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Abstract

This paper presents our system for the Quan-
tity span identification, Unit of measurement
identification and Value modifier classification
subtasks of the MeasEval 2021 task. The pur-
pose of the Quantity span identification task
was to locate spans of text that contain a count
or measurement, consisting of a value, usually
followed by a unit and occasionally additional
modifiers. The goal of the modifier classifica-
tion task was to determine whether an associ-
ated text fragment served to indicate range, tol-
erance, mean value, etc. of a quantity. The de-
veloped systems used pre-trained BERT mod-
els which were fine-tuned for the task at hand.
We present our system, investigate how archi-
tectural decisions affected model predictions,
and conduct an error analysis. Overall, our sys-
tem placed 12 / 19 in the shared task and in the
2nd place for the Unit subcategory.

1 Introduction

The growing ease of access to large bodies of scien-
tific information and research has not been accom-
panied by an improvement in ease of analysis or
understanding of scientific text. While the perfor-
mance of natural language processing tasks such
as part-of-speech (POS) tagging and dependency
parsing have seen improvements, analyzing counts
and measurements in scientific texts has remained
a largely unaddressed problem, though some work
has been done by (Berrahou et al., 2013).

Measurements involve quantification (in units
such as litres or kilograms), entities and the mea-
sured properties (e.g. growth rate of a fungus) and
value modifiers (e.g. mean, range, tolerance). Ex-
tracting semantic relations between quantities, en-
tities, value modifiers, and units of measurement
and deriving meaning from those components is
challenging because scientific communication can
be ambiguous or inconsistent. In addition, the loca-

tion of this information relative to the measurement
tends to vary.

The precise extraction and contextualization of
measurements could enable accurate summariza-
tion of large bodies of scientific literature. Addi-
tionally, this could allow for unordered measure-
ment and numeric data from scientific texts to be
transformed into standardized ordered data for eas-
ier analysis.

In this paper, we describe a rapidly implemented,
lightweight model that extracts measurement con-
text in natural language. Our pipeline was imple-
mented in approximately 48 hours by the first three
authors, who had minimal formal neural NLP expe-
rience. Despite this, we were able to achieve strong
results in the two categories (Quantity and Unit)
that we entered, achieving second place in the Unit
category and 12 / 19 overall.

2 Background

2.1 MeasEval Task Setup

Data for this task is made available through the
MeasEval repository (Harper et al., 2021). Input
data are formatted as a paragraph of scientific text
in English from which measurements would be
extracted. Text annotations are provided in the
BRAT Annotation format (Stenetorp et al., 2012)
and evaluated in a tab separated value format.

These annotations are provided in four types of
spans. A Quantity contains a measurement of an
entity, such as 300 ml or 10%. Quantities are as-
sociated with their respective Unit, such as ml or %
respectively. Each Quantity can also contain ad-
ditional Modifiers which will be outlined later. A
MeasuredEntity contains the entity the Quantity
is referring to, such as a flask or other object. Sub-
tasks 3-5 also include identifying MeasuredEnti-
ties, MeasuredProperties and Qualifiers, though
due to time constraints, this paper mainly focuses
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on identifying Quantities and Units (subtasks 1
and 2).

For example, given the sentence “However, some
elements are only present for the largest bed inven-
tory of 13 kg e.g., Ti, Cr, and Mn.”, an identifiable
Quantity is 13 kg, with the Unit being kg. Each
paragraph can have multiple quantities, modifiers
and units associated with them.

2.2 Prior Work

The system this paper outlines is based on the
BERT architecture (Devlin et al., 2019). BERT,
which stands for Bidirectional Encoder Repre-
sentations from Transformers, employs the self-
attention based Transformer mechanism described
in (Vaswani et al., 2017). BERT allows for pre-
trained bidirectional representations to be used
for each word token, which can then be applied
to a wide variety of tasks. As such, only a lim-
ited amount of fine-tuning is required to model
NLP tasks including sentence classification and
sequence tagging.

One NLP task that is especially relevant for
the Unit of Measurement identification task is se-
quence tagging and Named Entity Recognition
(NER). This task involves identifying a span of text
(such as a person or location) from a given body
of text. There has been significant research in the
past dedicated towards NER (Li et al., 2018). (De-
vlin et al., 2019) also addresses sequence tagging
directly in their original paper describing BERT.
Therefore, we found that applying BERT towards
the shared task would prove transferable and effec-
tive.

3 System Overview

3.1 Quantity Identification

Since subtask 1, quantity span identification, in-
volves the classification of individual phrases, we
fine-tuned a pre-trained BERT-Large model (De-
vlin et al., 2019) to perform token-level classifica-
tion on an IO labeling strategy based on the IOB la-
beling scheme (Ramshaw and Marcus, 1995). Each
token in the training and trial sets is labeled as “I”
if it is inside a labeled quantity, and “O” if it is
outside the labeled quantity. Since consecutive en-
tities are very rare, we do not use the “B” label.
Such an encoding scheme is common for named-
entity recognition. Tokenization is implemented
using BertTokenizerFast from the Hugging Face

Transformers library. 1

As with the tokenizer, we used Hugging Face
library for a pre-trained BERT model. Instead of
using the base BERT hidden layers (BERTModel)
and manually building a few fine-tuning layers for
classification, we decided to use BERT’s built-in
BERTForTokenClassification class, which adds a
single linear layer for classification on top of the
hidden layers. This choice was made in the inter-
est of saving programming time; we did not be-
lieve that adding multiple fine-tuning layers would
cause a significant increase in accuracy to justify
the time that would be spent. The model outputs
labels for each of the tokens, labeling them with
the aforementioned IO labeling scheme. Sequences
of consecutive “I” labels are then recombined into
segments of text, which we use as our predicted
quantities.

We trained this model on a cross entropy loss
metric, with loss on “I” labels upweighted by a
factor of K to account for the low relative num-
ber of quantity tokens versus non-quantity tokens.
We optimized on minibatches using the Adam opti-
mizer (Kingma and Ba, 2015), and applied a cosine-
annealing scheduler (Loshchilov and Hutter, 2016)
to scale the down learning rate. Both of these have
been shown to be effective in fine-tuning pretrained
Transformer language models.

3.2 Unit Identification

Once a quantity had been identified, the next step
involved identifying the respective unit for each
quantity. For consistency, we once again used
a BERT tokenizer to achieve this task. Intrinsi-
cally, unit identification is considered a NER task;
therefore, by using Hugging Face Transformers and
the BERTForTokenClassification class, we imple-
mented a quick, yet robust method for identifying
units.

The Unit Identification approach is essentially
the same as the quantity identification approach:
the model labels tokens as either “I” or “O” based
on whether each token is considered to be inside or
outside a quantity. This approach proved to be ubiq-
uitous and simple to implement. We identified that
tokens for units were consecutive, so this model
was tasked with searching for a specific word or
words that could be identified as units. For exam-
ple, given the Quantity 20%, the % token would

1https://huggingface.co/transformers/
model doc/bert.html

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
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be labeled as an “I” while all other tokens would
be labeled as “O”. By implementing a consistent
approach, we tested the capabilities of pretrained
robust models such as BERT, which proves to be
useful for creating robust models with low compu-
tational resources.

3.3 Modifier Multilabel Classification

In the final part of subtask 2, we were tasked to
classify Quantity spans by “Modifiers.” Unlike the
previous two parts of the pipeline, we approached
this task as a multilabel classification task. Each
quantity could be associated with multiple labels,
such as IsRange and IsApproximate, or no labels at
all. This model mapped out each label as an indi-
vidual class, such that there were 10 total classes.

To predict the likelihood that a Quantity span is
associated with a class, we first tokenized each
quantity using BERT. These tokens were then
passed into a simple one layer dropout and linear
model which output 10 features. From here, each
feature was considered as an independent binary
classification problem in order to predict multiple
classes. For simplicity, any logit greater than 0.5
was predicted as a “true” value. Binary Cross En-
tropy loss was used as the criterion for training.

This is a simple, yet effective approach. As this
approach uses the same BERT models as the first
two sections, with the key difference being the
classification problem itself, we demonstrate the
versatility of BERT for these tasks. Once again, we
used the Hugging Face Transformers library for a
pre-trained BERT model, which allowed for quick
deployment. The results obtained in later sections
highlight how quick and inexpensive models can
still obtain acceptable results.

4 Experimental Setup

For all of the subtasks, we used the provided train-
trial split of 2531 annotations across 249 texts ver-
sus 832 annotations across 66 texts.

Besides tokenizing the text and applying IO la-
bels (see section 3.1) to get the data into a format
fit for the BERT token classifier, we did not prepro-
cess the data significantly. We tested filtering un-
recognizable and irrelevant characters using regex
but found no meaningful improvement in perfor-
mance. We thus decided to omit preprocessing to
keep with the simplistic theme of this paper.

During the hyperparameter tuning phase, we
compared models based on token-level F1 score,

implemented using the classification report from
the metrics module of PyTorch, yielding results
consistent with the provided testing script, which
evaluated on the F1 overlap score. Due to the
limit on the total number of iterations we could
go through due to the deadline, we tuned hyperpa-
rameters by hand. We found that out of the hyperpa-
rameters we tuned, the scheduler hyperparameters
were irrelevant because the scheduler was rarely
used at all. The number of training epochs like-
wise did not come into play so long as we let the
training continue until trial loss stopped decreas-
ing; around 15 epochs was almost always enough.
The only hyperparameters that seemed to signif-
icantly impact training results were the learning
rate and the weight difference between quantity
and non-quantity labels. After some manual tuning,
we found that a learning rate of around 10−5 and
no weight-difference adjustment performed best
on the trial set for this task, resulting in our final
token-level quantity identification F1 score of 0.85
on the trial set.

For the quantity identification subtask, several
post-processing steps were implemented to correct
simple errors in our model’s predictions, based on
common errors detected via manual error analy-
sis in the model’s predictions. First, commas and
spaces were removed from the ends of the pre-
dicted quantities to correct for potential small char-
acter offsets on the edges of predictions, from ei-
ther model error or the tokenization-detokenization
process. Furthermore, all quantities that did not
contain either numeric characters or strings that
commonly occur in numbers (such as two or -teen)
were discarded from the prediction pool. Addition-
ally, all prepositions from a hand-picked set like
beyond and at were cut from the front of each input
string in order to better isolate numeric quantities
from relational terms. The trial set results with
and without post-processing are shown in Table 1.
All the post-processing steps reduce the amount
and length of predicted quantity spans. Therefore,
the significantly higher precision score after post-
processing indicates that the base model tends to
overpredict identified quantities.

5 Results

Our model’s overall precision, recall, and F1 score
on overlap on the trial set are as shown in Table
1. The model’s performance on evaluation metrics
across the subtasks are shown in Table 2.
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Metric With Without

Precision 0.8153 0.564
Recall 0.2912 0.301
F1 (overlap) score 0.2615 0.211

Table 1: Trial set results with and without post-
processing

Category F1 score Ranking

Overall 0.272 12
Quantity 0.818 10
Unit 0.76 2
Modifier 0.408 8

Table 2: Evaluation set results and ranking (out of 19)

These results are promising given the speed of
implementation of our system. Across all 5 sub-
tasks, our final F1 score was 0.272. Overall, the
model ranked 12th out of 19 teams in the evaluation
phase of MeasEval: Counts and Measurements.

6 Conclusion

We propose a BERT-based model for information
extraction of measurements and their contextual
qualifiers from text. As scientific texts become in-
creasingly open for public consumption, we hope
that such systems will help present findings to
broader audiences in an accessible manner. Go-
ing forward, possible areas of exploration include
replacing BERT with more powerful models and
augmenting training data that the model frequently
makes erroneous predictions on.
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