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Abstract

Data sharing restrictions are common in

natural language processing datasets. The

aim of this study is to develop a model

that is trained in a source domain to make

predictions for a target domain with respect

to domain data. To address this problem, the

organizers provided models that fine-tuned

a large number of source domain data on

pre-trained models and dev data for partic-

ipants. However, source domain data were

not distributed. This paper describes the

model provided for the name entity recog-

nition task and ways to develop the model.

Because little data are provided, pre-trained

models are suitable for solving cross-domain

tasks. The models fine-tuned by a large

number of other domains could be effective

in the new domain because the task did not

change. The code of this paper is available at

https://github.com/windforfurture/

SemEval-2021-Task10.

1 Introduction

Data sharing constraints are common in natural

language processing (NLP) datasets. For exam-

ple, Twitter policies prohibit the sharing of tweet

text, although tweet IDs may be shared. In clini-

cal NLP, the situation is even more prevalent be-

cause information on patients’ health must be pro-

tected. Obtaining annotations about health texts

often requires the signing of complex data usage

agreements. During the competition, the organizers

provided models which fine-tuned on the annotated

source domain data, while the source domain data

could not be distributed. The organizers also pro-

vided labeled data as dev data and unlabeled target

domain data as test data.

There were two sub-tasks for SemEval Task 10:

1) to classify clinical event mentions (e.g., dis-

eases, symptoms, procedures, etc.) for whether

they are being negated by their context. This is a

text-classification task (Yuan et al., 2020). 2) to

find time expressions (Laparra et al., 2018) in text,

this is a sequence-tagging task. SemEval Task 10

was different from traditional NLP tasks, where

training and testing were in the same domain. Pre-

dictions could be out of control due to the different

target domain. The domain of the dev data is re-

lated to the source and target domains, therefore the

model can be developed. In SemEval Task 10, it is

necessary to develop an existing model along with

training the model with labeled data or unlabeled

data. Furthermore, the model can be developed by

fine-tuning it in different ways.

For certain reasons, only the results for the sec-

ond subtask were submitted, that is, time expres-

sion recognition, which can be considered as a

name entity recognition (NER) task. The partici-

pants were asked to find time expressions in the text

through the task. This is a sequence-tagging task

that uses fine-grained time expression annotations

that are a component of SemEval 2018 Task 6(La-

parra et al., 2018). To deal with this task, deep

learning models, such as long short-term mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997),

bidirectional LSTM with conditional random field

(BiLSTM-CRF) (Huang et al., 2015), and bidirec-

tional encoder representation from transformers

(BERT) (Dai et al., 2019) have been developed to

challenge the NER task. Owing to the lack of a

training set, pre-trained models (Qiu et al., 2020)

were considered. The NER task can become diffi-

cult as the number of classifications increase. In

this task, 33 types of entities need to be recognized,

and phrases and words may be one of the types.

For the base model, B-prefix and I-prefix were

used to discriminate the beginning of classification

and ensure the accuracy of the tokens; therefore,

65 types of entities were used in the model. In

this paper, an ensemble model is proposed for time
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expression recognition with a hard voting strategy.

Each input sample was first tokenized using the

matched model tokenizer. Base models, such as

BERT (Devlin et al., 2019) and its variants, includ-

ing RoBERTa (Liu et al., 2019), DistilBERT (Sanh

et al., 2019) and ALBERT (Lan et al., 2019), were

used to learn hidden representations for each to-

ken. Then, a fully connected dense layer with a

Softmax function was used for classification. By

using a hard voting strategy, the predictions from

different base models were merged with the final

result. Experimental results show that the proposed

ensemble models achieve a competitive result with

the official baseline model, which ranked fifth in

sub-task 2.

The remainder of this paper is organized as fol-

lows. Section 2 describes the overall structure of

the proposed ensemble model. The comparative

experimental results and discussion are presented

in Section 3. Finally, conclusions are presented in

Section 4.

2 Ensemble Model for Source-Free
Domain Adaptation

The official baseline model is a fine-tuned

RoBERTa model: clulab/roberta-timex-semeval. It

uses RoBERTa (Liu et al., 2019) for token clas-

sification architecture, which is pre-trained using

no next-sentence prediction (NSP) and dynamic

masking. The RoBERTa model achieved better per-

formance than the BERT model because it was pre-

trained by larger volume data, more steps, larger

batches, and larger vocabulary than the BERT

model. In addition, the provided baseline model

was fine-tuned with approximately 25,000 expres-

sions in de-identified clinical notes as well as the

development dataset (Sanh et al., 2019). Four other

models were also implemented using a hard vot-

ing strategy and a hard voting result for a single

submission.

2.1 Tokenization

Transforming words to vectors is a necessary

step in NLP tasks. Different word representa-

tions were used in our implementation, includ-

ing word2vec (Mikolov et al., 2013; CHURCH,

2017), GloVe (Pennington et al., 2014), ELMo

(Peters et al., 2018), and BERT (Devlin et al.,

2019). For the RoBERTa model, we used only

the matched RoBERTa tokenizer to build word vec-

tors with a length of 514. Given a sentence x =

x1
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t[SEP]

Figure 1: Overall architecture of the base model.

[x1, x2, . . . , xM ] of length M , different lengths of

the sentence will result in different lengths of the

representation. Therefore, we considered the maxi-

mum sentence length as N − 1. If the length was

less than N − 1, then it was padded with zero val-

ues to make it equal to N − 1. For each input,

two specific tokens were added to the beginning

and end of the raw input, that is, <s> and </s>
(or [CLS] and [SEP]). The RoBERTa tokenizer

uses byte-pair encoding to obtain more relations

and meanings. Then, these are converted into a

sequence of subwords, which are then mapped into

token, position, and segment embeddings, that is,

[E[CLS], E1, . . . , EN−1, E[SEP ]] . In the proposed

model shown in Fig.1, the raw inputs were split

into one or more 514-dimensional vectors accord-

ing to the number of sentences contained in the

corresponding input.

2.2 BERT-based Model

To extract the semantic features, a pre-trained

language model(Qiu et al., 2020) was used. It

achieved impressive performance in various NLP

tasks. It contains multiple layers of bidirectional

transformer encoders(Vaswani et al., 2017) and is

then pre-trained by using unsupervised learning of

either the masked language model (with a masked

ratio of 15%) or the NSP.

The aforementioned pre-trained language model

contains 12 layers of transformers with a hidden

size of 768. Then, the embeddings of both contexts

are fed into a BERT model to obtain the semantic

representation T ∈ R
dt , denoted as

TF = [t[CLS], t1, . . . , tN−1, t[SEP ]]

= fBERT ([E[CLS], E1, . . . ,

EN−1, E[SEP ]]; θBERT ) (1)
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Figure 2: The ensemble of models.

where θBERT is the trainable parameter of the

BERT model, which is then fine-tuned during

model training, and dt = 768 is the dimension-

ality of the hidden representation.

2.3 Output Layer

The token classification in the BERT model archi-

tecture is considered as a series of binary classi-

fications. For each token, the classification was

a one-layer MLP with a Softmax function. The

loss function is a categorical cross-entropy, defined

as:

ŷcm = softmax(Wttm + bt) (2)

L = −
K∑

k=1

C∑

c=1

M∑

m=1

ym log(ŷcm) (3)

where ym and ŷcm denote the gold label and the

predicted probability of samples k, respectively, K
and C are the number of training samples and can-

didate categories, respectively; Wt and bt are the

weight and bias, respectively, which are associated

with the fully connected layer. The entire network

was trained by back-propagation (Rumelhart et al.,

1986) while the BERT model was fine-tuned with

the provided labeled data in the training phase.

2.4 Ensemble Learning

To output the final result, we used a hard vot-

ing strategy to integrate the results from different

base models, including the official baseline, BERT,

RoBERTa, DistilBERT, and ALBERT models, as

shown in Fig. 2. In hard voting, every individual

classifier votes for a class and the majority wins.

In statistical terms, the predicted target label of

the ensemble is the mode of the distribution of the

individually predicted labels.

3 Experimental Results

3.1 Datasets

The organization provided 99 news articles and

matched 99 annotated data files for subtask 2.

There were different types in these articles, such as

ABC, APW, and CNN. The dev data provided were

related to news, and the source data were related

to medical data. The test data were related to the

food security. The cross-domain task consisted of

three domains. Each raw input was divided into

sentences. The annotated data files were formed as

XML files. Every XML file contained a few enti-

ties that consisted of ids, spans, and types. Span

contains the start position, and the end positions

and types are classified. The labels should be trans-

formed because of the offset that were used as the

input data.

3.2 Evaluation Metrics

Subtask 2 was evaluated using standard precision,

recall, and mainly the F1-score. The F1-score is of-

ten used to evaluate unbalanced data, and is defined

as follows:

F1-score = 2 ∗ P ∗R
(P +R)

(4)

where P and R denote the precision and recall,

respectively. A higher F1-score indicates better

model prediction performance.
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Model Vocab Size Position Embeddings Attention Heads Hidden Layers

clulab/roberta-timex-semeval 50265 514 12 12

BERT base 30522 512 12 12

RoBERTa base 50265 514 12 12

DistilBERT base 30522 512 12 6

ALBERT base 30000 512 12 12

Table 1: Optimal parameter settings of the base models

Model R1 R2 R3 R4 R5 Avg.

clulab/roberta-timex-semeval 0.864 0.910 0.883 0.857 0.859 0.875
BERT base 0.844 0.880 0.895 0.847 0.837 0.861

RoBERTa base 0.817 0.850 0.843 0.809 0.823 0.828

DistilBERT base 0.828 0.868 0.874 0.837 0.839 0.849

ALBERT base 0.809 0.811 0.752 0.792 0.774 0.788

Hard Voting 0.856 0.889 0.900 0.866 0.860 0.874

Table 2: Empirical results of the ensemble model and the base models

3.3 Implementation Details

We fine-tuned the official baseline model

(RoBERTa) and four other models: the BERT

model (bert-base-uncased), RoBERTa model

(roberta-base), DistilBERT model (distilbert-base-

uncased), and ALBERT model (albert-base-v2).

For each model, 5-fold cross-validation was

performed. For each run, the datasets were split

into a ratio of 8:2 for the training and dev sets.

We trained the new model by adding the same

label2id and id2lable JSON as the provided model

to the original “config.json” We ran codes using the

downloaded model and the modified “config.json.”

After training, the models were used for prediction,

and the results were recorded. After comparing the

results, we observed that the model provided the

best performance. Then, we performed hard voting

that picked out one result, if three or more results

of these models were the same.

To obtain additional results, we split the pro-

vided data to obtain different dev data and test data

five times, and the test data were different every

time. In every round, the initial models were used,

and five rounds were tested. Hard voting gave the

best results, followed by the provided model. Fi-

nally, we fine-tuned these initial models with the

test data in the evaluation phase and chose the re-

sults of the provided model and the hard voting for

submissions.

3.4 Fine-tuning the Parameters

To train the proposed model, the Adam optimizer

applied a warmup strategy with a weight decay of

0.01 during training. The learning rates of all the

base models were 5e-6. For the official baseline

model, the default parameters were used in our

experiments because the initial parameters usually

performed well in other experiments. For other

models, we fine-tuned the hyperparameters using

a grid-search strategy. Once the optimal settings

of the parameters were obtained, they were used

for classification on the test sets. The details of the

hyperparameters are summarized in Table 1.

3.5 Comparative Results

Table 2 shows the results of the base models on

different folds, that is, R1–R5. The results showed

that the hard-voting ensemble model outperformed

the official baseline model with three rounds, but

the average F1-score of the ensemble model was

less than the average F1-score of the official base-

line model. Considering that the evaluation data is

in a new domain, we finally submitted the result of

the official baseline model, which was fine-tuned

by feeding numerous annotated data in the source

domain and the result of the hard voting ensemble

model. For the test set, the newly released official

baseline model, that is, Organizers (new), outper-

formed the previously released baseline model, that

is, Organizers (previous), which was only pre-

trained on the source data and achieved an F1-score

of 0.794(see Table 3). Owing to the low amount of
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Team Name F1-score

BLCUFIGHT-1 0.815

Self-Adapter-1 0.811

BLCUFIGHT-2 0.810

Baseline-2 0.804

YNU-HPCC-2 0.803
Self-Adapter-2 0.797

PTST-UoM-1 0.796

UArizona-1 0.795

UArizona-2 0.795

Boom-1 0.795

Baseline-1 0.794

KISNLP-1 0.793

KISNLP-2 0.781

YNU-HPCC-1 0.748

Table 3: All results on leaderboard for time expression

recognition.

data used for fine-tuning, the performance of the

proposed model is slightly lower than that of the

new official baseline model. However, its perfor-

mance is still competitive and finally ranked fifth

on the leaderboard.

4 Conclusions

The SemEval-2021 Task 10 framework requests

participants to develop semantic annotation sys-

tems in the face of data sharing constraints. In

this study, we fine-tuned the official baseline model

and then combined it with four other pre-trained

models with a hard voting strategy for time expres-

sion recognition. Experimental results showed that

the proposed model outperformed the previously

released baseline model, achieved a competitive re-

sult with the newly released official baseline model,

and finally ranked fifth on the leaderboard. Future

work will attempt to improve the performance of

cross-domain NER tasks.
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