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Abstract

Tables are widely used in various kinds of doc-
uments to present information concisely. Un-
derstanding tables is a challenging problem
that requires an understanding of language and
table structure, along with numerical and logi-
cal reasoning. In this paper, we present our sys-
tems to solve Task 9 of SemEval-2021: State-
ment Verification and Evidence Finding with
Tables (SEM-TAB-FACTS). The task con-
sists of two subtasks: (A) Given a table and
a statement, predicting whether the table sup-
ports the statement and (B) Predicting which
cells in the table provide evidence for/against
the statement. We fine-tune TAPAS (a model
which extends BERT’s architecture to capture
tabular structure) for both the subtasks as it has
shown state-of-the-art performance in various
table understanding tasks. In subtask A, we
evaluate how transfer learning and standard-
izing tables to have a single header row im-
proves TAPAS’ performance. In subtask B,
we evaluate how different fine-tuning strate-
gies can improve TAPAS’ performance. Our
systems achieve an F1 score of 67.34 in sub-
task A three-way classification, 72.89 in sub-
task A two-way classification, and 62.95 in
subtask B.

1 Introduction

There has been extensive work on verifying if a
given textual context supports a given statement.
Even though tables are also widely used to con-
vey information, especially in scientific texts, there
has been comparatively less work on verifying if a
given table supports a statement. To this end, Se-
mEval 2021 Task 9 (Wang et al., 2021) focuses on
statement verification and evidence finding for ta-
bles from scientific articles in the English language.
The task is divided into two subtasks - A and B.
The aim of subtask A is to classify whether a given

∗The authors have contributed equally.

statement is entailed or refuted according to the
given table and associated table metadata (such as
captions and legends) or whether the statement’s
truth is unknown as it cannot be determined from
the table. The aim of subtask B is to classify each
cell in the table as relevant or irrelevant in deter-
mining whether the statement is entailed or refuted
from the tabular evidence (the truth value of the
statement is also provided).

Our systems use TAPAS (Herzig et al., 2020)
trained with intermediate pre-training (Eisenschlos
et al., 2020) for both the subtasks. For subtask A,
we fine-tune TAPAS after adding a three-way clas-
sification head on top for classifying the statement
as entailed/refuted/unknown. We also evaluate how
transfer learning and standardizing tables to have
a single header row can improve TAPAS’ perfor-
mance. Due to the similarity between subtask B
and table question-answering (which involves cell
selection or cell selection followed by aggregation),
we use the TAPAS architecture previously used for
table question-answering and fine-tune it to select
the relevant cells. We also evaluate how different
fine-tuning strategies can improve TAPAS’ perfor-
mance on evidence finding.

Our systems achieve an F1-micro score of 67.34
in subtask A and 72.89 in subtask A if the unknown
statements are not considered while calculating the
metrics (however, classifying entailed/refuted state-
ments as unknown is still penalized). Our submit-
ted system achieves an F1 score of 62.95 in subtask
B. During the post-evaluation phase, we modified
our system and achieved an F1-score of 65.48 in
subtask B.

The code for our systems is available at https:
//github.com/devanshg27/sem-tab-fact.

https://github.com/devanshg27/sem-tab-fact
https://github.com/devanshg27/sem-tab-fact
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Frequency Percent Frequency Percent
AQA 241539 61.6 84742 55.7
WJEC 83219 21.2 39650 26.1
Pearson 37194 9.5 18815 12.4
OCR 30061 7.7 8818 5.8
Total 392015 152025

EnglishEnglish Language
(4)(3)(2)(1) Caption: Number of GCSE Full Course entries by Awarding

Body (KS4 Results tables, 2014)

Legend: Note. Number of GCSE Full Course entries in the
summer season of the academic year 2012-2013. AQA (The
Assessment and Qualifications Alliance); WJEC (Welsh Joint
Education Committee); OCR (Oxford, Cambridge and RSA
Examinations); CCEA (Council for the Curriculum, Examina-
tions and Assessment). We do not show the information of an
additional awarding body that accounts for almost no entries.

Entailed: 1. The highest Frequency, not counting the Total, is 84742.

2. The highest English Percent is for AQA

Refuted: 1. The highest Percent value for OCR is 5.8

2. The lowest total is 392015

Unknown: 1. First, this is due to technical problems in providing Unique

Candidate Numbers (UPN) for all candidates.

2. This is for four main reasons.

Figure 1: An example from the SEM-TAB-FACTS dataset: Table A1 From 10262.xml along with its caption
and legend. Some example statements of each class associated with this table are also shown. The highlighted
cells are the relevant cells for entailed statement 2.

2 Background

Verifying if the given textual evidence supports
a given statement is a fundamental natural lan-
guage processing problem. It has been extensively
studied under different tasks such as RTE (Recog-
nizing Textual Entailment) (Dagan et al., 2006),
NLI (Natural Language Inference) (Bowman et al.,
2015), FEVER (Fact Extraction and VERifica-
tion) (Thorne et al., 2018). In recent years, large-
scale pre-trained models (Devlin et al., 2019; Peters
et al., 2018; Yang et al., 2019; Liu et al., 2019) have
dominated these tasks and have achieved close-to-
human performance. NLVR (Suhr et al., 2017)
and NLVR2 (Suhr et al., 2019) focus on verify-
ing a statement given an image as evidence. TAB-
FACT (Chen et al., 2020) focuses on verifying a
statement given a table from Wikipedia1 as evi-
dence.

Along with releasing TABFACT, Chen et al.
(2020) also discuss two promising approaches for
tabular fact verification, Latent Program Algo-
rithm(LPA) and Table-BERT. LPA is a semantic
parsing approach that parses statements into pro-
grams (logical forms) and executes the programs
against the table to predict the entailment decision.
Most of the current models (Zhong et al., 2020;
Shi et al., 2020; Yang et al., 2020) for TABFACT

are semantic parsing approaches similar to LPA.
Table-BERT encodes the linearized tables and state-
ments using BERT-based models and directly pre-

1https://www.wikipedia.org/

dicts the entailment decision. Zhang et al. (2020)
inject table structural information into the mask
of the self-attention layer of BERT-based mod-
els, which helps the model learn better table repre-
sentations. TAPAS (Herzig et al., 2020) extends
BERT’s architecture to capture the tabular struc-
ture, and it showed competitive performance on var-
ious table question answering datasets: SQA (Iyyer
et al., 2017), WTQ (Pasupat and Liang, 2015) and
WikiSQL (Zhong et al., 2017). Eisenschlos et al.
(2020) add an intermediate pre-training step before
the fine-tuning step to TAPAS and show that it
achieves state-of-the-art results on TABFACT and
SQA (Iyyer et al., 2017). Their model is still 8
points behind human performance on TABFACT

since tabular fact verification involves table under-
standing and complex reasoning.

While TABFACT also focuses on fact verifica-
tion using tables as evidence, it focuses on tables
from Wikipedia, whereas SemEval-2021 Task 9
(SEM-TAB-FACTS) instead focuses on tables
from scientific articles and has a subtask related to
evidence finding. Also, TABFACT did not have a
neutral/unknown class, which they left out because
of low inter-worker agreement due to confusion
with refuted class. Figure 1 shows an example of a
table from the SEM-TAB-FACTS dataset and the
labels for the two subtasks.

https://www.wikipedia.org/
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Train (Auto) Set Train (Manual) Set Dev Set

Total number of tables with <thead> tag 1977 980 52
Number of tables with correct header prediction 1855(93.83%) 918(93.67%) 51(98.08%)
Number of tables with header prediction error is ≤ 1 1966(99.44%) 972(99.18%) 52(100%)

Table 1: Header Prediction Statistics

(1) (2) (3) (4)
English Language English Language English English
Frequency Percent Frequency Percent

AQA 241539 61.6 84742 55.7
WJEC 83219 21.2 39650 26.1
Pearson 37194 9.5 18815 12.4
OCR 30061 7.7 8818 5.8
Total 392015 152025

(a) Converting multi-row/multi-column cells to single cells

(1)
English Language
Frequency

(2)
English Language
Percent

(3)
English
Frequency

(4)
English
Percent

AQA 241539 61.6 84742 55.7
WJEC 83219 21.2 39650 26.1
Pearson 37194 9.5 18815 12.4
OCR 30061 7.7 8818 5.8
Total 392015 152025

(b) Standardizing the header rows of the table with single cells

Figure 2: Pre-processing and header standardization ap-
plied to the table shown in Figure 1.

3 System Overview

In this section, we provide a general overview of
our systems for the two subtasks. We use TAPAS
for both subtasks.

3.1 Subtask A: Statement Verification

Pre-processing Since TAPAS only works on ta-
bles with single cells (cells which do not span mul-
tiple columns/rows) only, we first convert the tables
with multi-row/multi-column cells to tables with
only single cells by duplicating the value of the cell
in every single cell the multi-row/multi-column cell
spans. An example of the pre-processing is shown
in Figure 2a.

Header Standardization We experiment with
standardizing the pre-processed tables with multi-
row headers to tables with a single header row since
TAPAS was pre-trained on single header tables
and TABFACT (which we want to use for transfer
learning) also contains single header tables. We
first predict the number of header rows using the
following rules:

1. In many pre-processed tables, we found that
the left-most column contained row names,

and either (a) all the header cells in the left-
most column were empty, or (b) the cell value
at the top-left corner was repeated in all the
header cells below it, or (c) the cell at the top-
left corner was not empty, but the header cells
below it were empty. Based on these cases, we
initially estimate the number of header rows
as the number of rows at the top, such that all
cells in the left-most column in those rows are
either empty or have the same value as the cell
at the top-left corner.

2. We also found that in many cases, there were
multi-column cells in the header, which had
more specific sub-headers in the rows below.
To handle these cases, we increment the es-
timate of header rows until no two adjacent
columns have the same header cell values.

We merge the predicted header rows into a single
row by joining each column’s header cell values
into a single cell with a newline as a separator.
An example of header standardization is shown in
Figure 2b. We were provided with HTML versions
of the tables in the training and development set.
We compare our predictions against the <thead>
tags in the HTML tables to analyze our header
prediction system’s performance. The results are
shown in Table 1. We also find that in almost all of
the cases, the predictions are either correct or have
an error of ±1.

To study the effect of header standardization, we
will train all our systems with and without header
standardization.

Model Our model takes the following
input: [CLS] <statement> [SEP]
<flattened table>, which is tokenized
using the standard BERT tokenizer. We compute
the class probabilities using a linear layer with a
softmax activation function on top of the output
of the [CLS] token, as shown in Figure 3a. We
use the weighted cross-entropy loss, which helps
in handling imbalance in the class sizes:
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TAPAS

[CLS] Tok 1 Tok N [SEP] Tok 1 Tok M... ...

... ...E[CLS] E1 E’ME[SEP] E’1

... ...T[CLS] T1 T’MT[SEP] T’1

EN

TN

Class 
Prediction

Statement Flattened Table

(a) Subtask A

TAPAS

[CLS] Tok 1 Tok N [SEP] Tok 1 Tok M... ...

... ...E[CLS] E1 E’ME[SEP] E’1

... ...T[CLS] T1 T’MT[SEP] T’1

EN

TN

Cell Selection

Statement Flattened Table

(b) Subtask B

Figure 3: The architecture of our models

Hy(y
′) = −

∑
i

K∑
k=1

wkyik · log(y′ik)

Where yik denotes the ground truth label, it is
1 if k is the true class label of the ith token, and 0
otherwise, y′ik is the corresponding model proba-
bility prediction and wk is the weight for class k.
We set wk as the size of the biggest class divided
by the size of class k.

To analyze how transfer learning can im-
prove performance, we compare the following ap-
proaches:

• TAPAS-stf: We use the publicly available
TAPAS checkpoint which has been pre-
trained with a masked language modeling ob-
jective and fine-tune it on the SEM-TAB-
FACTS dataset provided by the task organiz-
ers.

• TAPAS-tf: As a baseline, we directly use the
publicly available TAPAS checkpoint, which
had been fine-tuned on TABFACT without any
further fine-tuning on SEM-TAB-FACTS.
Since TABFACT has only entailed/refuted la-
bels, this model is a binary classifier and does
not predict the unknown class’s probabilities.

• TAPAS-tf-stf: We use the publicly avail-
able TAPAS checkpoint, which had been fine-
tuned on TABFACT and further fine-tune it
on the SEM-TAB-FACTS dataset released
by the task organizers. This is our submitted
model for subtask A.

3.2 Subtask B: Evidence Finding
Pre-processing and Header Standardization
We convert the multi-row/multi-column cells and
standardize the header rows as discussed in Sec-
tion 3.1. The relevant/irrelevant labels of the
multi-row/multi-column cells are duplicated to all
the single cells they span. We consider the rele-
vant/irrelevant labels only for the cells of the non-
header rows as TAPAS does not make predictions
for header cells. Based on the performance of
header standardization in subtask A (which we will
discuss in Section 5), we standardize headers for
all our models in this subtask.

Model Our model takes the following
input: [CLS] <statement> [SEP]
<flattened table>, which is tokenized
using the standard BERT tokenizer. We show the
architecture of our model in Figure 3b. Our model
computes token-level logits using a linear layer on
top of each token’s last hidden state output, which
are used to compute cell-level logits by averaging
the logits of the tokens in each cell. The probability
of selection for each cell is calculated from the
cell-level logits using the sigmoid function. We
use the weighted binary cross-entropy loss which
helps in handling class imbalance:

Hy(y
′) = −

∑
i

wpyi · log y′i + (1− yi) · log
(
1− y′i

)
Where yi denotes the ground-truth label, it is 1

if the ith token is part of any relevant cell, and 0
otherwise, y′i is the corresponding model probabil-
ity prediction, and wp denotes the weight of the
positive (relevant) class. We set wp to 10.
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#Tables #Entailed statements #Refuted statements #Unknown statements

Train (Auto-generated) 1980 92136 87209 0
Train (Manually annotated) 981 2818 1688 0
Train (with unknown statements) 981 2818 1688 4506
Validation 52 250 213 93
Test 52 274 248 131

(a) Subtask A

#Tables #Entailed statements #Refuted statements #Relevant cells #Irrelevant cells

Train (auto-generated) 1980 92136 87209 1039058 15467957
Validation 51 233 191 3048 28495
Test 52 251 219 3458 26724

(b) Subtask B

Table 2: Dataset Statistics for each subtask

Due to the similarity of evidence finding with
table question-answering, we use the publicly avail-
able TAPAS checkpoint, which was fine-tuned in
a chain on SQA, WikiSQL, and finally WTQ. We
compare the following fine-tuning strategies:

• WTQ-base: As a baseline, we fine-tune our
model directly for relevant cell selection on
SEM-TAB-FACTS.

• WTQ-statement: We again fine-tune the
model for relevant cell selection on SEM-
TAB-FACTS, but we try to include the in-
formation on whether the statement was en-
tailed/refuted by modelling the statement as
‘Which cells entail “<statement>”?’ or
‘Which cells refute “<statement>”?’. <state-
ment> denotes the original statement.

• WTQ-separate: We fine-tune two separate
models, one which predicts the relevant cells
for entailed statements and another one for re-
futed statements. This is our submitted system
for subtask B.

During the post-evaluation phase, we experi-
mented with the publicly available TAPAS check-
point, which was fine-tuned on TABFACT. Similar
to the systems described above, we compare three
systems based on this checkpoint: TABFACT-base,
TABFACT-statement, and TABFACT-separate.

Post-Processing We further apply post-
processing steps to obtain the final prediction from
the cell classification. To predict the header’s
relevant cells, we select the header cells for any
column with cells selected as a relevant cell. We
label multi-row/multi-column cells as relevant if

any of the single cells they span are predicted as
relevant.

4 Experimental Setup

4.1 Data Description

We used the dataset provided by the task organizers
for both subtasks. We did not use the table metadata
in our systems.

For subtask A, dataset statistics and the official
splits are shown in Table 2a. The provided training
sets do not have any statements of the unknown
class. So, we used the manually annotated training
set to create a training set with unknown statements.
Each statement of the manually annotated training
set was added as an unknown statement to a differ-
ent table chosen randomly. We used this dataset for
training all our models for subtask A.

For subtask B, dataset statistics and the official
splits are shown in Table 2b. We use the auto-
generated training set for training all our models in
subtask B.

4.2 Implementation

For the implementation of our systems, we used
the HuggingFace Transformers2 library(Wolf et al.,
2020) and we used the AdamW optimizer avail-
able in PyTorch3 (Paszke et al., 2019) with the
default parameters (learning rates are specified be-
low). All models were fine-tuned using a single
Nvidia GeForce RTX 2080 Ti GPU.

We used the base variant of TAPAS, which has a
hidden dimension of 768 in all our models. All the

2 Transformers, v4.2.0, https://huggingface.
co/transformers/

3PyTorch, v1.7.1, https://pytorch.org/

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://pytorch.org/
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F1 Score
Validation Set Test Set

TAPAS-stf TAPAS-tf TAPAS-tf-stf TAPAS-stf TAPAS-tf TAPAS-tf-stf

Without header standardization

2-way micro 72.1 ±0.43 69.42 71.01 ±0.99 68.01 ±0.28 70.97 72.97 ±1.37
3-way micro 66.41 ±0.48 58.97 65.76 ±0.37 61.59 ±0.02 57 65.15 ±0.81
Refuted 67.95 ±0.98 64.31 70.32 ±0.91 62.04 ±0.45 64.05 69.13 ±0.74
Entailed 67.8 ±0.36 58.94 68.09 ±1.24 64.89 ±0.49 61.9 67.23 ±1.18
Unknown 49.76 ±0.73 0 47.52 ±3.52 47.58 ±0.8 0 46.43 ±1.88

With header standardization

2-way micro 71.34 ±0.96 72.78 74.35 ±1.14 68.67 ±0.9 73.79 73.87 ±0.87
3-way micro 66.16 ±0.64 61.11 69.16 ±0.58 61.99 ±0.8 59.32 66.95 ±0.27
Refuted 68.22 ±0.29 65.98 73.2 ±0.83 61.42 ±1.9 65.7 70.39 ±0.44
Entailed 67.98 ±0.43 63.67 70 ±1.69 65.67 ±0.21 65.38 68.9 ±0.48
Unknown 49.9 ±3.07 0 50.91 ±3.99 48.27 ±1.55 0 50.89 ±3.93

Table 3: Performance on subtask A: Mean and standard deviation of the metrics from 3 independent runs. In
the case of TAPAS-tf, we calculate the metrics using the publicly available TAPAS checkpoint fine-tuned on
TABFACT.

Model
Validation Set Test Set

F1 F1entailed F1refuted F1 F1entailed F1refuted

WTQ-base 55.39 ±0.53 64.07 ±0.65 48.66 ±0.47 61.36 ±1.47 68.47 ±2.49 52.75 ±1.15
WTQ-statement 55.18 ±1.78 63.36 ±3.16 48.45 ±0.8 58.93 ±2.49 65.22 ±4.38 51.27 ±0.54
WTQ-separate 56.46 ±0.43 66.91 ±0.3 48.74 ±1.01 62.26 ±0.79 71.87 ±1.2 50.79 ±1.86

During Post-Evaluation Phase

TABFACT-base 58.41 ±0.84 64.88 ±1.37 54.02 ±0.91 61.46 ±0.33 67.32 ±1.01 54.47 ±0.55
TABFACT-statement 58.92 ±1.69 65.41 ±1.95 54.18 ±1.69 62.78 ±1.71 68.44 ±2.34 55.8 ±1.36
TABFACT-separate 59.47 ±0.23 68.06 ±0.79 53.16 ±1.18 65.01 ±0.6 74.18 ±0.6 54.48 ±0.58

Table 4: Performance on subtask B: Mean and standard deviation of the metrics from 3 independent runs

TAPAS checkpoints we used had been trained with
intermediate pre-training and used relative position
embeddings (the position index reset when a new
cell starts).

For subtask A, we first fine-tuned the classifier
head with the TAPAS layers frozen for 3 epochs
with a learning rate of 1−5 and then fine-tuned the
whole model for 10 epochs with a learning rate of
1−6. We used a batch size of 8. We saved a check-
point every 100 steps and selected the best check-
point based on the validation set performance.

For subtask B, we fine-tuned the whole model
for 5000 steps with a learning rate of 1−6. We used
a batch size of 8. We saved a checkpoint every 50
steps and selected the best checkpoint based on the
validation set performance.

4.3 Evaluation Metrics

In subtask A, two evaluation metrics are used. The
first evaluation metric used is the standard F1-micro
score for three-way classification. The second met-
ric again calculates the F1-micro score but does not
consider statements with their ground truth label as
the unknown class for evaluation; however, classi-
fying the entailed/refuted statements as unknown
is penalized.

In subtask B, the evaluation metric used is the
standard F1 score with relevant cells as the positive
class. If multiple minimal sets of cells can be used
to determine the statement’s truth value, the dataset
contains all of these versions. The score for that
statement is calculated by comparing the prediction
against each ground truth version and considering
the highest score.



1268

Validation Set Test Set

Length(≤ 512) Length(> 512) Length(≤ 512) Length(> 512)

Distribution - Number of samples

Subtask A 431(77.52%) 125(22.48%) 616(94.33%) 37(5.67%)
Subtask B 345(81.37%) 79(18.63%) 442(94.04%) 28(5.96%)

Performance of each task’s best model

Subtask A 2-way F1-micro 77.83 ±0.57 65.49 ±3.13 73.83 ±0.83 74.44 ±1.57
Subtask A 3-way F1-micro 73.13 ±1.13 55.53 ±1.4 66.71 ±0.35 54.74 ±1.12
Subtask B F1 62.79 ±0.39 45.91 ±0.68 65.38 ±0.63 58.98 ±1.22

Table 5: Results on long sequences

5 Results

Subtask A The performance of the various sys-
tems we considered in subtask A is shown in Ta-
ble 3. Header standardization improves the perfor-
mance of all the systems we compared. Transfer
learning from TABFACT also improves the perfor-
mance of our systems. Surprisingly, TAPAS-tf
without any fine-tuning on SEM-TAB-FACTS
has a better two-way F1-micro score than TAPAS-
stf. This shows us the potential of transfer learning
from TABFACT in subtask A.

From the confusion matrix shown in Figure 4a,
we observe that our model struggles with the un-
known class and often misclassifies it as refuted.

Subtask B The performance of the various sys-
tems we considered in subtask A is shown in Ta-
ble 4. Modifying the statement to include en-
tailed/refuted class information leads to a small
drop in performance for the models fine-tuned on
question-answering earlier and led to a small in-
crease in performance in models fine-tuned on TAB-
FACT. Separate models for entailed/refuted state-
ments perform the best among the systems we con-
sidered. It significantly improves the performance
on entailed statements, with a little drop in per-
formance on refuted statements. Surprisingly, we
observe that transfer learning from TABFACT per-
forms better than transfer learning from WTQ, even
though it is a cell selection task. We believe this
is because the model has to predict the cells that
can be used as evidence for table entailment. The
token-level embeddings of the model fine-tuned on
TABFACT are better for this task than the model
fine-tuned on WTQ, which is instead a question-
answering dataset.
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Figure 4: Confusion matrices of the test set predictions
by our best model for each subtask. The percentages
show the ratio of the target class, which was predicted
as that class.

Long Inputs The maximum number of tokens
supported by our system is 512. In sequences
longer than 512 tokens, the tables are truncated
row by row to fit in 512 tokens. We compare our
system’s performance on these long sequences and
sequences that fit within 512 tokens. The results
are shown in Table 5. We find a significant drop in
performance on sequences longer than 512 tokens
which had to be truncated.

6 Conclusion

In this paper, we presented our approach for fact
verification and evidence finding for tabular data
in scientific documents. We show that transfer
learning from TABFACT and standardization of
the tables to have a single header helps improve
our system’s performance. We also show that
having separate evidence finding models for en-
tailed/refuted statements helps improve our sys-
tem’s performance in the second subtask.

We also find that our model has a significant
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drop in performance on large tables since they are
truncated to fit in the 512 tokens, the maximum
number of tokens supported by TAPAS.

In future work, we would like to experiment
with table pruning methods like Heuristic entity
linking (Chen et al., 2020) or Heuristic exact match
(Eisenschlos et al., 2020) so that the statement and
table can fit in 512 tokens. Our systems did not use
the table metadata while making the predictions. In
the future, we would also like to explore extending
the model to encode table metadata along with the
table.
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