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Abstract

Humor detection is an interesting but difficult
task in NLP. Humor might not be obvious in
text because it may be embedded into con-
text, hide behind the literal meaning of the
phrase and require prior knowledge to under-
stand. We explored different shallow and deep
methods to create a humour detection classi-
fier for task 7-la. Models like Logistic Re-
gression, LSTM, MLP, CNN were used, and
pre-trained models like DistilBERT were in-
troduced to generate accurate vector represen-
tation for textual data. We focused on apply-
ing a multi-scale strategy on modelling, and
compared different models. Our best model is
the DistiIBERT+MultiScale CNN which used
different sizes of CNN kernel to get multi-
ple scales of features. This method achieved
93.7% F1-score and 92.1% accuracy on the
test set.

1 Introduction

Humor detection is an interesting but difficult task
in Natural language processing (NLP) and requires
various techniques to understand the meaning of a
sentence and identify humor. For example, humour
by sarcasm can mean that a piece of text can have
two very different meanings and the NLP algorithm
needs to be able to understand which meaning is
intended.

The aim of task 7-1a of SemEval 2021 (Meaney
et al., 2021) was to address the challenge of clas-
sifying humour in text. Provided for this task was
a dataset constructed of short phrases in English
along with a label classifying whether or not each
phrase is intended to be humorous. The labels have
been obtained by surveying a group of people that
represent a variety of genders, political stances and
income levels. The given dataset includes training
set with 8000 labeled sentences, a development set
of 1000 sentences and a test set of 1000 sentences.

The dataset was made up of English phrases that
were labeled by their intent to be humorous. This
means the label annotators were not saying whether
or not they found the text funny but whether the
writer of the text intended it to be funny. The
texts were predominantly one sentence long with
a small proportion being two or three sentences.
Each phrase was labeled for humour intent and,
if humour was intended, then a rating was given
for how funny it is. Also of the texts intended to
be humorous, a label was given for whether it is
offensive, and if so, how offensive it is.

The texts covered a range of types of jokes such
as puns, sarcasm, dark jokes and “Dad” jokes. One
example is “I never finish anything. I have a black
belt in partial arts.” which contains a pun and is
labeled as humorous.

Our best approach is DistiBERT+MultiScale
CNN. It introduced a pre-trained DistilBERT
model to extract textual features, and created a
multi-scale CNN model for humour classification.
First, the DistilBERT tokenizer generated a word
token vector and an attention mask vector for each
sentence. Then, we fed these vectors into a pre-
trained DistilBERT model to get hidden features.
After that, five CNN layers with different kernel
sizes were used to get features of different scales.
Each feature vector was subsequently concatenated
together. Finally, the fused features were fed into
dense layers in order to classify text into humorous
or not humorous classes. It achieved 93.66% of F1
score and 92.10% of accuracy in using test set.

2 Related Work

We used four shallow models as a benchmark for
our main approach. The first method was K-nearest
neightbors (KNN) (Fix, 1951) in which an unla-
beled query point is given the label of the majority
of the K neighboring points. The second method
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Figure 1: Pipeline of our

is Naive Bayes (Sammut C., 2011a) which uti-
lizes Bayes rule together with a strong assumption
that the attributes are conditionally independent.
The third is a random forest (Sammut C., 2011b)
which is an ensemble of decision trees trained on
a bootstrap sample from the original dataset. The
fourth method is the support vector machine (SVM)
(Burges, 1998) which transforms the input data to
a higher dimensional space and seeks to define a
hyper-plane separating the classes. We also imple-
mented voting to combine these methods where the
prediction of the voting is simply the majority label
predicted by the shallow models.

We also tried deep models. Long short-term
memory (LSTM) is a very effective Recurrent neu-
ral networks for processing sequence data, which
considers long and short term memory over time
(Hochreiter and Schmidhuber, 1997). Convolu-
tional Neural Network (CNN) uses a convolution
kernel to extract hidden features from input, which
is widely used in the field of computer vision (Le-
Cun et al., 2010). 1-dimension CNN layer can fit
with sequence data, so it can be used to extract
textual features.

Transfer learning methods are widely used in
the field of NLP. Pre-trained word embeddings
are usually trained on unlabelled dataset and maps
each word token into a fixed vector representing
the meaning of the word in a hidden space. For
example, Global Vectors for Word Representation
(GloVe) is trained on a 6 billion word corpus using
an unsupervised learning method in order to find
word co-occurrence (Pennington et al., 2014).

Unlike conventional embeddings, contextualized
embeddings dynamically map a word token into
vectors based on the context using a pre-trained en-
coder. By extracting the features and adapting new
data to the model, we can implement general down-

Multi-scale CNN
Model

experimental process

stream tasks based on the pre-trained model. BERT
uses a deep Transformer as its encoder, and trains
on language modelling tasks and next sentence pre-
diction, which is often used in NLP with excellent
performance (Tenney et al., 2019). DistilBERT
uses knowledge distillation method to compress
the model, which retains 97% of the performance
of original BERT but is 60% faster (Sanh et al.,
2020).

3 System Overview

In our BERT-based models, we used DistilBERT
which is a light version of BERT to extract textual
features. The BERT model is a transformer-based
model, which is pretrained on vast amounts of tex-
tual data in language modelling tasks (Sanh et al.,
2020). Therefore, the weights in the BERT model,
which contains semantic information, can be used
as contextualized embedding for general purposes.
It can better represent textual data than a random
tokenizer. Due to hardware limits, we only used
the DistilBERT uncased base model in our system.
It retains 97% performance of the original BERT
but is 60% faster (Sanh et al., 2020). For compari-
son, we also used GloVe pretrained embedding to
represent text and created a 2-layer LSTM model
as our baseline. Shallow machine learning models
were also explored for comparison. Figure 1 shows
the pipeline of our experimental process.
Regarding feature extraction, we first used the
DistilBERT tokenizer to vectorize the textual data
then padded them into the same size. An attention
mask was built to use binary vectors to differentiate
padded zeros and word tokens. The vectors and
mask were fed into the BERT model, and we stored
the output of the last layer as the representation
of text. Because the task was a text classification
problem, we only used the “[CLS]” value in the text

1180



representation for Logistic Regression (LR) and
LSTM model, which was the first vector of each
row. The length of each text representation was 768.
For example, the sentence Told my mom I hit 1200
Twitter...” was firstly tokenized into vectors ”’[101,
2409, 2026, 3566, 1045, 2718, 14840, 10474...]7,
and the [CLS] vector of DistilBERT output of this
sentence was ~’[6.7492e-02, -1.6599¢-01, 1.0417¢-
01, ...]”, which had length of 768. For the Fully
Connected (FC) model and all CNN models, we
used the full output of the DistilBERT model as
features, which were in shape of 136 x 768.

After extracting the features, we applied differ-
ent models to predict the humor class. First, we
implemented the LR model with default parame-
ters. The package scikit-learn was used to build
and train linear shallow models, such as LR, KNN,
naive Bayes, random forest, and SVM. And then,
we created a LSTM model. It consisted of two 32-
node LSTM layers and a 32-node fully-connected
layer. Also, we built a fully connected network,
which had a 128-node dense layer and 64-node
dense layer. In addition, we tried a CNN model
which contained 2 64-node CNN-1D layer and a
128-node dense layer. For each network, we took
the extracted features as input, and used a 1-node
dense layer with sigmoid activation to collect out-
put. In addition, dropout layers were used in each
model to handle over-fitting problems.

For comparison, we also implemented a GloVe
based LSTM. NLTK module was used to tokenize
sentences and remove stop words and special char-
acters. GloVe (Pennington et al., 2014) is pre-
trained word vectors representation, which was
used as the initial weights of the embedding layer.
The GloVe+LSTM model used 50-dim embedding
which connected to two 32-node LSTM layers. The
output of LSTM was flattened and then fed into 16-
node fully connected layer. And a 1-node dense
layer with sigmoid activation was used to output
probability of humorous class. It used the same
model compiling parameters as the DistilBERT-
based models.

Moreover, previous research proved that multi-
ple scale of CNN layers can capture hidden features
in different granularity, which improves perfor-
mance (Cui et al., 2016; Yuan et al., 2018). There-
fore, we build two multi-scale CNN models. The
first model is DistilBERT+MultiScale CNN, Figure
2 shows its structure. It used five 64-node CNN-1D
layers with different kernel size of [1, 2, 3, 4, 5].

These 5 layers could extract hidden information
from the features in various granularity. Each CNN
layer was then connected to a GlobalMaxPool1D
layer to get a down-sampled representation in the
shape of (batch size, 64). Also, dropout layers were
applied on each output, and the 5 outputs were con-
catenated to a single vector in the shape of (batch
size, 320). Subsequently, the combined vector was
fed into a 512-node fully-connected layer. Rec-
tify Linear Unit (ReLu) activation functions were
applied to all CNN and fully-connected layers. Fi-
nally, a 1-node fully-connected layer with sigmoid
activation function was added at the end of the net-
work to collect the output value. We used 0.5 as
a threshold to categorise the probability value into
0 (not humorous) and 1 (humorous) categories. In
addition, we used “rmsprop” optimizer and binary
cross entropy loss for stochastic gradient descent
optimization.

In addition, we tried other multi-scale strategies,
inspired by the deep multi-scale fusion hashing
model (Nie et al., 2021). To differentiate two multi-
scale models, we called this one MultiPool CNN.
It used 5 different kernel size of MaxPooling lay-
ers to scale input features into different resolution.
For each Maxpooling layer we set strides to 1 and
used “valid” padding methods, and it connected
to a 64-node CNN-1D layer with a kernel size of
1 and ReLu activation. Therefore, 5 CNN layers
can extract features from different resolution of in-
put. Similar to the multi-scale CNN, each output
subsequently connected to a GlobalMaxPool1D
layer and dropout layer. Finally, 5 different outputs
were concatenated together and fed into a 512-node
fully-connected layer. The output layer and com-
piling method are the same as the multi-scale CNN
model.

Multi-scale CNN Model
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Figure 2: Structure of DistilBERT+Multi-Scale CNN

1181



Model F1@Dev Accuracy@Dev F1@Test Accuracy@Test
Official Baseline - - 0.857 0.884
KNN 0.808 0.774 0.775 0.742
Naive Bayes 0.831 0.798 0.834 0.758
Random Forest 0.860 0.821 0.836 0.791
SVM 0.870 0.846 0.850 0.817
Voting Ensemble 0.853 0.821 0.817 0.774
GloVe+LSTM 0.888 0.850 0.885 0.853
DistilBERT+LSTM 0.884 0.842 0.896 0.862
DistilBERT+LR 0.898 0.867 0.904 0.880
DistilBERT+FC 0.904 0.877 0.925 0.907
DistilBERT+CNN 0.907 0.883 0.907 0.888
DistilBERT+MultiPool CNN  0.911 0.885 0.931 0.914
DistilBERT+MultiScale CNN  0.913 0.890 0.937 0.921

Table 1: Evaluation results of various implemented models on the dev set and test set (the gold data)

4 Experimental setup

We implemented our experiments on the univer-
sity’s virtual machine, which has a python envi-
ronment with a shared 16 GB Tesla v100 GPU.
Tensorflow 2.0 and Keras were used to build neural
networks. Python “transformers” module was used
to import the DistiiIBERT model. “Pandas” and
”Numpy” modules were utilised to manipulate data,
and we used scikit-learn” to import basic machine
learning models and evaluation metrics.

Moreover, we used the training set to train our
models and took 20% split of training set as vali-
dation set to tune hyper-parameter in development
stage. The dev set was used to assess performance
of models in evaluation stage, and we applied our
models on test set in order to submit results. In data
preprocessing, we load the data into a pandas data
frame, and tried to remove all the tags and special
characters in the text. After that, we used the Dis-
tilBERT tokenizer to vectorise and encode the text
into the format that the DistilBERT model required.
In all the models, we set 1 and 2 as random seeds
for Numpy and TensorFlow respectively. Also, we
used early stopping strategy when training models.
All DistilBERT based nerual network models were
stopped at 23 epochs. Also, the batch size was set
to 64.

Regarding evaluation, we evaluated our model
on dev set and test set (gold data). F1 score and
accuracy were used to evaluate performance. The
accuracy score shows the ratio of correct prediction.
Since the F1 score considers both precision and
recall, which would be more informative metric,
we selected our model based on the F1 score.

5 Results

We found that the features extracted by DistilBERT
boosts the model performance significantly and
it is difficult to generate a good results without
using a pre-trained embedding or model. Due
to hardware limits, we only tried the light ver-
sion of BERT, and only implemented shallow
layer models. Our official submission used Dis-
tilBERT+FC model, which achieved 92.41% F1-
score and ranked 47th in task 7-1a. We modified
our model in post-evaluation stage, and our best
model is DistilBERT+Multi-scale CNN, which had
93.66% of F1 score and 92.10% of accuracy in us-
ing test set. The given official baseline is 85.7% of
F1 score and 88.4% of accuracy. All of our Dis-
tilBERT based models and one GloVe embedding
based model had better performance than the base-
line. Detailed evaluation scores on dev set and test
set were included in Table 1.

In comparison, the SVM model achieved an F1-
score of 85.04% and an accuracy 81.70% on the
test set, which is our best shallow model. However,
all of these model generated scores lower than the
given baseline.

Also, our GloVe-based LSTM model achieved
88.5% Fl-score, and DistilBERT-based LSTM
achieved 89.6%. It makes sense that transformer-
based pretrained representation is better than tradi-
tional pretrained embedding. Due to efficiency con-
siderations, we only used 32 nodes in the LSTM
layer. So, these two models have poorer perfor-
mance than other models using more nodes. Even
the DistilBERT+LR model has higher F1 score
(90.4%) and accuracy (88.0%). Surprisingly, a
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Not Humorous Humorous
Not Humorous 337 48
Humorous 31 584

Table 2: Confusion matrix of DistiIBERT+MultiScale
CNN’s result

simple 2-layer fully connected network achieved
92.5% F1 on test set. But in the dev set, Dis-
tilBERT+CNN outperformed the DistilBERT+FC
model. The CNN model had more stable perfor-
mance, which achieved 90.7% F1 in both dev and
test set. Because we used the same epochs for all
models, CNN may converge better than the fully-
connected model. The multi-scale strategy fur-
ther improved the performance of the CNN model,
which is our best model.

However, our best model still made mistakes on
predicting humorous classes of a few sentences. An
error analysis is helpful to understand the wrong
predictions. In the prediction results of the Dis-
tilBERT+MultiScale CNN model, 79 out of 1000
sentences are incorrectly predicted. The Table 2 is
a confusion matrix of the result. It shows that 48
predictions were false positive, which assigned a
Not-Humorous sentence into the Humorous class.
For example, I think in order to have a great busi-
ness you have to like the product you’re selling
more than the money you get.”, this sentence is
misclassified as humorous. Also, 31 sentences are
false negatives. Those sentences are labeled as hu-
morous but ignored by our model. For example, "’If
alcohol influences short-term memory, what does
alcohol do?”, and ”And then there’s my dad...???7”.
Those sentences hide the humor within the con-
text, which is hard for a model to detect. Some
of sentences are also difficult for us to understand
why they are humorous. Since the humor labels
were created based on subjective judgement, even
human beings would have diverse opinions and
understanding.

6 Conclusions

To conclude, we explored various methods to build
humour detection classifiers for task 7-1a. Models
like Logistic Regression, LSTM, FC, CNN were
used, and pre-trained models like DistilBERT were
introduced to generate an accurate vector represen-
tation for textual data. Our best model is the Dis-
tilIBERT+MultiScale CNN, which achieved 93.7%
F1-score and 92.1% accuracy on the test set. We

focused on applying multi-scale strategy on mod-
elling, and compared different models. And our re-
sults shows that CNN are more suitable for this task
than LSTM FC and other shallow models. Also, we
found that pre-trained embeddings, weights or rep-
resentations are crucial for our model performance.
We only explored multi-scale from the wide di-
mension, this strategy can also be used in deep
dimension. In the future, a deeper network with
more nodes can be explored and the full version of
BERT model can be exploited.
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