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Abstract

This work describes our approach for subtasks
of SemEval-2021 Task 8: MeasEval: Counts
and Measurements which took the official first
place in the competition. To solve all sub-
tasks we use multi-task learning in a question-
answering-like manner. We also use learnable
scalar weights to weight subtasks’ contribution
to the final loss in multi-task training. We fine-
tune LUKE to extract quantity spans and we
fine-tune RoBERTa to extract everything re-
lated to found quantities, including quantities
themselves.

1 Introduction

SemEval-2021 Task 8 consisted of five subtasks
that covered span extraction, classification, and
relation extraction tasks. This paper presents so-
lutions to all five of them which showed the best
results in the competition1.

In the subtask 1(A) participants were asked to re-
trieve Quantity (Q) spans from texts. For example,
in the following text ”The soda can’s volume was
355 ml.”, the system should retrieve ”355 ml” as
Q span. The rest of the subtasks were to extract in-
formation related to retrieved Quantities (Qs) from
subtask A.

The subtask 2(B) was to extract the Unit of mea-
surement (UoM) of the extracted Q and also to
classify it into 10 classes: HasTolerance, IsAp-
proximate, IsCount, IsList, IsMean, IsMeanHas-
Tolerance, IsMeanIsRange, IsMedian, IsRange, Is-
RangeHasTolerance. It should be noted that some

1https://github.com/davletov-aa/meas-eval

Qs could be related to more than one type and there
were ones which didn’t belong to any type. The
subtask 3(C) was to extract Measured Entity (ME)
and Measured Property (MP) spans. In the sub-
task 4(D) additional Qualifier (Qlfr) spans, which
helped to validate or understand the extracted Q,
were asked to be extracted. And finally, sub-
task 5(E) was to extract relations between Qs, MEs,
MPs and Qlfrs.

More detailed information about the competition
could be found in the Harper et al. (2021)’s shared
task description paper.

2 Related Work

Span extraction and classification problems have
a long history of studies and are often studied as a
part of Named Entity Recognition (NER). For ex-
ample, the NER dataset Ontonotes v5 (Weischedel
et al., 2013) contains such entities as ”Quantity”,
which also includes measurements, and ”Money”.
However, the general NER approach used in
Ontonotes or ConLL 2003 (Sang and De Meul-
der, 2003) datasets is not so fine-grained as the one
that is used in the task under study.

Most state-of-the-art models for named en-
tity recognition and relation extraction are based
on Transformer architecture by Vaswani et al.
(2017). For example, the top three best models
for Ontonotes v5 according to paperswithcode.com
use BERT 2. BERT is a large pre-trained language
model based on Attention (Devlin et al., 2019).

2https://paperswithcode.com/task/named-entity-
recognition-ner
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Figure 1: Data example. It shows that one named entity may have several incoming and outcoming relations.

BERT has a unique training procedure where the
model is trained using Masked language objec-
tive, where some tokens are replaced with a special
’[MASK]’ token and the model should predict the
original token. BERT also had an additional train-
ing objective - the model had to predict whether a
sentence was random or it followed the first sen-
tence. However, some papers have investigated that
BERT is undertrained and that training BERT on
more data and for a longer time might increase
model performance. RoBERTa was one of the
first and more influential papers of such kind (Liu
et al., 2019). RoBERTa modifies BERT’s pretrain-
ing procedure. The RoBERTa model is trained
longer, with bigger batches over more data and
on longer sequences. RoBERTa’s authors have
also found that removing the next sentence pre-
diction objective from BERT matches or slightly
improves BERT performance. Researchers have
also suggested ways of leveraging the nature of the
task and adding some problem bias to named entity
recognition. Among such works, which is currently
the best performing for Ontonotes v5 and CoNLL
2003 according to paperswithcode.com, is LUKE
(Yamada et al., 2020). The authors of LUKE have
added a new language modeling task that consists
of predicting randomly masked words and enti-
ties in an entity-annotated corpus retrieved from
Wikipedia. The authors have also expanded the self-
attention mechanism to entity types and consider
entity types when computing attention scores. The
proposed approach allowed the authors to achieve
state-of-the-art results not only for named entity
recognition but for a bunch of other unrelated tasks
such as SQuAD1.1 question answering.

For relation extraction, Transformer-based mod-
els also outperform other approaches. A promising
approach is treating relation extraction as a ques-
tion answering problem. Among works implement-
ing this approach, we can mention (Cohen et al.,
2020) where the authors restructured relation clas-
sification as a Question answering (QA) like span

prediction problem. It allowed them to get state-
of-the-art results for TACRED and SemEval 2010
task 8 datasets.

3 System Description

3.1 Data

The data provided by the organizers contained plain
text files and their annotations in tsv format. There
were in total 248 training texts, 65 trial ones, and
135 for the evaluation phase. There were 2764,
897, and 1620 annotated entities respectively. The
files have been approximately equally distributed
among several domains: Agriculture, Astronomy,
Biology, Chemistry, Computer Science, Earth Sci-
ence, Engineering, Materials Science, Mathemat-
ics, Medicine. Entities could have been labeled
into 5 classes: Q, ME, MP, UoM or Qlfr.

As input data in the competition was in the form
of plain text extracts, we first split them into sen-
tences using PunktSentenceTokenizer and Punkt-
Trainer from NLTK library (Bird et al., 2009). We
trained PunktTrainer on texts from the training set.
We did data augmentation by including text ex-
tracts consisting of two sentences following each
other for each text document. So if we had origi-
nal sentences [s1, s2, s3, s4] we get an augmented
set of texts [s1, s2, s3, s4, s1s2, s2s3, s3s4]. Then
we split each example into tokens using Regexp-
Tokenizer from the NLTK library with the follow-
ing \w+|\(|\)|\[|\]|[-{.,]|\S+ regu-
lar expression. We used the train set for training
and the trial set for development.

Also, we relabeled Qualifier to QuantityQuali-
fier (QQ), MeasuredEntityQualifier (MEQ), and
MeasuredPropertyQualifier (MPQ). By this little
trick we solved the problem with examples having
multiple Qlfrs corresponding to either Q, ME, or
MP.
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Figure 2: Architecture of the QuAnt system. It takes tokenized text with marked MeasuredEntity as input and
predicts all needed spans and the class of the Quantity.

Hyperparam Value
dropout 0.1
weight decay 0.1
warmup proportion 0.1
lr 1e-4
lr scheduler linear warmup
optimizer Adam
epochs 50
bs 128
max seq len 128
model xlm-roberta-large
max grad norm 1.0
validate per epoch 4

Table 1: Training hyperparameters of QuAnt system,
submitted to competition

3.2 QuAnt System

The architecture of the QuAnt3 is shown in Figure 2.
As could be seen, our model uses the RoBERTa
model to extract features for each example. It
solves all subtasks of the competition in a multi-
task question answering way. We ask our model
to predict all BPE subword-level start and end po-
sitions of spans (answers) related to Q (question).
We ask the model by inserting special tokens ”•”
and ”/” around Q. Also, the model makes multi-
class multi-label predictions regarding the type of
the Quantity (QT).

It takes text extracts containing some Qs and
positions of the Q regarding which it should make
predictions.

For example, for the input text ”The soda can’s

3QuAnt - the system deals with quantities in a question-
answering-like manner

volume was 355 ml.” and for subword-level posi-
tions (6, 7) of the Q ”355 ml”, the model should
predict the following start and end positions: (6, 7)
for Q (A), (7, 7) for UoM (B), (3, 3) for ME (C),
(4, 4) for MP (C), (2, 2) for MEQ (D). Also, the
model shouldn’t predict any label for QT (B).

3.2.1 Extract Quantities

So, our approach needs quantity span information
as input. And to get that information we went with
fine-tuning the LUKE model (Yamada et al., 2020)
on the NER task to predict Q spans. We used the
code provided by the authors of the model. We
trained it on the augmented dataset in BIO format
with the following hyperparameters: maximum-
entity-length, maximum-sequence-length, learning
rate, and batch size were set to 64, 256, 1e-5, and
4 respectively. We trained two models with the
weight decay hyperparameter equal to 0.1 and 0.01
for 10 epochs. We were validating our models four
times per epoch on the development set and saving
the top 3 best checkpoints during training, resulting
in a total of 6 models.

So after two training runs, we got 6 trained mod-
els. Using the development set we chose the best
combination of them for a simple word-level voting
ensemble.

3.2.2 Extract Everything

During training and validation, we use Q spans
from the annotated set. During test prediction, we
use spans predicted by the ensemble of quantity
extractors from the previous section. Because of
our test time augmentation process, we had been
able to get up to three entries per each Q: for the
sentence containing it and for it with either its left
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or right context sentences.
We split tokenized examples into byte-pair-

encoding (BPE) subwords with RoBERTaTok-
enizer which resulted in the following RoBERTa
inputs marked by symbols ”•” and ”/” Qs:
[CLS] {Optional question prefix [EOS]} s1 ... •
w / ... sn [EOS].

To vectorize QT, we use the output from the
last layer corresponding to [CLS] token. And to
predict start and end probabilities for each subword
of each span type we use outputs from the last layer.
We feed them to linear layers to predict QTs and
span starts and span ends.

During training we optimize the following
weighted loss:

Ltotal = −
wQT

bs

bs∑
i=1

QT i
k ∗ log(Q̂T

i
k)−

∑
ST∈STs

(−wST

2bs
(
bs∑
i=1

ST i
start ∗ log(ŜT

i
start)+

+
bs∑
i=1

ST i
end ∗ log(ŜT

i
end)))

, where bs – batch size, [wQT ;wST |ST ∈
STs] = softmax([wqt;wst|st ∈ STs]) – learn-
able weights vector initialized with ones, QT i –
one-hot encoded QT of i-th example (which could
be zero vector in some cases and will not contribute
during training), Q̂T

i
– predicted QT probability

distribution, STs – set of following span types: [Q,
ME, MP, Qlfr, UoM, QQ, MEQ, MPQ], ST i

start

– one-hot encoded start position of the correspond-
ing span. ŜT

i
start – predicted start positions proba-

bility distribution. The same goes for ST i
end.

We trained our model without adding an optional
question prefix to RoBERTa inputs. We used hy-
perparameters from Table 1.

As our test predictions include duplicated pre-
dictions for the same Q due to the test time aug-
mentation, we remove identical predictions. Worth
noting, that there still might be duplicates left in
the case of different extracted values for the same
Quantity. Because of this, our submitted results
are higher than the results without test time data
augmentation.

So, our model takes Q with its context as input
and predicts its type and extracts various spans. For
all of the subtasks except the subtask E we treated
extracted answers as is. For the subtask E we used

the following rules to extract relations between Q,
MP, ME and Qlfr (QQ, MEQ, MPQ):

• (MP, HasQuantity, Q);

• if there is MP then (ME, HasProperty, MP),
otherwise (ME, HasQuantity, Q);

• (QQ, Qualifies, Q), (MEQ, Qualifies, ME),
(MPQ, Qualifies, MP);

4 Experiments and Results

In this section, we report the results of our post-
evaluation experiments.

First, we experimented with base models. We
tried different subtask weighting strategies. As we
solve the task in a multi-task way, we need to ag-
gregate the losses of each subtask to optimize the
final loss. And here, we tried to just average them
(equal) or take the weighted sum using learnable
weights (softmax, rsqr+log) vector W with the
length equal to the number of training subtasks. In
the case of softmax weighting strategy we just use
softmax over the vector W. In the case of rsqr+log,
we divide each subtask’s loss to its squared learn-
able weight and sum with the logarithm of it. This
approach of weighting subtasks in multi-task learn-
ing was introduced by Kendall et al. (2018).

We also experimented with data augmentation.
But unlike experiments we did in the evaluation
period, here we didn’t do test time data augmenta-
tion.

Also, we tried to concatenate the question prefix
to an input example. We experimented with prefix
Find measured entities and properties of marked
quantity. We hoped it could give extra information
to the model regarding the nature of the answer.

Table 2 shows the best results for the develop-
ment dataset and Table 3 shows corresponding re-
sults for the test dataset. Also, there are our official
submission results.

Table 2 shows that training time data augmen-
tation improves the overall score. Also, we could
see that including prefix question did not improve
the overall scores of the models which use data
augmentation. Yet we see the opposite picture
for the test set in Table 3. It can also be seen
that RoBERTa-large not necessarily outperforms
RoBERTa base.

We see that using just the average sum of sub-
task’s losses demonstrates the best results.

We also tried to fine-tune the large version of
XLM-R with the best hyperparameters from base
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Model Aug WSch PQ O Q ME MP Qlfr UoM M HQ HP Qlfs
post-evaluation phase results: roberta.base

QA-v1 F equal F 45.2 98.9 32.5 36.2 15.2 73.9 66.1 42.4 21.2 9.3
QA-v2 F equal T 45.6 98.9 33.2 36.1 15.7 74.3 73.0 42.9 22.6 11.3
QA-v3 F rsqr+log F 45.3 98.9 32.3 35.4 15.2 74.7 70.1 41.8 22.0 12.9
QA-v4 F rsqr+log T 45.8 98.9 33.6 37.8 13.4 73.0 67.9 46.1 22.5 9.7
QA-v5 F softmax F 45.8 98.9 33.4 36.6 13.5 74.0 72.6 42.3 20.5 11.8
QA-v6 F softmax T 45.6 98.9 32.5 37.3 16.2 75.3 75.5 45.6 21.8 11.3
QA-v7 T equal F 47.7 98.9 33.1 35.6 16.1 74.3 77.7 40.3 22.7 9.6
QA-v8 T equal T 46.1 98.9 32.8 35.5 11.1 73.7 76.4 38.9 21.2 9.3
QA-v9 T rsqr+log F 47.6 98.9 32.4 36.8 18.7 73.9 78.3 40.0 21.9 12.6
QA-v10 T rsqr+log T 46.1 98.9 33.1 36.3 14.3 73.9 78.2 42.0 22.3 10.2
QA-v11 T softmax F 47.3 98.9 32.9 37.2 16.6 73.6 78.1 41.8 23.0 10.7
QA-v12 T softmax T 46.9 98.9 34.5 35.2 13.6 73.6 76.3 39.9 24.2 10.0

post-evaluation phase results: roberta.large
QA-v1 T equal F 49.3 98.6 37.8 38.3 17.7 75.6 78.1 43.7 27.0 10.3
QA-v2 T rsqr+log F 48.8 98.5 35.0 41.3 10.7 75.3 77.7 46.0 24.5 6.9
QA-v3 T softmax F 48.9 98.5 37.9 38.1 17.8 73.7 78.4 44.4 27.2 10.3

Table 2: Best Overlap F1 scores for the dev set. Aug – augmentation, WSch – weighting Scheme, PQ – Prefix
Question, O - Overall, Q – Quantity, ME – Measured Entity, MP – Measured Property, Qlfr – Qualifier, UoM –
Unit, M – Modifier, HQ – Has Quantity, HP – Has Property, Qlfs – Qualifies.

Model Aug WSch PQ O Q ME MP Qlfr UoM M HQ HP Qlfs
evaluation phase results: roberta.large

QA-v1 T softmax F 51.9 86.1 43.7 46.7 16.3 72.2 64.2 48.2 31.8 9.2
evaluation phase results: best results of other competitors

47.3 85.5 40.6 43.7 10.7 80.4 61.4 42.4 25.7 6.4
post-evaluation phase results: roberta.base

QA-v1 F equal F 44.8 84.7 38.8 38.1 15.4 66.9 52.0 39.5 24.3 8.5
QA-v2 F equal T 43.5 84.7 36.3 34.5 12.3 66.9 57.0 37.6 21.9 5.6
QA-v3 F rsqr+log F 45.1 84.7 39.3 39.7 11.9 67.2 50.9 41.7 24.3 7.8
QA-v4 F rsqr+log T 45.2 84.7 39.3 40.1 13.8 67.0 48.8 41.7 24.8 7.1
QA-v5 F softmax F 43.6 83.8 37.5 35.9 14.9 67.9 49.5 37.9 23.3 8.3
QA-v6 F softmax T 42.7 84.7 37.6 32.5 10.2 67.0 55.9 34.4 20.4 5.8
QA-v7 T equal F 44.6 84.2 37.4 37.9 9.8 67.4 57.2 39.7 23.6 6.2
QA-v8 T equal T 45.7 84.7 39.4 38.8 12.5 66.7 58.8 41.9 24.2 7.4
QA-v9 T rsqr+log F 45.9 84.4 39.0 38.3 18.7 66.1 58.7 41.5 24.1 10.6
QA-v10 T rsqr+log T 47.1 84.7 39.9 42.0 12.5 68.2 59.6 44.4 26.6 7.4
QA-v11 T softmax F 45.8 84.5 40.0 39.9 14.3 66.8 56.1 42.2 24.7 7.7
QA-v12 T softmax T 46.0 84.7 39.9 39.3 12.3 67.4 56.2 41.9 26.3 6.6

post-evaluation phase results: roberta.large
QA-v1 T equal F 48.9 84.6 43.0 45.6 15.4 67.0 56.6 47.7 32.0 8.0
QA-v2 T rsqr+log F 47.2 83.8 41.9 42.0 9.2 66.7 58.0 44.6 29.7 6.0
QA-v3 T softmax F 47.6 84.6 41.9 41.8 15.4 66.5 59.9 44.9 29.7 8.3

Table 3: Overlap F1 scores for the test set. Aug – augmentation, WSch – weighting Scheme, PQ – Prefix Question,
O - Overall, Q – Quantity, ME – Measured Entity, MP – Measured Property, Qlfr – Qualifier, UoM – Unit, M –
Modifier, HQ – Has Quantity, HP – Has Property, Qlfs – Qualifies.

models. In the case of large models, again, equal
weighting scheme demonstrated the best result.

In all our post-evaluation experiments we used
the same settings as in Table 1. We tried learning
rates from [5e− 5, 1e− 4, 2e− 4] and batch sizes
from [32, 64, 128].

5 Conclusion

In this paper, we introduced our solution to
SemEval-2021 Task 8: MeasEval: Counts and Mea-
surements. Our approach was based on RoBERTa
and LUKE models. We show that extracting mea-

surements from a text can be treated as a question-
answering task. In this work, we tried a set of
different models, hyperparameters, and weighting
schemes and present their effect on the final result.
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