BennettNLP at SemEval-2021 Task 5: Toxic Spans Detection using
Stacked Embedding Powered Toxic Entity Recognizer

Harsh Kataria, Ambuje Gupta, Vipul Mishra*
Department of Computer Science Engineering
Bennett University, Greater Noida, India

(hkataria99,

ambujegupta99) @gmail.com

vipul.mishra@bennett.edu.in

Abstract

With the rapid growth in technology, social
media activity has seen a boom across all age
groups. It is humanly impossible to check
all the tweets, comments and status manually
whether they follow proper community guide-
lines. A lot of toxicity is regularly posted on
these social media platforms. This research
aims to find toxic words in a sentence so that
a healthy social community is built across the
globe and the users receive censored content
with specific warnings and facts. To solve this
challenging problem, authors have combined
concepts of Linked List for pre-processing and
then used the idea of stacked embeddings like
BERT Embeddings, Flair Embeddings and
Word2Vec on the flairNLP framework to get
the desired results. F1 metric was used to eval-
uate the model. The authors were able to pro-
duce a 0.74 F1 score on their test set.

1 Introduction

Modernization has awarded us with the technol-
ogy capable of communicating with masses across
huge distances in an instant by the touch of a sin-
gle finger in our palms, the smartphone. With all
this innovation every day, it is now more accessi-
ble than ever, even in the most rural parts of the
world and at very reasonable costs. It has enabled
a vast population to share their thoughts and views
on popular topics in public forums. People can
express themselves in the most creative ways and
talk to each other about movies, research, politics,
the economy and much more. Some of the key
forums and platforms for such activities are Face-
book, Twitter, YouTube, Reddit. They allow users
to participate in various discussions, discussions
that at times may not be very decent. This creates
an issue for these platforms as they usually have
some of the other policies against indecent con-
tent posted by users. On average there are about

941

350,000 tweets, 510,000 comments, 293,000 sta-
tus updates on Facebook and Twitter in every 60
seconds (Sayce, 2020). It is humanly impossible
for these platforms to check each and everything
posted by the users for hate or toxicity. They re-
quire an automated method to flag such content.

The motivation for this research task is to
achieve some degree of automatic moderation in
the social web. It is crucial to moderate social me-
dia sites such as Facebook, Twitter and Reddit to be
healthy and inclusive. This includes filtering and
censoring toxic and hateful content posted online
on these public forums. There are automated hate
detection NLP models like (Zhang and Luo, 2018)
capable of identifying toxic content with accept-
able performance. However, they do not identify
the specific spans of text that are toxic. This task
tries to identify these spans that can be used fur-
ther to provide insights into a generic text toxicity
score. More about the study that this paper is based
on can be found from the task organizers paper
(Pavlopoulos et al., 2021).

This paper proposes linked lists for data pre-
processing and a stacked embedding approach to
training this automated system.

The authors’ experiment and code for the models
ready to be reproduced can be found using the
authors’ Github repository.

This paper is organized as follows. It starts with
a short abstract describing the paper at a very high
level. Then the first section introduces the problem
at hand and the task to accomplish. It mentions
the authors’ approach and the link to their code
and models. The second section talks about the
background research performed for the task and
explains the existing solutions and how this paper
is different from them. The third section gives an
in-depth understanding of the system approach to
solving the tasks where it talks about the embed-
dings and the stacking method. The fourth section

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 941-947
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics

https://github.com/rockangator/toxic_spans_detection

tells us about the dataset, how it was presented,
what it consisted of, the data processing applied to
it, the experimental setup and the evaluation met-
rics. The fifth section is about the methodology,
followed by the results section. The seventh section
concludes the system description. Finally, we get
the references.

2 Background research and related
works

This problem tackles the challenge of accurately
identifying the parts of a toxic text and contributing
to making the complete text toxic. There, however,
exist systems that can score the toxicity of a full
text, sentence or comment like (Zhang and Luo,
2018), but they don’t identify the exact part of
that sentence that is toxic. There also are systems
that can accurately say if a statement is toxic or
not and even go on to the extent of identifying
the emotion projected by it, for example, if it is
positive, negative, humorous, sarcastic, offensive
or funny and even the level of these emotions as
seen in (Gupta et al., 2020).

A widely known methodology to identify parts
of a text is Named Entity Recognition (NER) (Ya-
mada et al., 2020) and its types like the speech
(POS) tagging method. NER is a sequence la-
belling task that recognises entities as per the types
of entities it is trained on. These are usually nouns
or particular words like names of people or places
or organisations and values like monetary numbers
and currencies. The sequence labelling task con-
siders a text sequence in which part of it needs to
be tagged differently according to the embeddings.
Long short term memory, LSTMs (Hochreiter and
Schmidhuber, 1997) are usually used for sequence
labelling. A variant of LSTMs, the bi-directional re-
current neural network-based BiLSTM, has proved
to be very successful at performing accurately at
such tasks. It is also seen to be combined with the
conditional random field(CRF) decoding layer as
seen in (Ma and Hovy, 2016) to get better results.

Open-source tool, Spacy (Honnibal et al., 2020)
is a leading tool to create effective and lightweight
NER models for datasets with such challenges.

3 System Overview

For this task, the authors have used the flairNLP
platform (Akbik et al., 2018a) to stack BERT and
flair embeddings and create a Named Entity Recog-
nition (NER) model. They have morphed the origi-

nal aim of the NER type tasks to train a model ca-
pable of identifying toxicity in a text that is already
classified as toxic as a whole. This was possible
because, finally, we were using the different embed-
dings related to toxic parts of the text. These were
the embeddings that were trained, which made the
task very similar to a NER task. The model created
also had a conditional random field layer. Its pur-
pose was to better understand the context around
the text’s selected parts by considering the neigh-
bouring words.

For this task of sequence labelling, we have
stacked embedding by concatenating BERT and
flair embedding. This helps in getting a better se-
mantic context out of the concatenated embedding
word vectors. Following is a brief about flair and
BERT embeddings.

3.1 Flair Embedding

Flair embedding (Akbik et al., 2018b) are a type
of contextual embedding in which sentences are
passed as character into a character level language
model to generate word embedding. Contextual
string embedding are generated through LSTM be-
cause of its ability to keep long term dependency
within their hidden state. In Figure 1

@@@@@

Sequence
ﬁ robvu:\usly
f r 1

.| Labelling
Method
Ve ' ' ' 5 A A Character
i ++,+~, **‘,**‘ M,%, ,+ R «M«H«' Langusge

TTT L I G
lelel Telefel fofefelifelels] B fe[Jtole b]

Figure 1: A word is passed as characters to generate
flair embedding. After that a CRF layer is used to
convert this into a NER problem.

We can see each character of the text ”you are
obviously a fool” is passed through a bidirectional
character-level neural language model, and each
word is retrieved. Then it is given to the CRF
layer(sequence labelling). Following is a brief ex-
planation of the mathematics behind generating
these embedding. In LSTM, the hidden state h;
represents the past sequence of the character. Both
forward and backward language model is used to
create these embedding. The mathematical equa-
tion of the hidden layers of the forward and back-

942

Tobviously

‘MT 111 TTTTTTTT
\IIIIIIHHHHHII_II'I

s
>
—>
.

]

Figure 2: Generating Contextual String Embeddings
for the word “obviously”. In the forward language
model(represented in red), the output hidden state is
extracted after the last character in that word. For the
backward Language Model(represented in blue), the
output hidden state is extracted before the word’s first
letter. These two output layers are concatenated to
form the final embedding

ward model can be seen in equation 1 and 2 respec-
tively.

= f}{(ZEt,l,htf_l,C{_l,G) (1)

h? = f£($t+17 hft)+17 C§+17 6) (2)
In the above equation, f and b are the forward
and backward model’s notations. Memory cell and
parameters of the model are represented by ¢; and
0, respectively. The output of the hidden state from
both the forward and backward language model are
concatenated. In the forward language model, the
hidden state output is extracted after the word’s last
character. Subsequently, for the backward language
model, the hidden state’s output is extracted before
the first character of the word. Both the language
model captures the semantic information and then
are concatenated to generate the word embedding
for that particular word. Let us suppose individual
word string begin with ¢;...¢,, then the contextual
word embedding can be seen in equation 3

harLM hi
w;: ar — tigrl —1 (3)
hti—l

To better understand the concept, figure 2 explains
the process by taking an example, and the forward
language model is shown in red colour. The back-
ward language model is shown in blue colour. To
have a complete understanding of how the contex-
tual word embedding work, one can refer to the
(Akbik et al., 2018b) paper.

3.2 BERT Embedding

Unlike Flair embedding, BERT embedding (De-
vlin et al., 2019) are word-level embedding, and it

943

Model
ut:

101 2017 2024 5525 1037 7966 102

[cs] you are obviously a fool [SEP]

Figure 3: Example Illustrating the process of
generating BERT Embedding.

only contains the encoder part of the transformers
(Alammar, 2018). In this paper, the authors have
used 2 BERT models, i.e. BERT-base, which con-
tains 12 layers, produces an output of 768 units and
BERT-Large, which contains 24 layers, produces
an output of 1024 units. Generating word embed-
ding can also be classified as feature extraction in
which embedding are generated and are fed into the
neural network. For the BERT-base model, each
layer produces 768 units for every word. To gener-
ate BERT embedding, authors have concatenated
the last 4 hidden layers. BERT paper (Devlin et al.,
2019) also shows that concatenating the last 4 lay-
ers yield the best results. BERT has around 30,000
words vocabulary. If the word is not in the vocab-
ulary, then the BERT tokenizer converts it into a
sub-word or characters. For example - Word “un

recognized” will be represented as ['un’, 're’, co’,
“gni’, *zed’]. The first token of a sentence is always
([CLS]), which indicates the sentence’s starting.
Two separate sentences are separated with ([SEP)]

tokens. An example of how the BERT model works
is shown in figure 3 which is adopted from (Alam-
mar, 2019) where authors have used ’you are ob-
viously a fool” as an example sentence. We can
see first the sentence is converted into the sentence
convention used by BERT, i.e. adding the required
tokens. After adding the tokens, BERT tokeniza-
tion is used, i.e. words are converted into numbers
by referring to the BERT dictionary. BERT tok-
enization also converts any words in sub-words or
character if the required word is not present in the
vocabulary file. The ids are then fed into the BERT
model, and desired output, i.e. BERT embedding,
are generated. Each layer produces 768 units for a
single word. The last four (4) hidden layers have
been concatenated to get the word embedding in
the paper. Now we can put these words embedding

to our model to generate results. Figure 4 shows

you are obviously a fool

oe [CLS] [CLS]
you you
are are

obviously

obviously
a a

01 fool fool
[SEP]

Cls]_you _ere obviously & fool [SEPl [SEP]

s
Input speech: 1 -0.8
,I U A 07
\
[CLS] [CLS] are 06
you you o
are are b
obviously obviously N 3
a a o 02}
fool fool 01}
[SEP] [SEP)] i
[cLs) you e obviously a fool [SEP] I

Attention Head View

041 0014 016 028 Layer 0, Head 11

Attention Head View
Layer 4, Head 0

8 017

029 024

are obviously a

fool [SEP]

[[CLST you

‘[CLS] you are obviously a

fool [SEP]

Figure 4: Visualization of Attention in BERT-Base model. Lighter points in the heatmap represents more
attention value

the visualization of attention using BERT. The heat
map shows how BERT correlates one word with
other.

4 Experimental Setup

This section presents a brief overview of the data,
the pre-processing it went through and challenges
faced in doing so, information about the experiment
environment and the evaluation metrics used.

4.1 Data

The data was provided to the authors by the task
organizers who had acquired it from the Civil Com-
ments Dataset (Borkan et al., 2019). The task orga-
nizers then filtered all the text level toxic-labelled
text that had been labelled toxic by more than half
the annotators, which was around 30,000 in num-
ber from a total of 1.2 million posts. Out of these
30,000 text posts, random 10,000 posts were se-
lected and given to crowd annotators to mark the
toxic spans from the text. More information about
this can be found in the task description paper
(Pavlopoulos et al., 2021). The authors finally re-
ceived a CSV file with two columns with headers
as ’spans’ and ’text’. Spans column contained a
list of character level indices of the toxic entities.
Next to it was the complete text that was found
to be toxic. For some texts, there existed a corre-
sponding list of empty spans if no toxic span was
annotated. Authors randomly collected 558 data
points from the dataset (CSV) as a testing set and
were left with 5339 data points as the training set.

4.2 Linked-list based Pre-processing

The pre-processing stage involved coming up with
a method to map the spans before and after cleaning
the text. The data provided had a column full of
rows with toxic text collected from social media
and hence it was naturally in need of cleaning as it
contained a lot of abbreviations, punctuation, some

foreign characters, numbers and special characters
that were not supposed to be present there as they
would create ambiguity to the model. Removing
these would bring some uniformity to the model
input. In this approach authors faced majorly two
(2) challenges.

1. Removing unwanted characters from the orig-
inal text will produce a cleaner text and that
text will be shorter in length as compared to
the original text. This will create discrepancy
from the spans column, as the spans are given
was according to the length of the original
sentence.

2. While pre-processing it was important to
maintain the sequence of the words in a sen-
tence. For example ”You are an Idiot”, we
have to make sure that after the first word
”You” the second word is "are” only.

To tackle the first problem we replaced un-
wanted(punctuation, numerals etc.) characters
with whitespace character so that the length of the
sentence remains the same.

Text : You.... are, -!!
are [iGH

Ground spans = [12,13,14,15,16] = [’idiot’]

Pre-processed text : You

In the above text, we can see that the unwanted
characters are replaced by whitespace character
which solves our first problem.

For the second problem, we implemented a linked
list data structure. After tokenizing the sentence
on whitespace we stored individual word in a sin-
gle node. The head of the node is attached to the
next node which helps us to maintain the sequence

944

Step 4

|
| | |>| | |>|__L|:| sNull
/I\
/I\

] T

Step 2 /]\ /‘\
i | l | sNull
7 Character

» Length

Step 1 YOUL... are, idiot! !

Figure 5: Implementation of linkedlist data structure
for pre-processing

of words in a sentence, hence solving our second
problem.
This is described stepwise in figure 5

Step 1: The original sentence is tokenized on
“whitespace”. In the example, the length
of the original text is 20.

Step 2: After tokenization, each word is stored in a
node of a linked list data structure and each
word from each node is pre-processed i.e.
unwanted characters are removed.

Step 3: To maintain the sequence of words another
linked list is made but in this linked list
each word is cleaned. The unwanted char-
acters are replaced with whitespaces in the
pre-processing block.

Step 4: Words are joined back to form a proper sen-
tence, and the length of the new sentence
is 20 as it was of the original sentence.

After getting the pre-processed text, it is ready to
be fed into the model.

4.3 Experiment Environment

The experimental environment set up by the au-
thors included the use of Python, mostly for script-
ing along with some of the well known and com-
monly used python libraries like NumPy, pandas,
flair(flairNLP), re(regex). They used Jupiter note-
book for python ide along with python version 3.7.
Google Colab (GPU and TPU) was also used for
training the models.

945

4.4 Evaluation metrics

Authors have used F1 score (Da San Martino et al.,
2019), precision and recall (Goutte and Gaussier,
2005) in order to evaluate the performance of the
models. The task organisers also used F1 score to
evaluate and rank the challenge responses. Equa-
tion 4 represents the mathematical formula of cal-
culating the F1 score.

, 2-PY(X;,Y) R(X;,Y)

= PYX;,Y)+ R(X;,Y) “)

In equation 4, F; 1l represents F1 score of the system
1, which is calculated for the text [. The predicted
values are represented by X; whereas the ground
truth is represented by Y. P and R represents Pre-
cision and Recall values with their mathematical
calculations shown in equations 5 and 6 respec-
tively where .S represents the Set function.

S%, NSy
Pt y) = 25 5)
5%, |
S%, NSy
R, y) = x5 (6)
1Sy
Here, | - | represents Cardinality which can be in-

terpreted as the length of the finite set.

The overall F1, precision and recall of the mod-
els’ performance was obtained by calculating the
mean of individual scores of every text in our test
set of 558 data points.

5 Methodology

In this paper authors have used the concept of
stacked embeddings i.e. to generate a particular
embedding for a word, flair gives you the flexi-
bility to concatenate different word embeddings
together to get better results. Equation 7 depicts
concatenating flair and GloVe embedding.

Flair
we; = we(i?lo\/e (7)
we;

Here word embedding is denoted by we. In this
paper, the result of four (4) models have been dis-
played. Table 1 shows different parameters used
by authors in different models. The concept of
early stopping and adaptive learning rate are used
to generate these results. The learning rate would
be halved if the model does not show improvement
consecutively 4 times in a row. In this case, the
training automatically stops when the learning rate
becomes too small for example LR=6.2500e-05.

Parameters Model 1 Model 2 Model 3 Model 4

Epochs 30 39 30 36

Learning Rate 0.001 0.001 0.001 0.001

Mini Batch Size | 8 8 8 8

Embeddings Flair, BERT- Flair, BERT- Flair, BERT- Flair, BERT-
large-uncased, large-uncased, base-uncased, base-uncased,
CharacterEm- CharacterEm- CharacterEm- CharacterEm-
beddings beddings,GloVe | beddings,GloVe | beddings

Table 1: Parameters of different Proposed Models
6 Result

The parameter details of the 4 different models
and the embeddings used are listed in table 1. It
lists the number of epochs the model was trained
on with the initial learning rates and batch sizes.
Model 2 ran for the most epochs before being auto-
stopped as no improvements were seen in the last
4 epochs and the learning rate parameter got too
small due to the adaptive learning rate function. All
the models had Flair and Character embeddings
with the variation of GloVe and BERT-uncased
embeddings. Table 2 lists different models used

Model \ F1 \ Precision \ Recall ‘

Model 1 | 0.748 0.971 0.929
Model 2 | 0.737 0.967 0.925
Model 3 | 0.726 0.968 0.916
Model 4 | 0.724 0.973 0.909

Table 2: Experimental results

and their respective F1-scores, precision and recall
values for our test set. It can be inferred that model
1 i.e. stacked embeddings with Flair, BERT-1arge-
uncased, CharacterEmbedding performed the best
with an F1 score of 0.748 with precision and recall
of 0.971 and 0.929 respectively. It was able to
predict toxic spans closest to the ground truth. The
other models are not too behind than this but it
seems that model 4 did not have too much of a
difference when stacked with GloVe embeddings
as seen in model 3.

Figure 6 presents the comparative analysis of
F1 scores achieved by the 4 models proposed by
the authors in table 1 and the best performing
model from the NLRG system (Chhablani et al.,
2021) and the UniParma system (Karimi et al.,
2021). The authors of NLRG have used a BERT
based RoBERTa token classification method to
reach their best F1 score of 0.689. The authors of

Comparitive Study-F1 Score
0.76
0.74

0.72
0.7
0.68
0.66
0.64 I
0.62

. Proposed =~ Proposed = Proposed = Proposed
NLRG UniParma Model 1 Model 2 Model 3 Model 4

0.6672 0.748 0.737 0.726 0.724

F1 Score

HFlScore 0.6895

Models

Figure 6: Comparative Analysis of F1 scores

UniParma have used CharacterBERT and the bag
of words(BOW) method to get their F1 score of
0.66. Proposed model 1 (highlighted in red) was
the best performing model with a 0.748 F1 score.

Pre-processed text :_

Ground spans=[12,13,14,15,16]=["idiot’]

Predicted spans=[12,13,14,15,16]=["idiot’]

The above example displays the input text, the
pre-processed clean text with the toxic word “idiot”
highlighted in red. Below them is the ground truth
for the spans of this toxic word and then there are
the correct predicted spans for it.

7 Conclusion

We support the systematic development for iden-
tifying toxic spans. We have successfully been
able to deploy a linked list approach to prepare the
data and then train it using the stacked embeddings
method and produce empirical results. This task
can prove to be useful in providing a better analysis
in the censoring of toxic posts on the internet.

946

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018a. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Con-
ference on Computational Linguistics, pages 1638—
1649.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018b. Contextual string embeddings for sequence
labeling.

Jay Alammar. 2018. The illustrated transformer.

Jay Alammar. 2019. A visual guide to using BERT for
the first time.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019. Nuanced metrics
for measuring unintended bias with real data for text
classification. CoRR, abs/1903.04561.

Gunjan Chhablani, Yash Bhartia, Abheesht Sharma,
Harshit Pandey, and Shan Suthaharan. 2021. Nlrg
at semeval-2021 task 5: Toxic spans detection lever-
aging BERT-based token classification and span pre-
diction techniques.

Giovanni Da San Martino, Seunghak Yu, Alberto
Barrén-Cedeno, Rostislav Petrov, and Preslav
Nakov. 2019. Fine-grained analysis of propaganda
in news article. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5640-5650.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing.

Cyril Goutte and Eric Gaussier. 2005. A probabilistic
interpretation of precision, recall and f-score, with
implication for evaluation. In Proceedings of the
27th European Conference on Advances in Informa-
tion Retrieval Research, ECIR’05, page 345-359,
Berlin, Heidelberg. Springer-Verlag.

Ambuje Gupta, Harsh Kataria, Souvik Mishra, Tapas
Badal, and Vipul Mishra. 2020. Bennettnlp at
semeval-2020 task 8: Multimodal sentiment classi-
fication using hybrid hierarchical classifier. In Pro-
ceedings of the Fourteenth Workshop on Semantic
Evaluation, SemEval@COLING 2020, Barcelona
(online), December 12-13, 2020, pages 1085-1093.
International Committee for Computational Linguis-
tics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

947

Akbar Karimi, Leonardo Rossi, and Andrea Prati. 2021.
Uniparma @ semeval 2021 task 5: Toxic spans
detection using characterBERT and bag-of-words
model.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional Istm-cnns-crf.
pages 1064-1074.

John Pavlopoulos, Léo Laugier, Jeffrey Sorensen, and
Ion Androutsopoulos. 2021. Semeval-2021 task 5:
Toxic spans detection (to appear). In Proceedings of
the 15th International Workshop on Semantic Evalu-
ation.

David Sayce. 2020. The number of tweets per day in
2020.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: deep con-
textualized entity representations with entity-aware
self-attention. arXiv preprint arXiv:2010.01057.

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. Semantic Web, Accepted.

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
http://arxiv.org/abs/1903.04561
http://arxiv.org/abs/1903.04561
http://arxiv.org/abs/1903.04561
http://arxiv.org/abs/2102.12254
http://arxiv.org/abs/2102.12254
http://arxiv.org/abs/2102.12254
http://arxiv.org/abs/2102.12254
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/978-3-540-31865-1_25
https://www.aclweb.org/anthology/2020.semeval-1.143/
https://www.aclweb.org/anthology/2020.semeval-1.143/
https://www.aclweb.org/anthology/2020.semeval-1.143/
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://arxiv.org/abs/2103.09645
http://arxiv.org/abs/2103.09645
http://arxiv.org/abs/2103.09645
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://www.dsayce.com/social-media/tweets-day/
https://www.dsayce.com/social-media/tweets-day/
https://doi.org/10.3233/SW-180338
https://doi.org/10.3233/SW-180338
https://doi.org/10.3233/SW-180338

