
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 1271–1275
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

1271

KaushikAcharya at SemEval-2021 Task 9: Candidate Generation for Fact
Verification over Tables

Kaushik Acharya
Philips India Ltd. / Bangalore, India
acharya.kaushik@gmail.com

Abstract

This paper describes the system submitted in
the SemEval-2021 Statement Verification and
Evidence Finding with Tables task. The sys-
tem relies on candidate generation for logical
forms on the table based on keyword match-
ing and dependency parsing on the claim state-
ments.

1 Introduction

Tables convey important information in a concise
manner. This is true in many domains, scientific
documents being one of them. Truth verification
tasks in past(e.g. SemEval-2019 Fact Checking
Task) have focused on written text without consid-
ering the tables. The current shared task (Wang
et al., 2021) focuses on tables written in English
language. It requires participants to develop sys-
tems to predict

• veracity of textual claims (statement verifi-
cation)

• identify table cells forming relevant evi-
dence for the claim (evidence finding)

The shared task 1 comprised of two sub-tasks:

1. Subtask A: Table Statement Support

2. Subtask B: Relevant Cell Selection

Subtask A is a classification problem in which
the system needs to assign one of the following
labels for the claim statement:

• Entailed: Table supports the statement.

• Refuted: Statement is contradicted by the ta-
ble.

• Unknown: Not enough information available
in the table to assess statement’s veracity.

Figure 1: Example table showing Networks across East
Asia.

id Claim statement
1 The n value is same for Hong Kong and

Malaysia.
2 There are 9 different types country in the

given table.

Table 1: Statement claims of table in Figure 1

Subtask B requires finding evidence(table cells)
which are minimally required to either support or
refute the claim statement. This is not applicable
for the statements whose veracity is unknown.

These tables were sourced from scientific articles
belonging to journals published by Elsevier and
available on ScienceDirect. For details related to
web scraping of the articles, selection criteria for
choosing the tables, creating statement claims and
assigning table cell evidence for the claim, please
refer to the task description paper (Wang et al.,
2021). An example table is shown in Fig. 1 with
corresponding claims mentioned in Table 1.

System described in this paper generates logical
form candidates on the table data frame based on
the claim statement. It executes the most probable
candidate and verifies the output to check whether
it matches with the one mentioned in the statement.
Averaged F1 score over the tables are shown in

1https://competitions.codalab.org/
competitions/27748

https://competitions.codalab.org/competitions/27748
https://competitions.codalab.org/competitions/27748

1272

Table 4. Source code has been released on github 2.

2 Related Work

Thorne et al. (2018) had conducted Fact Extraction
and VERification (FEVER) Shared Task3 to build
systems to verify claims based on evidence from
Wikipedia. Similar to the current shared task, sys-
tems had to label claim as Supported, Refuted or
NotEnoughInfo (if there isn’t sufficient evidence
to either support or refute it). Along with that,
system must extract textual evidence (sets of sen-
tences) that support or refute the claim.

Pasupat and Liang (2015) had created question
answering dataset (WikiTableQuestions) 4 from
Wikipedia tables. Using question-answer pairs as
supervision, they developed a logical-form driven
parsing algorithm.

Herzig et al. (2020) build a question answering
model over tables without generating logical forms
by extending BERT’s architecture (Devlin et al.,
2019) with additional positional embeddings to
encode tabular structure.

3 Model Description

3.1 XML Data

Input xml documents were parsed using the Ele-
mentTree XML API 5. Each document is composed
of table element(s). Table element is composed of
row elements and statements. The row elements
describe the rows and columns of the table and con-
tains the text of each table cell. Optionally, legend
and caption texts were also provided for a portion
of tables.

3.2 Loading table

Table element was parsed and loaded into pandas
dataframe 6. The challenging part was in identify-
ing column labels having hierarchical indexing 7.
An example of hierarchical columns is shown in
Fig. 1, which has four columns: Broad network,

2https://github.com/kaushikacharya/
statement_verification_evidence_finding

3https://fever.ai/2018/task.html
4https://ppasupat.github.io/

WikiTableQuestions/
5https://docs.python.org/3/library/xml.

etree.elementtree.html
6https://pandas.pydata.org/

pandas-docs/stable/reference/api/pandas.
DataFrame.html

7https://pandas.pydata.org/
pandas-docs/stable/user_guide/advanced.
html

Candidate
1 Column superlative value
2 Column values identical or unique
3 Comparison of column values for a row or

vice-versa
4 Column value range

Table 2: Partial list of Candidates

Family network and so on. All these columns have
three sub-columns: mean, SD, max. A simple
approach to identify whether multiple table rows
represent column labels was applied: Table rows
from top were considered as part of column labels
until all the columns of the table are filled. In the
example table, Broad network is mentioned in ta-
ble cell col:2 and Family network belongs to col:5
The in-between columns (i.e. 3,4) were filled in
next row. Hence the first two rows were considered
as column labels.

Figure 2: Dependency tree for statement id=2 in Ta-
ble 1

3.3 Candidate Selection
A list of candidates were defined along with pat-
tern rules to identify them and corresponding oper-
ations to execute. For instance, for the candidate
superlative(highest/lowest) of column, correspond-
ing operation on pandas dataframe gets executed.
Statements are parsed to identify the candidate and
fact verification is done in the following steps:

1. Match column and row labels (if available)
based on approximate keyword matching.

2. Candidate operation(s) are identified based on
keyword and dependency tag matching.

3. Candidate logical form is executed.

4. Output of candidate operation is matched with
the one mentioned in the statement.

Table 2 enumerates subset of candidates.
For matching columns and row labels, sliding

window over the tokens of statments are matched
using Jaro metric (Cohen et al., 2003). Number

https://github.com/kaushikacharya/statement_verification_evidence_finding
https://github.com/kaushikacharya/statement_verification_evidence_finding
https://fever.ai/2018/task.html
https://ppasupat.github.io/WikiTableQuestions/
https://ppasupat.github.io/WikiTableQuestions/
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html

1273

of tokens in column/row label is considered as the
window size. As an example, for matching the row
label Hong Kong of Figure 1 in Table 1, sliding
window of two tokens is considered. If overlapping
window match the same column/row label, the one
with maximum Jaro metric is chosen. A span of
statement tokens is considered matched if the Jaro
metric is above a threshold (value considered 0.85).

Examples: Statement id=1 in Table 1 matches
the candidate: comparison of two rows for a col-
umn value. The two rows referred by Hong Kong
and Malaysia are compared for the value corre-
sponding to the column N. Logical form: Compar-
ing whether the cell value for the matched column
corresponding the matched rows is same/different.

Statement id=2 refers to the candidate: unique
count of the values under the column Country.
Candidate is chosen based on the keyword different
and matching of a single column Country. Candi-
date value (that needs to be verified) is identified
based on the dependency tree shown in Figure 2.
The token 9 with part of speech tag NUM has the
head token of column country through dependency
tag nummod. The logical form that has been as-
signed for the candidate is unique count over the
matched column of the pandas dataframe.

4 Experimental Setup

4.1 Data

The data splits used were the same as provided
by the task organizers. Split statistics is shown in
Table 3.

split docs tables claims
train 424 981 4506
dev 21 52 556
test 36 52 653

Table 3: Data split count statistics

4.2 External libraries

• spaCy (version: 2.3.2) 8

• word2number 9

4.3 Evaluation Metrics

Task A - Fact Verification The goal of this task
is to determine whether a statement can be en-

8https://github.com/explosion/spaCy
9https://github.com/akshaynagpal/w2n

Figure 3: Distribution of number of statements per ta-
ble.

tailed/refuted by the given table, or cannot be deter-
mined from the table. The classification algorithm
is evaluated using the standard F1-score. Two dif-
ferent evaluation results were generated:

1. Two way

2. Three way

Two way is an easier evaluation in which un-
known ground truth labels were ignored. Whereas
in three way all the three labels were considered.
This tests whether the classification algorithm un-
derstands cases where there are insufficient infor-
mation to make prediction.

Task B - Evidence Finding The goal of this task
is to determine whether a table cell is needed to
entail/refute the given statement. In other words,
whether a statement can be entailed/refuted given
only the table cells marked as relevant. F1 score is
computed for each table with relevant cells as the
positive class and irrelevant cells as the negative
class.

Fig. 3 shows that unlike test data, train data has
many tables with very few statements. This indi-
cates that comparing averaged F1 score(as shown
in Table 4) between train and test data is not a good
indicator how well the model works on unseen test
data compared to its performance on train/dev data.
Instead comparing confusion matrix(as shown in
Table 5 and Table 6) is a better indicator.

5 Results

Averaged F1 score over the tables are shown in
Table 4. These are the scores at the time of writing
this paper. Train data didn’t had the ground truth
for the relevant cell selection. Hence value is non-
available for Task B on train data. Due to absence
of unknown class in train data, 2-way and 3-way
averaged F1 scores are same. Confusion matrix

https://github.com/explosion/spaCy
https://github.com/akshaynagpal/w2n

1274

is displayed in Table 5 for train data and Table 6
for test data. Predicted claim class unknown also
contains the claim statements for which the system
failed to identify candidate. Hence this class shows
a high value.

split Task A (2 way) Task A (3 way) Task B
train 0.3669 0.3669 NA

dev 0.3804 0.4314 0.3687

test 0.4037 0.4909 0.3849

Table 4: F1 score averaged over tables

truth predicted
entailed refuted unknown

entailed 863 472 1483
refuted 49 861 778

Table 5: Confusion Matrix for Task A on train data.
Row represents truth classes and column represents the
predicted classes.

truth predicted
entailed refuted unknown

entailed 83 39 152
refuted 8 127 113
unknown 3 15 113

Table 6: Confusion Matrix for Task A on test data.
Rows and columns represents truth and predicted
classes respectively.

type # statements
Total wrongly predicted statements 2782

Neither column nor row matched 786

No column matched but row(s) matched 386

Table 7: Matching columns/rows in wrongly predicted
statements in train data.

Error Analysis: The errors can be categorized
broadly into the following categories:

1. Absence of semantic matching

2. Lack of enough candidate generation rules

3. Classifying candidate in a deterministic way

Due to keyword matching the system fails to
identify the columns which are mentioned with

different words in the statement even though se-
mantically they are same. Table 7 gives a glimpse
of probable failures under this category.

The set of candidate generation rules needs to be
extended. The current system misses out candidate
generation in several statements because of the ab-
sence of these not yet defined candidates. The high
number of unknown predictions in the confusion
matrices shown in Table 5 and 6 is a proof of this
issue. There’s a need for a scoring system which
considers multiple probable candidates for logical
forms. The current system selects a single candi-
date based on the one which matches first in the
order listed for candidate match.

6 Conclusion

I have described the system used for submission to
the Statement Verification and Evidence Finding
with Tables task. The problem has been framed
as a candidate generation for logical forms over
dataframe using keyword matching and depen-
dency parsing. Future work would include ex-
tending the defined list of candidates and usage
of scoring based system to identify the most proba-
ble candidate. This improvement would take ideas
from (Pasupat and Liang, 2015) for feature extrac-
tion and build a log-linear model to compute score
for the candidates.

References

William W. Cohen, Pradeep Ravikumar, and Stephen E.
Fienberg. 2003. A comparison of string distance
metrics for name-matching tasks. In Proceedings
of the 2003 International Conference on Informa-
tion Integration on the Web, IIWEB’03, page 73–78.
AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333, Online. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398

1275

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2018.
The fact extraction and VERification (FEVER)
shared task. In Proceedings of the First Workshop on
Fact Extraction and VERification (FEVER), pages
1–9, Brussels, Belgium. Association for Computa-
tional Linguistics.

Nancy Xin Ru Wang, Diwakar Mahajan, Marina
Danilevsky, and Sara Rosenthal. 2021. SemEval-
2021 Task 9: Fact Verification and Evidence Find-
ing for Tabular Data in Scientific Documents (SEM-
TAB-FACTS). In Proceedings of the 15th interna-
tional workshop on semantic evaluation (SemEval-
2021).

https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/W18-5501
https://doi.org/10.18653/v1/W18-5501

