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Abstract

This paper describes our approach for Task 9
of SemEval 2021: Statement Verification and
Evidence Finding with Tables. We participated
in both subtasks, namely statement verification
and evidence finding. For the subtask of state-
ment verification, we extend the TAPAS model
to adapt to the ‘unknown’ class of statements
by finetuning it on an augmented version of
the task data. For the subtask of evidence find-
ing, we finetune the DistilBERT model in a
Siamese setting.

1 Introduction

Tables provide a compact and structured way of pre-
senting information. They are easily interpretable
by humans and are widely used in scientific papers,
business articles, and even in government reports.
At the same time, it is easy to misinterpret tabular
data and even use it maliciously to spread mis-
information. Thus, systems that can verify facts
from tables and locate evidence in them can go
a long way in ameliorating issues related to table
interpretation. Such systems can also be used for
question-answering over large tables, that are dif-
ficult to analyze manually, since the task of fact
verification with evidence finding is closely related
to that of question answering (Jobanputra, 2019).
Table entailment refers to the task of finding
whether a sentence is refuted or supported by a
given table. Traditionally, it has been considered a
binary classification task. However, there could be
instances where the table is not capable enough to
either refute or accept the given statement, meaning
the statement context is “unknown” for the table.
In this paper, we have presented a table entailment
setup that extends to three classes: refuted, entailed,

and unknown, as a part of the Sem-Tab-Fact task
(Wang et al., 2021). The task could be divided into
two parts: statement verification, and evidence find-
ing. Given a table and a statement, one has to first
determine whether the table entails the statement,
refutes the statement, or has insufficient informa-
tion about it. This forms the subtask of statement
verification. If the table entails or refutes the state-
ment, one would also like to know which cells in
the table provided evidence for the same. This is
the subtask of evidence finding, that can be formu-
lated as a binary classification problem. Each cell
in the table is assigned one of the ‘relevant’ or ‘ir-
relevant’ labels depending on whether it provided
evidence for the given statement.

Recent years have seen a rise in the use of trans-
fer learning in language processing (Malte and
Ratadiya, 2019a) owing to their superior perfor-
mance. Models based on underlying concepts like
attention mechanism and transformers are seeing
widespread use across a range of tasks (Malte and
Ratadiya, 2019b; Ratadiya and Mishra, 2019). Our
findings concurred with this trend as we used simi-
lar kinds of architectures as the fundamental blocks
in the systems for both the subtasks. For the subtask
of statement verification, we modify the recently
released TAPAS model (Eisenschlos et al., 2020)
that is pre-trained on the TabFact dataset (Chen
et al., 2020). The pre-trained model is trained on
only two classes: ‘entailed’ and ‘refuted’, and is
not capable of classifying the ‘unknown’ samples.
The training data provided to us for our task also
contains the same two labels. To adapt to the ‘un-
known’ statements, we augment the given data by
including random statements from other tables as
unknown. We then fine-tune the TAPAS model by
extending it to three classes on this augmented data.
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Using this approach, we achieve a three-way F1
score of 65.59 and a two-way F1 score of 71.72 on
the test data. We ranked 8" on the official leader-
board for this subtask.

For the subtask of evidence finding, we fine-
tune the DistilBERT model (Sanh et al., 2019) in a
Siamese setup (Reimers and Gurevych, 2019). The
model is pre-trained on the SNLI dataset (Bowman
et al., 2015), the MultiNLI dataset (Williams et al.,
2018) and the STS benchmark (Cer et al., 2017).
For finetuning, we use the Contrastive loss (Hadsell
et al., 2006) as our loss function. For making a pre-
diction, we calculate the cosine similarity between
the embeddings computed by the model for both
the statement and the cell value. If the cosine simi-
larity value crosses a set threshold, we consider the
cell to be relevant to the given statement. Using
this approach, we achieve an F1-score of 43.02 on
the test data and secured the 7" rank on the official
leaderboard for this subtask.

The source code of our proposed approach for
both the subtasks has been made public' to encour-
age usage and improve the reproducibility of the
results.

2 Related Work

Recently, the TabFact dataset was released, which
contained 118K human-annotated statements, re-
lated to about 16K Wikipedia tables. These state-
ments were annotated for only two labels, ‘entailed’
and ‘refuted’, leaving out the ‘unknown’ cases.
A system’s ability to distinguish ‘unknown’ state-
ments from ‘entailed’ and ‘refuted’ is quite critical,
as one may elusively create seemingly believable
statements that are actually ‘unknown’.

Recently, there has been work in areas related to
table fact verification, especially since the release
of the TabFact dataset. Many of these approaches
are graph-based in nature (Shi et al., 2020; Yang
et al., 2020; Zhong et al., 2020). The current state-
of-the-art on the TabFact dataset is the recently
released TAPAS model, which outperforms its pre-
decessor by approximately 6%. Unfortunately, all
of these models are quite far from human-level
performance, suggesting ample scope for improve-
ment.

Little to no work has been done previously
on the task of evidence finding, with the closest
approaches being related to table-based question

'The code is available at https://www.github.
com/vcreatek/attestable-semeval/

answering like WikiTableQuestions (Pasupat and
Liang, 2015), WikiSQL (Zhong et al., 2018) and
SQA (Iyyer et al., 2017) where getting the answer
for a question can be considered analogous to get-
ting evidence for a statement.

3 System Overview

3.1 Data and Preprocessing

The training dataset for this task contains two kinds
of data:

e Manual annotations: These are crowd-
sourced from human annotators and have been
validated by a second round of validation.

¢ Auto-generated annotations: These state-
ments are auto-generated using a random
paraphraser and table understanding service
(Zheng et al., 2020).

A separate development set was also provided.

3.1.1 Subtask A: Statement Verification

The provided dataset for this task is in XML format.
We use a custom parser to convert the data into CSV
format, such that each data sample is of the form
(table, statement, label), where the table is also a
CSYV, extracted from the corresponding XML file.
No preprocessing is applied to the statements.

In general, the table cells can span across multi-
ple rows and columns. To simplify things, we treat
a cell spanning multiple columns/rows as multiple
cells with the same value. This preserves the log-
ical hierarchy in the table while keeping the table
structure simple. See Figure 1 for an example.

Cell Text

|

Cell Text Cell Text Cell Text

Figure 1: A cell spanning three columns is considered
as three separate cells with the same value

A table may also have additional metadata ac-
companying it, like the legend, the caption, and the
footer. Our final model does not use this metadata
since we observe in Section 5.1.2 that including the
metadata has a small negative impact on the model
performance.

After the above preprocessing, we have 179, 345
autogenerated and 4506 manual data samples.
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3.1.2 Subtask B: Evidence Finding

For this subtask, we prepare the data in the
form (cell text, statement text, label), where the la-
bel can be ‘relevant’ or ‘irrelevant’. We do not
encode the table’s structural information and fo-
cus only on the semantic similarity between the
statements and the cell texts.

An important point to note here is that only a
few of the cells in the table actually contribute to
the evidence for each statement. The average ratio
of the number of relevant samples to total samples
as observed in the development set for each state-
ment is around 0.097. This causes a substantial
class imbalance since a meager 7% of the total
samples are ‘relevant’. To attend this problem, we
undersample the ‘irrelevant’ samples by removing
some irrelevant samples for each statement from
the data. We try three ratios for undersampling and
compare the percentage of relevant statements after
undersampling in Table 1.

n} % r ng
0.6n; 10.15 | 10.24
0.5(ny +1y) | 11.24 | 9.25
0.4n; 14.54 | 7.15

Table 1: n; and n, stand for the number of irrelevant
and relevant samples for a statement. n/ stands for the
no. of irrelevant samples kept for each statement after
the undersampling. %t stands for the percentage of
relevant samples after undersampling. n; stands for the
total samples after undersampling, in millions.

In the original data, the average ratio of relevant
to total samples is around 9.7%, so we would want
our data to reflect a similar ratio. Therefore, we
use the data undersampled using the first approach
for further analysis. Hence, the total number of
samples after undersampling stand at 10.24M.

3.2 Data Augmentation

The given data has no ‘unknown’ statements; thus,
we augment the data to introduce samples of this
class label. Let S denote the set of all statements
in our data. Let S, denote the set of all entailed
statements in our data. Let .S, denote the set of all
refuted statements in our data. Then S = S, U S,

For a given table ¢, let .S; denote the set of all
statements associated with that table. We first calcu-
late n. (the number of entailed statements for that
table) and n, (the number of refuted statements for
that table). We then calculate n,, (the number of

unknown statements to add) as follows:
Ny, = max(min(ne, ny), 1) (1)

After this, we randomly select n,, statements
from S\S;. This forms the set of ‘unknown’ state-
ments for the table t. We do this for all tables in
the data.

The above augmentation scheme ensures that
the resultant augmented data has an almost equal
overall distribution among the three classes. It also
ensures that evenness across tables is maintained,
as sufficient unknown statements (at least one) are
added for each table, and not just overall. After
performing the above augmentation scheme, we get
85, 296 unknown statements for the autogenerated
data and 1, 637 unknown statements for the manual
data.

3.3 Models

3.3.1 Subtask A: The TAPAS Model

TAPAS (Herzig et al., 2020) is a recently released
BERT (Devlin et al., 2019) based model that en-
codes the structural information via column, row
and rank embeddings. Eisenschlos et al. extended
TAPAS for binary entailment using the TabFact
dataset. We use the base variant (12 encoder
blocks) of this TAPAS model, which has been pre-
trained on the TabFact dataset. We use the base
variant over the large variant (24 encoder blocks)
due to limitations on computation power and due
to the superior performance of the base variant as
shown in Section 5.1.2.

For extending the TAPAS model to support the
unknown class, we replace the two-neuron linear
layer in the pre-trained model by a randomly ini-
tialized linear layer consisting of three neurons
as the output layer. We then finetune this modi-
fied model on the augmented data containing three
classes. Figure 2 shows the overview of the modi-
fied model. It consists of an embedding layer that
concatenates the positional and semantic informa-
tion of a cell value, the encoder block consisting of
transformer layers and subsequent layers that are
required for classification output. The core layers
of the modified model are in accordance with the
original TAPAS model (Herzig et al., 2020; Eisen-
schlos et al., 2020).

3.3.2 Subtask B: Siamese DistilBERT

For the evidence finding subtask, we finetune the
DistilBERT model on the undersampled data. The
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Figure 2: The modified TAPAS architecture. ‘Classi-
fier’ is just a linear layer with three neurons

model was pre-trained with mean pooling on the
SNLI dataset, the MultiNLI dataset, and the STS
benchmark. The mean pooling is applied in a
Siamese setting using the Contrastive loss as the
loss function.

Let s denote a statement, let ¢ denote the cell, let
r denote the relevancy/label (this is either 0 or 1)
and let M(x) denote the embedding computed the
model for an input x. Then, the distance d and the
Contrastive loss £(d, r) is defined as follows:

d = COSINEDISTANCE(M(s), M(c))

£(d,7) = 5 (1= )i + r{max (0,m — d))?)
2)
Here, m denotes the ‘margin’ value, which en-
sures that the dissimilar pairs contribute to the loss
only if their distance is within this margin. For mak-
ing inferences, we first use our finetuned model to
compute the sentence embeddings for the statement
and the cell text and then compute the cosine sim-
ilarity between the two. Hyperparameter tuning
and other details about the models are discussed in
Section 4.

4 Experimental Setup

4.1 Hyperparameters and Data Splits
4.1.1 Subtask A

For training, we first merge the autogenerated and
manual augmented data. We then perform an 80 —
20 split on this merged data to get our training and

validation sets. We then fine-tune on the training
data and validate on the validation set.

The ‘TAPAS Encoder’ (Figure 2) consists of a
stack of 12 encoder blocks (similar to the BERT
Base). For finetuning, we freeze the entire model,
except the last three encoder blocks, the “TAPAS
Pooler’, and the final classification layer.

This leaves 22M trainable parameters and 89M
frozen (i.e. untrainable) parameters.

Categorical Cross-Entropy is used as the loss
function. We use a batch size of 32 and finetune for
3 epochs using the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 5 x 1075,

Before making the final submission, the training
and development sets are merged together and the
model is trained for one more epoch.

4.1.2 Subtask B

We take a 500K sized randomly selected sample
from the undersampled data and perform an 80 —
20 split on this to get our training and validation
sets. We keep the margin m as 0.5 and finetune
the entire model, with no parameters frozen, for a
single epoch using a batch size of 64. For making
the inferences from the cosine similarity, we use an
empirically selected threshold of 0.3.

4.2 Libraries and Tools

Google Colab? was used to perform all the exper-
iments. The time taken per epoch for any model
did not exceed 10 hours. The GPUs automati-
cally allotted by Colab kept varying between Tesla
T4, Tesla P100-PCIE-16GB, and Tesla K80. Py-
Torch? is used as the central framework for both the
tasks. For subtask A, Huggingface’s Transformers
library* was used to load the pre-trained TAPAS
model. For subtask B, we use the SentenceTrans-
formers framework> to load the pretrained Siamese
DistilBERT model.

5 Results

5.1 Subtask A

5.1.1 Official Metrics

The original pre-trained TAPAS (Base) model,
without any finetuning, achieves a two-way F1
score of 62.56. Our final finetuned model achieves

ZFree version

3Version 1.7.0: https://pytorch.org/docs/1.
7.0/

“Version 4.1.1: https://huggingface.co/
transformers/v4.1.1/

SVersion 0.4.1: https://www.sbert .net/

1279


https://pytorch.org/docs/1.7.0/
https://pytorch.org/docs/1.7.0/
https://huggingface.co/transformers/v4.1.1/
https://huggingface.co/transformers/v4.1.1/
https://www.sbert.net/

Refuted

Entailed

True Label

Unknown

Predicted Label

Figure 3: Confusion matrix for the submitted model

a two-way F1 score of 71.72 and a three-way F1-
score of 65.59. Figure 3 shows the corresponding
confusion matrix. We ranked 8" on the official
leaderboard for subtask-A.

From the confusion matrix, we observe that the
most confusing cases for our model are true ‘un-
known’ statements, which get classified as ‘en-
tailed’. On manual analysis of such statements, we
observe that many of these have a considerable tex-
tual overlap with the table. This misclassification
seems to be a consequence of our augmentation
scheme. The statements that we add as ‘unknown’
while augmentation have almost no textual overlap
with the table data since they were sourced from
other tables. Although, in general, as observed in
the test data, unknown statements can broadly be
classified into two kinds: ‘related’ and ‘unrelated’.
The former being unknown statements that are re-
lated in a semantic or a directly textual way to the
table’s data, and the latter are not related to the
table’s data in any way. The following example
should make this clear.

Orders | Week 1 | Week 2 | Week 3
Order 1 Peat Straw Silage

Order 2 | Straw Silage | Control
Order 3 | Silage | Control | Combo

Table 2: A table containing data about a few weekly
orders

In Table 2, a ‘related’ unknown statement will
be “A total of 10L of silage, straw, peat or combo
was distributed”. The boldfaced words overlap di-
rectly with the table’s contents
While, an ‘unrelated’ unknown statement can be
“Earth revolves around the Sun”. Thus, both of

these sub-classes of the ‘unknown’ class are im-
portant. Synthesizing ‘unrelated’ unknown state-
ments is a simple task, whereas synthesizing ‘re-
lated’ statements without any additional informa-
tion seems to be a fairly non-trivial task.

We also observe that wrongly classified state-
ments are, on average, 8.8 characters longer than
correctly classified statements. Figure 4 shows this
histogram.

wrong
40 correct

Mumber

50 100 150 200 250 300
Length in characters

Figure 4: Histogram of lengths (in characters) of
100 randomly selected correctly classified and wrongly
classified statements

5.1.2 Ablation Study

Effect of Table Metadata

A table may have additional metadata like the
caption, legend, and footer associated with it. For
simplicity, we include it directly inside the table
as rows. If the table has a caption, we add it as a
single row at the top of the table. Similarly, if it has
a legend, it goes as a single row below the caption,
and the footer is added as a row at the end of the
table. Keeping other hyperparameters the same, we
get the following results:

Included Metadata | Validation Accuracy
Yes 0.92
No 0.93

Table 3: Impact of inclusion of metadata on validation
accuracy

We observe that including the metadata worsens
the accuracy. A possible reason could be our way
of including the metadata as rows. There may be
other better ways of doing this, which may further
improve the accuracy.

Effect of Model Size
We try out two variants of TAPAS: Base and Large.
The Base variant has 12 encoder blocks, and the
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Large variant has 24, similar to BERT Base and
BERT Large. On the TabFact dataset, the Base vari-
ant is only about 0.24 points behind the Large one.
The following tests are performed on the original,
unaugmented data, containing two classes®. We
merge the original manual and autogenerated state-
ments into a single dataset and perform an 80 — 20
split.

Variant | Validation Accuracy
Base 0.81
Large 0.71

Table 4: Effect of finetuning a larger model

5.2 Subtask B

Our final model achieves an F1 score of 43.02.
Figure 5 shows the corresponding confusion matrix.
As evident from the confusion matrix, there is a lot
of room for improvement, especially in handling
the ‘relevant’ statements. We ranked 7" on the
official leaderboard for subtask-B.

20000
Irrelevant

15000

True Label

10000

Relevant

Predicted Label

Figure 5: Confusion matrix for Subtask B

6 Conclusion

Thus we have presented a statement verification
and evidence finding setup for tables. For subtask-
A, we extended the TAPAS model to adapt to the
‘unknown’ statements. For subtask-B, we used a
semantic approach for evidence finding. Our re-
sults for subtask-A show the problems encountered
while generating and working with the ‘unknown’
statements. For subtask-B, our results show the
effect of taking only the semantic information into

STraining the Large variant on augmented data exceeds the
time limit of Google Colab (12 hours)

account. An important future prospect for subtask-
A would be to find a more effective way of gen-
erating the ‘unknown’ statements. For subtask-B,
utilizing the table’s available structural informa-
tion to improve the results seems to be a promising
prospect.
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