs a dynamic path reason-
ing component which induces important context
words to predict the relation between two measure-
ment components. Furthermore, we proposed a
novel regularization method based on Information
Bottleneck to exclude noisy information from the
input. Our experiments on the SemEval 2021 Task
8 reveal the effectiveness of the proposed model.
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