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Abstract

This paper presents our contribution to
SemEval 2021 Task 8: MeasEval. The
purpose of this task is identifying the counts
and measurements from clinical scientific
discourse, including quantities, entities, prop-
erties, qualifiers, units, modifiers, and their
mutual relations. This task can be induced to
a joint entity and relation extraction problem.
Accordingly, we propose CONNER, a cascade
count and measurement extraction tool that
can identify entities and the corresponding
relations in a two-step pipeline model. We
provide a detailed description of the pro-
posed model hereinafter. Furthermore, the
impact of the essential modules and our
in-process technical schemes are also investi-
gated. Our code is released and available at
https://github.com/yuejiaxiang/
CONNER.

1 Introduction

Clinicians are currently coping with a massive
amount of information, both from raw experimen-
tal data and scientific publications recording their
results. However, the ever-expanding information
sources have exceeded the ability of clinicians to
digest and utilize them properly (Botsis et al., 2011;
Cao et al., 2018; Zhou et al., 2010). Clinical
information extraction tools (Zhang et al., 2020;
De Bruijn et al., 2011; Li and Huang, 2016; Yehia
et al., 2019; Mulyar and Mclnnes, 2020) in the
text-mining field make an effort to alleviate the
clinician’s burden according to exploit how to bet-
ter utilize the knowledge contained in scientific
discourse, accessible in the form of natural human
language. Automating the process of understand-
ing the relevant parts of the scientific literature
allows for effective searching, and enabling infer-
ence of new information and hypothesis generation
for clinical research.
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Counts and measurements are an important
part of information source from the scientific dis-
course (Harper et al., 2021). However, extracting
these count and measurement entities and their in-
teractions is challenging, since the way scientists
write them can be ambiguous and inconsistent, and
the location of this information relative to the mea-
surement can vary greatly.

In this paper, we focus on the SemEval 2021
MeasEval task which is composed of five sub-tasks
that cover span extraction, classification, and re-
lation extraction. As shown in Figure 1 it firstly
demands to identify all the quantity spans given
a paragraph from a scientific text. For each iden-
tified quantity, we need to extract the measured
entity, measured property and qualifier which are
corresponded to identified quantity. Besides, the
relationships between quantity, measured entity,
measured property and qualifier are also required
to be identified. Lastly, the unit and type of the
quantity is also needed to be recognized if they
exist.

However, all eléments included within Fig. 5 can be considered to be at very low concentrations of <2ppm.

Figure 1: A sample of annotated snippet of dataset.

To tackle this challenging task aforementioned,
we propose CONNER, a cascade count and
measurement extraction tool, of which it primarily
contains four components: (1) Model encoder gains
the representation of both scientific paragraph text
and the entities. (2) Quantity tagger extracts all the
potential quantity entities within the paragraph. (3)
Relation-specific object tagger recognizes the pos-
sible measured entities, measured properties and
qualifiers, as well as their mutual relations. (4) Unit
and modifier extractor identifies units and modifier
by both rule-based approach and a simple classifier.
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The rest of the paper is organized as follows.
In Section 2, we elaborate on the whole workflow
of CONNER and a detailed analysis of our ex-
periments and results in Section 3. The paper is
summarised and concluded in Section 4.

2 Model Description

2.1 Overview

The goal of CONNER is designed to iden-
tify all possible aspects of quantity items,
including Quantity, MeasuredEntity,
MeasuredProperty,Qualifier,Unit and
Modifier, as well as their relations.

Inspired by (Wei et al., 2019), we assign a cas-
cade framework that models relations as functions
that map quantity to other objects in a sentence,
which is contrary to the conventional prospective of
relational triple extraction task (Gupta et al., 2016;
Adel and Schiitze, 2017; Zeng et al., 2018; Zheng
et al., 2017) that firstly identity all the possible en-
tities, then predict their relations. Based on our
observation, there are roughly 90% entities over-
lapped in our tasks, which can be tackled smoothly
by a cascade framework. Besides, our proposed
method can just generate a limited amount of neg-
ative samples since there are only three types of
relations in our tasks, which further prevent from
the long-tail problem (Zhang et al., 2019; Li et al.,
2020).

The basic idea of CONNER is a two-step
pipeline model as shown in Figure 2. We
firstly deploy a quantity tagger to identity all
the possible Quantity from input paragraph
in Section 2.2, for each predicted Quantity,
we check all the potential relations to see if
a relation can associate MeasuredEntity,
MeasuredProperty and Qualifier with
the Quantity in Section 2.4. In contrast of uti-
lizing the proposed cascade framework, we adopt a
rule-based method and a simple classifier in terms
of extraction of unit and modifier in Section 2.5.
We describe the detailed workflow below.

2.2 Model Encoder

The model encoder aims at gaining the seman-
tic representations H of input paragraph text X,
which will be further used in the following tagging
module. In terms of the input paragraph that ex-
ceeds our pre-defined maximum length, we split
them into pieces via full stop and encoder them
separately. We experiment both ROBERTA (Liu

et al., 2019) and BERT model (Devlin et al., 2018)
to encode the context information. We adopt
H = Encoder(X) for brevity, and L denotes the
length of the input paragraph.

2.3 Quantity Tagger

The lower level tagging model shown in Figure 2 is
designed to predict the entire potential quantities in
the input paragraph, which is an ensemble model
incorporating a CRF layer and a PointerNet Layer.
We illustrate the whole workflow as follows.

PointerNet layer. Driving from the PointerNet-
work (Vinyals et al., 2015), two identical binary
classifiers are adopted to detect the start and end
position of quantities respectively. Each token is
fed into the binary classifiers to predict whether the
current token is aligned to a start or end position
of a quantity span. Formally, given a contextual
representation h; € H, we have:

pftart = U(Wstarthi + bstart) (1)
p;‘md = U(Wendhi + bend) (2)

where b is the bias matrix and o is the sigmoid
activation function. pft‘"t and pf”d denotes the
probability of identifying the ¢-th token in the input
paragraph as the start or end position of a quantity,
respectively. We set up a threshold score as 0.7, of
which the current token will be assigned to 1 if its
probability surpasses the threshold score, otherwise
assigned to 0. The loss function of the quantity
tagger is the following:

L
1 tart,end tart,end
th — ﬁ Z yf art,en lOg -PZ‘S art,en (3)
i=1

where L denotes the length of the input paragraph,

; tart.end io the ground truth label. In terms of
multiple quantities appeared in the same paragraph,
We adopt the same strategy as (Wei et al., 2019) that
we adopt the nearest start-end pair match principle
to decide the span of any quantity based on the

results.

CRF layer. In this layer, we consider quantity
recognition as a sequence-labeling problem. We
select BIOS(Beginning, Inside, Outside, Single) as
our label schema. Accordingly, given the repre-
sentation sequence H = (hq, ha, ..., hy )we adapt
a probability-based sequence detection conditional
random field (CRF) model (Zheng et al., 2015),
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Figure 2: Overall model structure:
middle ones correspond to Subsection 2.5.

which defines the conditional probability distribu-
tion P(Y'|H) of label sequence Y given contextual
word representation H aforementioned. We maxi-
mize the log-probability during training. In decod-
ing, we set transition costs as infinite if it is invalid.
The expected label sequence Y = (y1, Y2, ..., yL)
is predicted based on maximum scores in the de-
coding.

Ensemble. The experimental results are rela-
tively comparable in terms of CRF layer and point-
erNet layer (See Table 2.3). However, an empirical
observation on the predicted results suggest that
CREF layer tends to extract shorter spans, while
PointerNet layer does the opposite. Presumably,
the ensemble model can gain better results since
the distribution of entities in the dataset exists both
long and short spans.

We deploy our model ensemble considering the
predicted quantities that are partly overlapped. To
be more specific, we firstly obtain the predicted
quantities from PointerNet as our final result, be-
sides, if a predicted quantity from CRF layer
strictly does not exist in the PointerNet result, i.e.,
there is no overlap between the two quantities, we
add it to our final result as well.

Byg)
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the left dashed box corresponds to the Subsection 2.3 and 2.4, the right and

2.4 Relation-specific Object Tagger

The upper level tagging module identifies
the MeasuredEntity, MeasuredProperty
and Qualifier as well as the involved relations
with respect to the quantities obtained in the pre-
vious section. It consists of a set of relationship-
specific taggers with the same structure as the quan-
tity tagger in the lower-level for all possible rela-
tions. All object taggers identify the corresponding
object for each detected quantity simultaneously.

Distinguish from the quantity tagger using rep-
resentation vector h; as input, the relation-specific
object tagger also takes the quantity semantic fea-
tures into account. Given each contextual represen-
tation of the current token h;. The detailed tagging
operations are as follows:

ﬁtart U(Wsrtart(hi + v(];uantity) + bgtart) 4)
ﬁzend (Wernd(hl + Uguantity) + bgnd) &)

where p;!t and p§™? denotes the probability
of predicting the start and end position of current
token. vgu(mtity represents the representation of
k-th identified quantity via model encoder in Sec-

tion 2.3.
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We iterate all the possible relations across the
given quantities. Accordingly, given the token rep-
resentation h; and quantity k, the loss function of
relation-specific object tagger is as follows:

R L
1 ZZ tart,end tart,end
Erot _ ﬂ yirar en log Pis’rar en
=1 i=1
(6)

where r € R denotes the r-th relation. The rest
of symbol keeps the same as Equation 3. Note that

tags yft‘"t’end = 0 if the objects are empty.

2.5 Unit and modifier extractor

Unit extraction. We design a set of rules to iden-
tify the units which are corresponding to each pre-
dicted quantity. The detailed description of schema
is presented in Algorithm 1.

Algorithm 1 Unit Method

Require: Quantity ), which is a string of n characters.

1: The collection of all units that have appeared in train &

trial: V'

2: p=n
3: fori =1tondo
4 if Q[i : n] € V then
5: return Q[0 : i
6: end if
7.
8
9

if Q[7] is a space then
p=1t+1
: end if
10: end for
11: s=p
12: while s > 0 and Q[s — 1] is acharacter do
13: s=s—1
14: end while
15: if s > 0 then
16: p=s
17: end if
18: return Q[p : n]

Modifier Classification. As none of the rela-
tions attached to the modifier in the input paragraph,
we can not apply the relation-specific object tagger
in terms of modifier extraction. Given a candidate
quantity token x;, we select its n-gram contextual
tokens {X;—n, Ti—nt1, ey Tiy Tit1, Titn t and con-
catenate them as model input and then simply in-
troduce a plain classifier to predict its labels:

¢i = BERT([@i—pn; ...; Ti; oo; Tign)) (7)
y; = arg meax(softmax(ci)) ()

where c¢; denotes the representation of quantity and
contextual tokens after BERT encoder and y; is
the predicted label of modifier in terms of current

token z;. The training loss is the conventional cross
entropy loss, we will not elaborate on it due to the
space limit.

3 Experimental Results

3.1 Dataset

This SemEval evaluation has released the dataset
online!, which includes a text file for each para-
graph of scientific text along with annotations. As
shown in Table 1, the overlapping entities are 9.3%,
0% and 90.7% in total of NEO, EPO and SEP in
terms of train/dev/test set, respectively, which indi-
cates the merit of applying CONNER to our tasks
since it can naturally handle the overlapping enti-
ties.

Train+Trial Test
Sentence number 647 593
Avg. Sentence length 45 39
Max. Sentence length 200 304
Triples 2199 -
Cross Sentence Triples 65 -
NEO 203 -
EPO 0 -
SEO 1996 -

Table 1: Statistics of dataset, NEO represents none en-
tity overlap, EPO represents entity pair overlap, SEP
represents single entity overlap.

3.2 Experimental Settings

We adopt mini-batch mechanism to train our model
with batch size as 8; the pretrained language model
finetuing learning rate is set to 2e-5, crf decoder
learning rate is set to Se-3; the hyper-parameters are
determined on the validation set. We also complete
words with wrong boundaries by design rules, e.g.,
“emain mostly neutral” in the raw text is corrected
to “remain mostly neutral”. The maximum length
of sentence is set as 350. The number of n-gram
is 0. We adopt Adam (Kingma and Ba, 2014) for
optimization.

3.3 Main Experiments

The experimental results are conducted in test set,
of which each entity category and relations are
listed in Table 2. The result of extracting quantity
outperforms the rest of entity categories by a large
margin regarding named entity recognition. While
the HasQuantity naturally achieves the best result
in relation extraction task.

'The dataset is available at
https://github.com/harperco/MeasEval
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Prec.(%) Rec.(%) F1(%) F1 Over(%)
Entities
Quantity 96.16 92.24 75.70 94.16
M_.Entity 70.82 52.87 60.54 39.84
M.Prop. 72.79 56.71 63.75 43.66
Qualifier 20.00 12.32 15.25 0.0
Modifier 74.76 63.56 68.70 -
Unit 82.52 84.78 83.64 -
Relations
HasQuan. 62.85 56.52 59.52 -
HasProp. 57.37 31.72 40.85 -
Qualifies 0 0 0 -
Overall 76.09 57.53 65.52 47.30

Table 2: Experimental results on test set, F1 Over rep-
resents F1 overlap. All results are produced by the offi-
cial evaluation scripts.

3.4 Axuiliary Experiments

During the process of building our proposed sys-
tem, we tested different schemes for each module
of the our model and did relative experiments to
compare their experiment results, the scheme with
best performance is selected as our final modules
consisting of CONNER. We present the in-depth
analysis and experimental results listed below.

Model encoder. In Subsection 2.2, we separately
adopt BERT-based and ROBERTA-based our
model encoder. To examine the performance re-
garding different model encoder, we conduct exper-
iments in the quantity identification stage for both
identification of entities and relations. As we can
notice in Table 3, ROBERTA-base all outperforms
BERT-base so that it is selected as our final model
encoder.

Prec.(%) Rec.(%) F1(%)
Entities
BERT-large 58.85 56.02 57.40
ROBERTA-large 60.37 57.68 58.99
Relations
BERT-large 49.52 45.67 47.39
ROBERTA-large 49.52 52.94 51.17

Table 3: Experimental results of different model en-
coders

Settings of ensemble scheme. We tested the re-
sult of utilizing CRF layer and PointerNet layer in-
dependently, it shows comparable results as listed
in Table 4. As we mentioned in in Subsection 2.3,
combining the results of CRF and PointerNet can
make the best use of both models, and results veri-
fied our assumption that ensemble models all out-
perform the singular models.

we also carried out two different ensemble ap-
proach for quantity tagger. The first one is as il-

lustrate in Subsection 2.3. The second approach is
simpler: we take the union of the predicted quanti-
ties of CRF layer and PointerNet layer, and remove
duplicate as our final prediction result. The ex-
perimental results in Table 4 suggested the first
ensemble model achieve the best result, so that it is
selected as our final ensemble scheme.

Prec.(%) Rec.(%) Fl1(%)
CRF layer 60.37 57.68 58.99
PointerNet layer 59.67 56.53 58.06
Union ensemble 58.54 59.78 59.15
ensemble in Section 2.3 60.47 59.02 59.73

Table 4: Experimental results of different model en-
coders

Settings of n-gram. Different number of n-gram
can affect the model performance to some extent,
we thus tested introducing different length of con-
text regarding extraction of the modifier. As shown
in Table 5, the model achieves best performance
with 45.13% F1 score when n is 0, meanwhile,
we speculate the underlying reason is that model
is not capable of capturing valid semantics from
contextual tokens due to the limited amount of the
modifiers in the whole dataset.

n-gram F1(%)
none context 45.13
window _char_5 42.22
window_char_10  41.84
window_word_1 44.63
window_word_3 44.08

Table 5: Experimental results of different model en-
coders

4 Conclusion

We proposed CONNER, a cascade count and mea-
surement extraction tool to jointly identify the quan-
tities and their attached items, as well as the corre-
sponding relations for SemEval 2021 Task §: Mea-
sEval. Our model extracts these entities and re-
lations in a two-step pipeline method. We also
exploited various of technical schemes during the
competition and select the one that gains the best
performance in the experiments, which help us win
second-place in the final ranking.
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