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Abstract

In this article, we present our methodologies
for SemEval-2021 Task-4: Reading Compre-
hension of Abstract Meaning. Given a fill-in-
the-blank-type question and a corresponding
context, the task is to predict the most suitable
word from a list of 5 options. There are three
sub-tasks within this task: Imperceptibility
(subtask-I), Non-Specificity (subtask-II), and
Intersection (subtask-III). We use encoders
of transformers-based models pre-trained on
the masked language modelling (MLM) task
to build our Fill-in-the-blank (FitB) models.
Moreover, to model imperceptibility, we de-
fine certain linguistic features, and to model
non-specificity, we leverage information from
hypernyms and hyponyms provided by a lexi-
cal database. Specifically, for non-specificity,
we try out augmentation techniques, and other
statistical techniques. We also propose vari-
ants, namely Chunk Voting and Max Context,
to take care of input length restrictions for
BERT, etc. Additionally, we perform a thor-
ough ablation study, and use Integrated Gradi-
ents to explain our predictions on a few sam-
ples. Our best submissions achieve accura-
cies of 75.31% and 77.84%, on the test sets
for subtask-I and subtask-II, respectively. For
subtask-III, we achieve accuracies of 65.64%
and 62.27%. The code is available here.

1 Introduction

A very common assessment in schools is question-
answering based on a given “comprehension pas-
sage”. Students are given a comprehension passage,
from which they are supposed to glean necessary
information, and answer short questions (such as
fill-in-the-blanks-type question) based on what they
have garnered from the given passage. While trying
to find the most appropriate word for the blank, the
children look at the words surrounding the blank

∗ Equal contribution. Author ordering determined by coin flip.

(“context”). The word should be such that when the
word fills the blank, the sentence makes sense and
it is grammatically correct. Inspired by this, and
perhaps, after the enormous success of Transform-
ers (Vaswani et al., 2017), researchers at Google
came up with a large number of “pretraining tasks”
and built knowledge-heavy language models which
could be fine-tuned on various natural language
processing (NLP) downstream tasks. One of the
earlier pretraining tasks was “Masked Language
Modelling (MLM)”, one of the two pretraining
tasks of the breakthrough model, BERT (Devlin
et al., 2019). The approach here was similar to how
kids are taught language at school: some tokens in
the text were randomly “masked” and the model
was trained to predict these masked tokens.

SemEval-2021 Task-4 (Zheng et al., 2021) fo-
cuses on a similar idea. Every sample has an article,
and a corresponding question. The question has
a blank which the model is supposed to predict
from a set of 5 options. The novelty in the task
lies in its 3 subtasks: Imperceptibility (subtask-
I), Non-Specificity (subtask-II), and Intersection
(subtask-III). A description of these subtasks is
given in Section 3. In this work, we propose using
BERT and its derivative models such as DistilBERT
(Sanh et al., 2019), ALBERT (Lan et al., 2019) and
RoBERTa (Liu et al., 2019). Further, we propose 2
BERT variants: (1) BERT Voting; (2) BERT Max.
Context. Most importantly, we also model the con-
cepts of imperceptibility and non-specificity. For
imperceptibility, we create statistical embeddings
using features that have a high correlation with
concreteness. For non-specificity, we propose two
approaches: (1) we augment the dataset by replac-
ing some nouns in the article by their hypernyms;
and (2) we use the options’ hyponyms to decide the
most appropriate option. We also experiement with
GA-Reader (Dhingra et al., 2017b) and GSAMN-
based approaches (Lai et al., 2019) by trying out

https://github.com/gchhablani/ReCAM.git
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their various combinations with BERT.
In Section 2, we perform a succinct literature

survey. Section 3 elucidates our approach, includ-
ing the modelling aspect, the various variants of
the base model, and the different ways we model
imperceptibility and non-specificity. In Section 4,
we perform an extensive ablation and comparative
study.

2 Background

The advent of large-scale question answering sys-
tems began with straightforward tasks, like the one
introduced by the SimpleQuestions Dataset (Bor-
des et al., 2015), which consisted of knowledge-
base fact triples which were later used to answer
questions. However, this dataset would only judge
a model based on the ability to relate the facts to
the question at hand. The purpose of NLP research
is to be able to create a generalised model that
may answer questions based on any context, thus
datasets like the CNN Daily Mail (Hermann et al.,
2015) and SQuAD (Rajpurkar et al., 2016) were
created. In a typical question-answering dataset, an
original and anonymised context is provided before
each question. Before transformers, methods con-
sisting of LSTM/GRUs were used to achieve good
results on the aforementioned tasks. These datasets
however, always had answers in the passage.

The CLOTH (Xie et al., 2018) dataset focuses on
passages from middle-school and high-school text,
with multiple fill-in-the-blanks in the passage. The
ReCAM (Zheng et al., 2021) dataset puts a twist to
archetypal fill-in-the-blank datasets by providing
answer choices that are abstract in some form and
which are not available in the passage itself. The
models created for the QA task have to take into
account semantic relations between the options and
the context. GA-Reader (Dhingra et al., 2017b),
is one such model, which utilises a multi-hop ar-
chitecture with a novel attention mechanism, that
serves as a baseline to this task.

3 Methodology

3.1 MLM-Based Transformers for
Cloze-Style QA

The first model we employ follows a cloze-style
question answering approach, in which we use var-
ious pretrained transformer models as encoders,
followed by a decoder layer, which helps us to
select the correct answer.

Animal

Dog Fish

Terrier Hound Seafish Freshwater Fish

Animal

Figure 1: An example of a Hypernymy Tree

Specifically, we leverage BERT along with some
of its popular and successful variants such as: Dis-
tilBERT, ALBERT, and RoBERTa. In the MLM
task, tokens in the text are randomly masked, and
the model is trained in a self-supervised way to
predict these masked tokens. Conceptually, these
transformers-based models are expected to take
care of bidirectional context while predicting the
masked token.

In our method, firstly, the transformer model
learn the contextual embeddings of the article and
the question. For the next block, the embedding of
the masked token (i.e., the blank) is passed through
a fully-connected layer, of which, the number of
outputs corresponds to the size of the vocabulary
space for the pretrained model. Each candidate
option is first tokenised using WordPiece tokeniser
(Wu et al., 2016), and mapped to the vector in the
output vocabulary space. If the candidate option
generates multiple tokens, we average the mapped
scores. The model chooses the option with the
highest logit value. An overview of the model is
given in Figure 2.

3.2 Improvement Approaches

3.2.1 Imperceptibility:

Nouns can be clearly demarcated into two broad
categories: Concrete Nouns, and Abstract Nouns.
Concrete Nouns are words that represent tangible
concepts, i.e., any noun referring to a name, place,
object, material, etc. is considered a concrete word.
Concrete words refer to concepts that can be felt by
5 human senses: Sight, Sound, Smell, Taste, and
Touch. In contrast, any noun alluding to an abstract
concept that cannot be experienced by our senses
is an abstract word (Spreen and Schulz, 1966). In
subtask-I, the model has to predict the most ac-
curate and the most imperceptible word from the
given options. To model the imperceptibility of
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Figure 2: Architecture of Transformer-based FitB Model

every word, we incorporate certain linguistic fea-
tures which are highly correlated with the notion
of “imperceptibility”. These linguistic features are
listed below:

Length and Frequency of the Word In existing
literature, authors have claimed that there exists
strong evidence that concrete words are, in general,
shorter than abstract words (Tanaka et al., 2013). A
reasonable justification provided is that more fre-
quently used words tend to be short (Feng et al.,
2011) and since humans have a penchant for de-
scribing objects, places, or things near them, these
frequently used words are generally concrete nouns.
It is rather intuitive that humans would prefer ease
in the pronunciation of oft-used words. Moreover,
many abstract words in the English language are
formed by adding suffixes to the root word, such as
“coarse” becomes “coarseness”, “forget” becomes
“forgetfulness” and so on (Tanaka et al., 2013).

Number of Senses of the Word In Linguistics,
polysemy refers to the capacity for a word to have
multiple meanings or senses. Abstract nouns are
observed to be more “polysemous” than concrete
nouns (Tanaka et al., 2013). For example, in Word-
Net (Fellbaum, 1998), the word “dog” has 8 senses,
while the word “love” has 10 senses.

Number of Hyponyms Tanaka et al. 2013 find
a direct correlation between the abstractness of a
noun and the number of hyponyms the word has.
We consider the number of hyponyms of the most
commonly occurring sense of the word, and the
average number of hyponyms of all the senses of
the word.

Score-based Features Abstract nouns evoke
emotions in humans. SentiWordNet (Baccianella
et al., 2010), another lexical database like Word-
Net, gives scores based on the how positive, neg-
ative or objective they are. Abstract words have
a higher positive/negative score, while concrete
words have a higher objective score. Again, here,
we consider these scores for the most commonly
occurring sense, and the average scores of all the
senses of the word.

Depth in Hypernymy Tree This feature is more
suited for non-specificity. However, we include
this as a feature of imperceptibility since the con-
cepts of imperceptibility and non-specificity are
related. For example, consider the words ”money”
and ”property”. The latter is more imperceptible
and non-specific than the former. Moreover, this is
particularly useful for Subtask-III. Therefore, the
depth of a word in the hypernymy tree is directly
proportional to the concreteness of the word.
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From the features above, we have a 13-
dimensional vector for every word in the lexicon.
The embedding is created so that every dimension
is directly proportional to the concreteness of the
word. For example, the length of a word is in gen-
eral, indirectly proportional to the concreteness of
the word, so we take the length dimension of the
vector as large value− length of word, where
we take 10, 000 as the large value. The large
value chosen was the same for all features which
are indirectly proportional to concreteness.

Towards improving the trained model, we use a
method which we term as the Difference Method.
If the difference of the top-2 probabilities predicted
by the model is greater than a certain threshold,
this implies that the model is sure of the predic-
tion it has made. However, if the difference is less
than the tunable threshold, the model is ambivalent
about whether the option with the highest probabil-
ity or the option with the second highest probability
is correct. In this case, we compute for how many
dimensions the value of the linguistic embedding
of the second word is less than the value of the
linguistic embedding of the first word. If the ma-
jority of the values (i.e., 7) are less, we change the
prediction of the model to the second-most proba-
ble option. The threshold is tuned on the dev set.
Furthermore, we use a Threshold Method towards
improving the model performance. If the high-
est probability is less than a tunable threshold, the
model is unsure of its predictions and we consider
the improvement approaches on the option with the
second-highest probability.

3.2.2 Non-Specificity
According to Spreen and Schulz, 1966, a highly
specific word refers to a very particular instance,
while a non-specific word refers to a generic con-
cept, i.e., it encompasses many classes/instances.
For example, consider the words “animal”, “bird”
and “eagle”. The words are listed in increasing
order of specificity.

We find parallels between the definition of
specificity/non-specificity and the linguistic phe-
nomenon of hypernymy. Schreuder and Baayen,
1995 define a hypernym as “a word with a general
meaning that has basically the same meaning of a
more specific word”. The more specific word is the
corresponding hyponym. In simpler terms, each
word is related to some super-types and sub-types,
called as hypernyms and hyponyms, respectively.
In linguistics, hyponymy is a semantic relation be-

tween a hyponym denoting a subtype and a hyper-
nym denoting a supertype.

For example, in figure 1, as we traverse up the
hypernymy tree, assuming we consider the word
“dog”, we find that its hypernym is “animal”, which
is much broader than “dog”. On the other hand, as
we go down the hypernymy tree, we find more spe-
cific terms for the word “dog” such as “terrier”. Es-
sentially, hyponyms represent “IS-A” relationships.
For example, “terrier” is a “dog”. We leverage the
hypernymy property of words to help the model
in deciding the most non-specific option. The two
methods which we implement are:

Hypernym Augmentation Method In order to
infuse a sense of non-specificity (other than train-
ing on the given dataset for non-specificity), we
augment the dataset for subtask-I. We randomly se-
lect n nouns from the article by using a basic POS
Tagging pipeline. For each noun, we use the Lesk
algorithm (Lesk, 1986) to find the most appropriate
sense of the word based on its context. For this
sense of the word, we find its hypernyms, pick a
hypernym uniformly at random from this list of hy-
pernyms and replace the noun in the article with the
hypernym. We do this for all 2n combinations, i.e.,
corresponding to every sample, we have 2n aug-
mented samples. Furthermore, we randomly mask
tokens in this dataset and train BERT on the MLM
task, on this dataset. This serves a dual purpose.
Firstly, it serves as a sort of domain adaptation, and
secondly, it infuses a sense of non-specificity in the
model.

While finetuning BERT MLM on the augmented
dataset, we freeze two layers, due to time and
computational constraints. We replace the nor-
mal BERT Encoder in our BERT FitB model with
the BERT Encoder fine-tuned on the augmented
dataset.

Hyponyms Options Method Here, we use the
Difference Method/Threshold Method. If the model
is sure of its prediction, we keep the prediction of
the model. Otherwise, we generate hyponyms for
each option using WordNet. After the hyponyms
are tokenised, we use the trained model’s output
and map each hyponym token to the output vocab-
ulary space and get the corresponding scores. We
then take the maximum score amongst all of the
hyponyms as the predicted probability for that op-
tion. The reason for incorporating this approach
pertains to how the transformer models were pre-
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trained. Consider the following sentence: “He had
a [MASK] and it was bitter”. Now, suppose that
we have two options: “beer” and “drink”. Gen-
erally, our transformer-based model would look
at the word “bitter” and predict “beer”. However,
“drink” is more non-specific than “beer”.

3.2.3 BERT Fill-in-the-blanks Variants
To address the limitations of the vanilla
transformer-based models, we attempt mul-
tiple modifications to the proposed baseline
transformer models, specifically for BERT. The
major limitation of the pretrained BERT model
that we’ve used, is the restriction on the length
of the tokenised inputs. Only 512 tokens from a
sample can be processed by BERT in one parse
and hence, some articles end up getting truncated
and context is lost. The following are some of
the modifications we’ve made to improve the
performance of our models:

Voting We tokenise the question and the article.
We split the article into chunks and pair each chunk
with the question such that the length of the to-
kenised (chunk, question) pair is 512. While
splitting the article into chunks, we keep a max-
overlap stride of 128 so that the context of the pre-
vious chunk is not lost. We train the model on these
newly formed (chunk, question) pairs. During in-
ference, we take the weighted sum of the logits.
For BERT FitB Voting (Similarity), the weights are
calculated as:

weightij =
ui.vj
||ui||||vj ||

(1)

where ui is the embedding of the question in the ith

sample, and vj is the embedding of the jth chunk
of the sample’s article. To find the embeddings,
we extract the [CLS] embedding from a pretrained
BERT encoder.

We also try out an alternate way of defining the
weights:

weightij =
|{qi toks.} ∩ {chunkj toks.}|

|{chunkj toks.}|
(2)

where {qi toks.} is the set of tokens in the ith sam-
ple’s question, and {chunkj toks.} is the set of
tokens in the jth chunk of the sample. |.| repre-
sents the cardinality of a set. We call the method
BERT FitB Voting (Exact Matching).

We normalise the computed weights:

norm weightij =
weightij∑ni
j=1weightij

(3)

where ni is the number of chunks in the ith sample.
The idea behind this is that higher the similarity

between the question and the article’s chunk, higher
is the weight assigned to the logits returned by
the trained model with the question-chunk pair as
input. In Equation 2, we find the fraction of tokens
common between the question and chunk.

Max Context This method is a slight modifica-
tion of the Voting Method. Instead of training the
model on all (chunk, question) pairs for a partic-
ular sample, we train the model on the pair with
the highest weight. The weights are calculated as
described in Equation 2.

3.2.4 GA-Reader-based Approaches
We propose a few modifications to the baseline,
namely GA-Reader (Dhingra et al., 2017a) pro-
vided by the organisers.

GA-Reader BERT We use GA-Reader on top of
BERT embeddings. This could lead to potential im-
provement in performance for subtask-I as BERT
embeddings are more feature-rich than GloVe em-
beddings.

GA-BERT Based on the Gated-Attention
Reader, we came up with an approach that uses
Gated-Attention across two-BERT streams. The
first stream takes in the question input, and works
like the regular BERT model. The second stream
takes the article input. Assume the layer outputs for
layer L are QL and AL, respectively, for question
and article streams. Then, to the layer L + 1 for
question stream, QL is passed as input, while to
layer L + 1 for article stream, GA(QL, AL) is
passed, where GA is the Gated-Attention function.
This is done for all 12 layers of BERT-BASE.
Finally, on this model, two types of heads are
attached - Selection and Pooling (similar to BERT
FitB), and Attention Classification (similar to
GA-Reader). The logits for each head are concate-
nated and a fully-connected layer is added on top.
Since this is a major change in the architecture of
BERT, this model needs a significant amount of
pretraining.

Answer-Attention Since GA-Reader also at-
tends to the candidate answer embeddings, we also
attempt an approach where we pass the options
to the BERT model. On the option embeddings
and the [MASK] token embeddings, we apply mul-
tiplicative attention (dot product) to get attention
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Model Information Imperceptibility Non-Specificity
Model Variant Val Acc. Test Acc. Val Acc. Test Acc.

BERT Fill-in-the-Blank base 67.03% 66.77% 64.39% 65.74%
BERT Fill-in-the-Blank large 74.79% 75.30% 72.73% 75.16%

DistilBERT Fill-in-the-Blank base 67.03% 66.02% 63.69% 62.67%
RoBERTa Fill-in-the-Blank base 52.45% 51.11% 33.73% 35.99%
RoBERTa Fill-in-the-Blank large 51.02% 52.44% 33.14% 34.95%
ALBERT Fill-in-the-Blank base-v2 31.42% 30.46% 31.84% 31.14%
ALBERT Fill-in-the-Blank large-v2 31.06% 30.76% 30.08% 33.27%

GA-Reader (baseline) - 21.23% 21.51% 21.50% 21.86%

Table 1: Results of the Vanilla Fill-in-the-Blank(FitB) Models and GA-Reader

scores. These scores are directly used as logits for
the prediction.

3.2.5 GSAMN-based Approaches

BERT-GSAMN-Cloze Lai et al. (2019) pro-
pose a combination of Gated-Attention and Self-
Attention - Gated Self-Attention (GSA). They show
improvements on smaller datasets compared to
Compare-Aggregate Approaches. We use two GSA
layers on top of BERT Embeddings, and use the
same decoder and selection method as BERT FitB.

4 Experimental Setup

In all our experiments, we use the PyTorch im-
plementations of the transformers-based models
provided by the HuggingFace (Wolf et al., 2019).
The metric for all the 3 subtasks is accuracy. For
subtask-I, to obtain the linguistic features men-
tioned in 3.2, and to obtain the hypernyms and hy-
ponyms for subtask-II, we use the lexical database,
WordNet provided by NLTK (Bird and Loper,
2004), a library in Python. For both subtasks, we
train our models on train + trial dataset, and evalu-
ate them on the dev set.

The training and the evaluation of systems was
on Google Colaboratory’s free GPU (NVIDIA
K80/P100). The training time varies with the mod-
els. It is around 1-2 hours for the base variants and
2-4 hours for the large models, which is well within
the 12 hour limit of Colab. DistilBERT took about
half an hour for training.

For finetuning the BERT FitB Hypr Aug Model
on the augmented dataset on the MLM task, we use
Nvidia-DGX Station with the following specifica-
tions: four 32 GB Tesla V100 GPUs, 256 GB RAM
and forty Intel Xeon 2.20GHz processors since it
is a computationally intensive task.

4.1 Hyperparameters

For all our experiments, we use Adam Optimiser
(Kingma and Ba, 2017) and Cross Entropy Loss.
For choosing the optimal set of hyperparameters,
we run a Grid Search on our models. We zero
in on a learning rate of 1e-5. Schedulers such as
Linear Scheduler, Cosine Annealing Scheduler, etc.
seem to have a negative impact on the results. For
the FitB models, we keep all the layers unfrozen.
Additionally, the maximum input length is kept as
512. We train our models for 4 epochs, keeping a
batch size of 2.

4.2 Ablation Study/Results

Among the vanilla models, BERT FitB Large per-
forms the best. This is understandable when it
comes to DistilBERT and ALBERT, since these
models are pruned and distilled for faster compu-
tation. Notably, DistilBERT gives comparable per-
formance to BERT FitB Base. A slightly surpris-
ing observation was that there is a degradation in
accuracy on using RoBERTa. This could be be-
cause even though it was pretrained more robustly
than BERT on the MLM task, it was not pretrained
on the Next Sentence Prediction Task, and hence,
might perform worse on Textual Entailment tasks.
A peculiar observation is that the large variants of
ALBERT FitB and RoBERTa FitB models perform
worse than their base variants. This may imply
that more training data is needed to train the large
variants. For subtask-I, in table 2, we also demon-
strate the results of BERT Ensemble, in which we
ensemble (i.e., averaging over the predictions) two
checkpoints saved during the training process.
When it comes to the Difference Method using Lin-
guistic Features for imperceptibility, we observe
an improvement on the dev set, but a slight fall is
observed while evaluating it on the test set. This
might be solved by careful tuning of the threshold.
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The polls are already years overdue and were scheduled for Sunday . They were postponed because of an ongoing stalemate between the government and a group of
opposition senators over an electoral law . Haiti is the poorest country in the region and is still struggling to recover from a 2010 earthquake . Protesters lit piles of
wood in the central neighbourhood of Bel Aire before marching to a wealthy hillside neighbourhood , where riot police guarded hotels , shops and Haiti ' s elections
office . Some demanded President Michel Martelly ' s resignation for his " inability to organise elections in the country " . Two opposition activists who had
organised the protest were arrested by police for " public unrest and inciting violence " . Mid - term senate elections in Haiti had been due in May 2012 , while the
municipal poll is three years behind schedule as Haiti slowly emerges from the earthquake which left much of the country devastated in 2010 . In June , President
Michel Martelly decreed that the elections be held on 26 October . The date was set after lengthy talks mediated by the president of Haiti ' s Bishops ' Conference ,
Cardinal Chibly Langlois , intended to overcome the political deadlock between the opposition and the government . But after the National Assembly failed to pass
an electoral law in time , the office of Mr Martelly announced another postponement on Sunday . No new date has been set , but the statement said that " President
Michel Martelly , in his constant concern to guarantee political stability , promises to pursue consultations with the different sectors of national life in order to hold
the elections as soon as possible " . Opposition politicians accuse President Martelly of wanting to rule by decree - a likely scenario if no elections are held before
the lower chamber ' s term runs out in January . The government argues that opposition politicians are also dragging their feet in the hope of extending their time in
office without elections . Thousands of Haitians marched in the capital Port - au - Prince on Sunday in protest at a delay in the country ' s [MASK] and municipal
elections .

Options: Local, Annual, Legislative, Municipal, Devastating

Figure 3: Explanation of a Correctly Classified Sample from Subtask-I (Imperceptibility). The correct option is
highlighted in green.

Model Variant Val Acc. Test Acc.
BERT FitB LF large 75.75% 75.06%

DistilBERT FitB LF base 68.10% 65.73%
BERT FitB ENS large 75.15% 77.28%

BERT FitB ENS LF large 75.87% 75.26%
BERT FitB EM large 76.58% 76.35%

BERT FitB EM LF large 76.82% 76.10%
BERT FitB VS large 76.58% 76.54%

BERT FitB VS LF large 76.82% 76.20%
BERT MC large 74.07% 73.76%

Table 2: Results and Ablation Study of the Improve-
ment Methods on Subtask-I0

In the future, we aspire to learn embeddings us-
ing these Linguistic Features as input to common
models such as Word2Vec (Mikolov et al., 2013).

For non-specificity, with the hypernym augmen-
tation method, BERT FitB achieves lower accuracy.
A possible reason for this could be that replacing
the nouns with their hypernyms in some contexts
changes the meaning of the sentence (even though
we use Lesk Algorithm for WSD, not all hyper-
nyms make sense). For example, the word “drink”
is replaced with “food”. For the hyponyms method,
we can improve our results by recursively gener-
ating hyponyms for a particular option, instead of
taking the immediate hyponyms. Again, threshold
tuning may help.

In Table 3, a positive sign for the Difference
Method or the Threshold Method is the improve-
ment in the results of BERT FitB Voting (Exact
Matching) when we consider the hyponyms. The
accuracy jumps from 72.86% to 75.79% on the dev
set and from 77.83% to 78.98% on the test set. This
reinforces our claim that with more careful tuning
of the threshold, we might get improvements on
the test set in other methods.

Model Variant Val Acc. Test Acc.
BERT FitB Hypo large 75.09% 72.83%

BERT FitB Hypr Aug large 62.26% 60.78%
BERT FitB Hypr Aug Hypo large 64.51% 55.52%

BERT FitB EM large 72.86% 77.83%
BERT FitB EM Hypo large 75.79% 78.98%

BERT FitB VS large 73.09% 77.59%
BERT FitB VS Hypo large 75.56% 78.63%

BERT MC large 71.33% 71.21%

Table 3: Results and Ablation Study of the Improve-
ment Methods on Subtask-II0

BERT FitB Voting performs better than vanilla
BERT FitB on both subtasks. This is intuitive since
in the latter, we truncate the article to 512 tokens
without any consideration of how much context
is lost. Voting, on the other hand, considers all
contexts and hence, gives a superior performance.

For GA-Reader-BERT, when compared with the
GA-Reader baseline, the accuracy improves from
21% to 39% on subtask-I dev set. Due to com-
putational restrictions, we couldn’t pretrain GA-
BERT, and only fine-tuned it for subtask-I to get an
idea about its performance, which was sub-optimal
(19%). The Answer-Attention system gave us a
dev score of ≈61% on subtask-I, which is much
higher than the baseline.

BERT-GSAMN-Cloze achieves ≈31% accuracy
on subtask-I dev set. The reasons for this could
be lack of pretraining, unlike the original paper, or
different way to getting the output logits. We see
improvement as we reduced number of layers to
1(≈38%) and to 0(≈73%). Hence, we discarded
this approach.

0LF=Linguistic Features, ENS=Ensemble, FitB=Fill-in-
the-Blank, EM=Exact Matching, VS=Voting (similarity),
MC=Max Context, Aug=Augmentation, Hypr=Hypernym,
Hypo=Hyponym
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The Royal College of Physicians of Edinburgh warned that being overweight may now be considered " the norm " . It claimed a tax would help fund the " spiralling
" healthcare costs associated with the problem . The British Soft Drinks Association ( BSDA ) insisted that the case is " not compelling " . It cited research which
suggested a 20 % tax would save just four calories per day . Liverpool University chair of clinical epidemiology , Simon Capewell , is due to speak at a conference
on the issue in Edinburgh later , entitled : " Obesity : A 21st Century Epidemic " . Professor Capewell will cite Mexico as one example where a 10 % sugary drinks
tax is believed to have contributed to a 10 % reduction in the consumption of such beverages while Finland , France , Hungary , Latvia and the USA have also
introduced sugar taxes . He said : " The revenues raised can then be invested back into initiatives to increase children ' s health in these countries , as is happening in
Mexico . " Scotland has an excellent track record in addressing public health issues . Notable achievements include smoke - free public places and proposals for
minimum unit pricing for alcohol . We need to explore how these developments could be repeated with sugary drinks . " Gavin Partington , BSDA director general ,
said : " The efforts by soft drinks companies including product reformulation , smaller pack sizes and increased promotion of low and no - calorie drinks have led to
a 7 % reduction in calories from soft drinks in the last three years . " It ' s also worth noting that politicians in Belgium and Denmark rejected the notion of a tax in
2013 and the experience in France shows that while sales of soft drinks initially fell after a tax was introduced in 2012 , they have increased since . " Doctors have
called for the introduction of a tax on sugary [MASK] and drinks to tackle what they describe as an " obesity epidemic " .

Options: Food ,Terms, Head, Unit, Snacks

Figure 4: Explanation of a Correctly Classified Sample from Subtask-II (Non-Specificity). The correct option is
highlighted in green.

Imperceptibility Non-Specificity
Model Test Acc. Model Test Acc.

BERT FitB 65.64% BERT FitB 61.83%
DistilBERT FitB 52.16% BERT FitB with Hyponyms 59.95%

DistilBERT FitB + Linguistic Features 51.61% BERT FitB with Hypernym Augmentation 45.98%
BERT FitB + Linguistic Features 65.54% BERT FitB Voting (Exact Matching) 62.27%

BERT FitB Ensemble + Linguistic Features 64.95% - -

Table 4: Submitted Results of Subtask-III: Testing the performance of a system that is trained on one subtask and
evaluated on the other.

4.3 Analysis of BERT FitB using Integrated
Gradients

We use the method of Integrated Gradients (Sun-
dararajan et al., 2017). We follow Ramnath et al.
(2020) to compute the word-wise attribution scores
for BERT FitB for both subtasks. We compute
the Integrated Gradients of the target with respect
to the embedding outputs. The Riemann Right
Approximation Method with nsteps = 25 is used.
After obtaining the token-wise attribution scores,
we obtain the word-wise attribution scores by using
token-to-word offset mapping. We pick the top-10
word-wise attribution scores and normalise them.
To implement IG, we use the Captum (Kokhlikyan
et al., 2020) library. In favour of brevity, we present
one example for each subtask.

In Fig. 3, the correct answer is “legislative”. The
attribution scores of words like senate, senators,
municipal and President are high, as is demon-
strated by the intensity of the colour. The word
“legislative” is, in a sense, more imperceptible than
any of the words mentioned above. The senate is
the legislative branch of the government, and sena-
tors are its members; municipal refers to municipal
corporations which are the grassroots governing
bodies, etc. Moreover, other words such as elec-
tions, political, country also have high attribution
scores. These words are related to “legislative”

which exhibits the fact that BERT FitB is not only
able to learn the concept of imperceptibility, but is
also able to predict a suitable word.

Similarly, in Fig. 4, the correct answer is “food”.
Note that “snacks” is also an option; however, food
is more non-specific than “snacks” and hence, food
is the correct option. Another interesting thing to
note is the high attribution scores for words/phrases
like calories, beverages, sugar and sugary drinks.
This backs the fact that the model is able to learn
the concept of non-specificity, i.e., the above men-
tioned words are essentially hyponyms of “food”.

5 Conclusion

We tried out myriad approaches, taking care to
not only focus on the architecture aspect, but also
how we can quantify imperceptibility and non-
specificity. Although we did not achieve favourable
improvements in all approaches, we did observe
gains in accuracy on the dev set. We reckon that
with more careful tuning of parameters such as the
threshold in the Difference Method, we will be able
to achieve these gains on the test set.

We further interpreted the outputs of
transformers-based models using Integrated
Gradients, and demonstrated that transformer
models are able to learn the concepts of impercep-
tibility and non-specificity. In the future, we intend



197

to solidify our proposed approaches and carry out
further research in this interesting field.
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ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Qizhe Xie, Guokun Lai, Zihang Dai, and Eduard Hovy.
2018. Large-scale cloze test dataset created by
teachers. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2344–2356, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Boyuan Zheng, Xiaoyu Yang, Yuping Ruan, Quan Liu,
Zhen-Hua Ling, Si Wei, and Xiaodan Zhu. 2021.
SemEval-2021 task 4: Reading Comprehension of
Abstract Meaning.

https://doi.org/https://doi.org/10.1016/S0022-5371(66)80061-0
https://doi.org/https://doi.org/10.1016/S0022-5371(66)80061-0
https://doi.org/https://doi.org/10.1016/S0022-5371(66)80061-0
http://arxiv.org/abs/1703.01365
https://doi.org/10.1145/2433396.2433455
https://doi.org/10.1145/2433396.2433455
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/D18-1257
https://doi.org/10.18653/v1/D18-1257

