WVOQ at SemEval-2021 Task 6: BART for Span Detection and
Classification

Cees Roele
cees.roele @gmail.com

Abstract

Simultaneous span detection and classification
is a task not currently addressed in standard
NLP frameworks. The present paper describes
why and how an EncoderDecoder model was
used to combine span detection and classifi-
cation to address subtask 2 of SemEval-2021
Task 6.

1 Introduction

Task 6 of SemEval-2021 studies the detection of
persuasion techniques (Dimitrov et al., 2021). The
task considers English language memes, which in
subtasks are to be classified, divided into classified
fragments having a begin and end, and classified
when text is combined with images.

Of the three subtasks described in the paper, the
present paper primarily addresses resolving subtask
2:

Given only the “’textual content” of
a meme, identify which of the 20 tech-
niques are used in it together with the
span(s) of text covered by each technique.
This is a multilabel sequence tagging
task.

The figure below illustrates span detection and
classification for three technique classes for a
meme.

name calling

WHY DO THEY KEEP SAYING RELEASE THE CRACKHEAD? \nHUNTER ...

J

‘ loaded language ‘

smears

Figure 1: Span detection and classification: overlap-
ping spans and spans extending over multiple sentences

In the above figure the ellipsis at the end of the
sentence denotes the continuation of the second

sentence. Note that loaded language and name
calling both apply to the same span, that is, the
word "CRACKHEAD”. Note furthermore, that the
span for smears overlaps with both of these spans
and ranges over more than one sentence.

The present paper describes a novel approach to
resolving these requirements by generating XML-
like start and end tokens to delineate spans. The
following illustrates this for the message in figure
1.

<SMEARS>

WHY DO THEY KEEP SAYING RELEASE THE
<LOADED—LANGUAGE>

<NAME—CALLING>

CRACKHEAD

</NAME—CALLING>
</LOADED—LANGUAGE >

? “n HUNTER ...

</SMEARS>

It attained an F1 score on the test set that is
about in the middle of the baseline and the highest
ranking score.

The choice of this approach of generating
markup to identify spans was made on the basis
that it was technically possible, easily understand-
able at a behavioral level of input and output, and
using a model that is pre-trained for dealing with
spans. The aim was not so much to attain the high-
est score as to explore how effective this approach
is in a proof-of-concept and what problems need to
be overcome to bring it to good performance.!

2 Background

Propaganda messages are constructed using spe-
cific rhetorical techniques. The current task is to
identify within a message in what fragment a par-
ticular technique is invoked.

'The code for the described system is avail-
able at: https://github.com/ceesroele/
SemEval-2021-Task-6.

270

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 270-274
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics

https://github.com/ceesroele/SemEval-2021-Task-6
https://github.com/ceesroele/SemEval-2021-Task-6

A simpler task is to identify fragments of a mes-
sage in which any propaganda technique is used.
Effectively, this comes down to classifying any
part of a message as being either propaganda or
not. It is a sequence labeling problem that can be
resolved for example using a BIO tagging format,
where BIO stands for Begin, Inside, and Outside.
To classify a span of tokens as propaganda we can
use B-PROP to designate the begin of the span,
I-PROP to indicate the token being inside the ear-
lier begun span, and O to designate a token not
being part of a span. (Chernyavskiy et al., 2020).

For our case this approach can be extended
by adding new labels for each technique, e.g.
B-SMEARS, I-SMEARS, B-NAME-CALLING,
B-LOADED-LANGUAGE, and so on for all
twenty technique classes. But looking at
figure 1 we see that if CRACKHEAD is
a token, we have to simultaneously label
it as I-SMEARS, B-NAME-CALLING, and
B-LOADED-LANGUAGE. The extension of the ap-
proach by just adding labels is not applicable to our
situation in which spans can overlap.

One solution for this problem is to retain
the assumption that each input token is to be
tagged, but add virtual depth. This approach
was taken for the PRopaganda persuasion
Techniques Analyzer (PRta)(Da San Mar-
tino et al., 2020). It is based on an architecture
where each input token maps to as many output to-
kens as there are technique classes, plus one extra
for no technique. Additionally, it uses a comple-
mentary output indicating confidence of any propa-
ganda technique being present at the sentence level,
which is used as a gate for predicting the presence
of any specific techniques.

The sequence labeling method described at the
beginning of this section is effectively a sequence-
to-sequence translation, where the input and output
sequence consist of the same number of tokens.
This allows us to match input with output based
on position. To generate a marked up version of a
message we need to allow an output sequence to
have a length that differs from the input sequence.

By using an EncoderDecoder model we can gen-
erate arbitrary transformations of an input message
including changing its length. This can be used
for abstractive dialogue, question answering, and
summarization. A state of the art EncoderDecoder
model is BART, a denoising autoencoder built with
a sequence-to-sequence model. (Lewis et al., 2020).

BART uses a standard Tranformer-based neural
machine translation architecture to couple a bidi-
rectional encoder with a left-to-right decoder. Pre-
training BART was done by first corrupting text
with an arbitrary noising function and then training
a sequence-to-sequence model to reconstruct the
original text.

2.1 Data

There are two datasets available for task 6. The
first is the Propaganda Techniques Corpus (PTC)
dataset from SemEval-2020 Task 11. It consists
of about 550 English language news articles in
which spans - defined by begin and end positions
- have been annotated with one out of 18 propa-
ganda techniques. In practice a number of these
techniques have been combined. For example, the
three techniques whataboutism, straw men, and
red herring have been conflated into the single
label whataboutism,straw_men,red_herring. As a
result, the dataset has effectively been annotated
with 14 labels. Moreover, these composite labels
don’t identify individual labels in the 2021 dataset,
which makes them unsuitable for training. That
leaves only 12 usable labels in the PTC.

The 2021 dataset consists of about 660 English
language memes. These are short texts consist-
ing of mostly short sentences and relatively many
uppercase characters. Here fragments have been
identified by start and end indexes and are labeled
with one of a total of 20 classes. The differently
labeled fragments may overlap, that is, a certain
span of text may belong to fragments belonging to
different classes.

The table below shows the number of fragments
per dataset, the average number of words per frag-
ment, the number of fragments spreading over
more than one sentence, and the relative number
of uppercase characters in fragments (upper / (up-
per+lower)).

Dataset Spans Words >1 Upper

PTC 2020 5610 8.6 223 0.04

Memes 2021 1497 7.6 224 0.53

Total set 7107 8.4 447 0.14
Table 1: Data

Regarding the data, we make the following ob-
servations:

* For 8 of the classes there is data only in the rel-
atively small 2021 memes dataset, which with

271

many short sentences and a lot of uppercase
is structurally different from the PCT 2020
dataset

¢ For some classes as much as half the charac-
ters in their fragments are in uppercase

* The median number of words in a fragment
significantly varies per class. E.g. smears,
causal oversimplification , and whataboutism
have median numbers of words of respectively
16, 20, and 25, while name calling/labeling,
loaded language , and repetition have median
numbers of words of respectively 3, 2, and 1.

* The median number of sentences by frag-
ments is 1 and for a handful of classes 2.

The above findings will inspire a number of
choices specified in the Experimental Setup below.

2.2 Pre-training is key

The success of language models like BERT (Devlin
et al., 2019) derives in great part from a division
of labor and domain. In the first step, a model is
trained on a large body of unmarked data. This
results in a model that has many linguistic rela-
tions represented in its weights, but that by itself
is of little use. In the second step, that resulting
pre-trained model is fine-tuned with data from a
specific domain.

Given the comparative smallness of the two
datasets at our disposal, leveraging pre-training
can be expected to greatly enhance the quality of
predictions.

However, it is worth considering what the pre-
training entails. Take BERT. It was trained in part
on English Wikipedia articles. But now we are
looking at memes full of uppercase characters, con-
taining persuasion techniques that we hope are not
used in Wikipedia. Said differently, the data the
model was pre-trained on might not be representa-
tive for our domain.

More abstract, but no less important, is the
method of pre-training. Is the used method of
Masked Language Modeling (MLM) supporting
our task? We are interested in spans of text, possi-
bly running across multiple sentences. Besides next
sentence prediction, BERT’s methodology primar-
ily consists of replacing a percentage of individual
tokens with a mask token. However effective this
may be, it is not optimized for spans.

SpanBERT (Joshi et al., 2020) is effectively
BERT trained with a different masking method:

272

* mask contiguous random spans, rather than
random tokens, and

* train the span boundary representations to pre-
dict the entire content of the masked span,
without relying on the individual token repre-
sentations within it

SpanBERT outperforms BERT substantially on
span selection tasks such as question answering
and coreference resolution.

The present paper concerns a specific implemen-
tation for span detection and classification. Under-
standing pre-training helps us understand both why
the presented system has a certain success and what
its limitations are.

3 System overview

3.1 Generating markup

As sketched in the Background section, the prob-
lem we need to resolve is how to simultaneously
represent a span of text and one of a multitude of
labels. Our solution is to step away from attempts
to map onto a classification structure and instead
regenerate the original text, but now with XML-
like markup to indicate the start, end, and class of
each fragment.

We regenerate the input text using an EncoderDe-
coder model. Popularly expressed, it reads a text,
and then generates a sequence of words. In order
to add our markup for fragments we need two help
functions, let’s call them encipher and decipher.
The encipher function takes text plus metadata on
fragments and converts this into a string with XML-
like markup. We need this to create our training
data. The decipher function takes a string includ-
ing XML-like markup and extracts metadata in the
form of start, end, and class from it.

For each of the labels, the names for our tech-
nique classes, we create a start tag and an end tag.
In order to let the tokenizer treat them each as sin-
gle tokens, we add all these tags as tokens to the
tokenizer.

3.2 Using the BART EncoderDecoder model

In principle it is possible to implement Encoder
and Decoder on the basis of taking a pre-trained
model for each, e.g. RoBERTa for the Encoder
and BERT for the Decoder. Finding from a single
trial was that in such a setup training went very
slow and outcome was dissatisfactory. Instead we

selected BART (Lewis et al., 2020) as an integrated
EncoderDecoder model.

BART has a number of pre-training methods
that are of interest in trying to understand its perfor-
mance. Only the first one is part of the pre-training
methodology of BERT.

* token masking, like BERT

* token deletion, random tokens are deleted
and the model must decide which positions
are missing tokens

* text infilling, a number of spans with varying
lengths are sampled and replaced with a single
mask token. Note that this is different from
SpanBERT pre-training where each token of
the span is replaced with a mask token.

* sentence permutation, sentences are shuf-
fled in random order

* document rotation, a token is randomly cho-
sen and the document is rotated to start with
that token

We will get back to this when we evaluate the
result.

3.3 Easy to generalize

Recuperating, we initialize the model by adding
start and end tags for each technique class to the
tokenizer. We use encipher to create marked up
versions of input texts to train the model. To obtain
fragments for given inputs we must decipher gener-
ated marked up texts to extract meta-data. Besides
having markup, the generated text may be different
from the input. Directly deriving span positions
from the markup tags leads to errors when that hap-
pens. This is to some degree mitigated by using an
algorithm that searches for the best place of the tag
in the original input string.

The novelty of the described system is in us-
ing a standard EncoderDecoder model to generate
markup. No special architectural changes were
made, no domain dependencies were introduced,
and only minor pre- and postprocessing is done. It
is therefor easy to turn the system into a general
purpose span detection and classification system.

4 Experimental setup

4.1 Data and Training

The articles of the PTC 2020 dataset were reduced
to smaller segments on the basis of fragments.

273

for each fragment:
take all covering sentences
while another fragment overlaps
. with any sentence in the segment

add fragment and those sentences

Any sentences remaining, that is, not covered
by any fragment, were ignored. The memes of the
2021 dataset were not split.

Mixing the 2020 and 2021 datasets for a sin-
gle training run led to worse results than hav-
ing a staged training of first the PTC 2020 data
as pre-training and then the 2021 memes data as
fine-tuning. For training the datasets were split
train:dev:test as 70:20:10. Training was done with
a batch size of 8 for 25 epochs.

4.2 Framework

The system uses the Segq2SegModel of Simple
Transformers?, a task-oriented framework built
on top of Hugging Face Transformers®. It uses
the Hugging Face pre-trained BART model iden-
tified with model type ”bart” and model name
”facebook/bart-base” . This is a model consist-
ing of 6 encoder and decoder layers, 16-heads, and

139M parameters.

4.3 Configuration

Where training was done mostly with default set-
tings, text generation required improved settings.
We want enough tokens in the output for the full
input plus markup, we want a relatively low penalty
on length, to compensate for the previous setting,
we want a relatively high penalty on repetition, and
we perform a beam search. Experimentally, we
came to the following settings as being optimal:

Parameter Value
max_length 200
length_penalty 0.4
repetition_penalty 2.0
do_sample True
num_beams 3
top-p 0.8

Table 2: Seq2SeqModel configuration

2See: https://simpletransformers.ai/. The
used version is 0.60.6. To be able to add begin and end markers
as tokens to the seq2seq model a modification was made. It
can be found in the github repository for the system discussed
here, referred to in the first footnote.

3 See: https://huggingface.co/
transformers/. The used version is 4.3.2

https://simpletransformers.ai/
https://huggingface.co/transformers/
https://huggingface.co/transformers/

5 Results

The system’s F1 score of 0.268 on subtask 2 on
the test set scores about in the middle between the
baseline and the highest ranking score.

Rank Team F1 score Precision Recall

1 Volta 482 501 464

5 WVOQ .268 .243 299
baseline .010 .034 .006

Table 3: Subtask 2 scores on the test set

Looking at errors we made the following obser-
vations:

* Beginning and end tags in the generated text
regularly don’t match.

* Generated text contains changed words and
even added words, which leads to faulty iden-
tifications of spans.

Why does this happen? First, beginning and end
tags are introduced as new tokens in the relatively
small datasets we fine-tune with. Transformer mod-
els have no notion of syntactic connection between
them and standard BART has not been pre-trained
to relate these tokens correctly. Second, through its
pre-training methodology BART is geared towards
relative “freedom” in filling in spans. That’s what
makes it suitable for summarization and question-
answering. But what we need for markup genera-
tion is almost verbatim regeneration of the input.

6 Conclusion

The described system for span detection and simul-
taneous classification offers a proof —of—concept
for a novel approach to sequence tagging based on
generating a version of a message with markup for
labels. Its F1 score on the leaderboard is in the
middle between the baseline and the top score.

Drawback of the approach is that two types
of systemic errors are introduced: tags lacking a
matching tag, and tokens generated that are not
in the original message. These are not resolved
by fine-tuning the model and they cannot be ad-
dressed with the standard configuration parameters
of message generation in the sequence-to-sequence
model.

Future research should aim at resolving these
systemic errors. Matching tags could be addressed
through changes in the decoder’s generation algo-
rithm. Having the tokens in the output be the same

274

as those in the input could be improved by amend-
ing the loss function for fine-tuning training of the
model.

Only when these two issues are resolved will
further optimization of the approach be worth in-
vesting effort in.

References

Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav
Nakov. 2020. Aschern at SemEval-2020 task 11:
It takes three to tango: RoBERTa, CRF, and trans-
fer learning. In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 1462—
1468, Barcelona (online). International Committee
for Computational Linguistics.

Giovanni Da San Martino, Shaden Shaar, Yifan Zhang,
Seunghak Yu, Alberto Barrén-Cedefio, and Preslav
Nakov. 2020. Prta: A system to support the analysis
of propaganda techniques in the news. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 287-293, Online. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Dimiter Dimitrov, Bishr Bin Ali, Shaden Shaar, Firoj
Alam, Fabrizio Silvestri, Hamed Firooz, Preslav
Nakov, and Giovanni Da San Martino. 2021. Task
6 at SemEval-2021: Detection of persuasion tech-
niques in texts and images. In Proceedings of the
15th International Workshop on Semantic Evalua-
tion, SemEval 21, Bangkok, Thailand.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64-77.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

https://www.aclweb.org/anthology/2020.semeval-1.191
https://www.aclweb.org/anthology/2020.semeval-1.191
https://www.aclweb.org/anthology/2020.semeval-1.191
https://doi.org/10.18653/v1/2020.acl-demos.32
https://doi.org/10.18653/v1/2020.acl-demos.32
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

