
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 888–897
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

888

S-NLP at SemEval-2021 Task 5: An Analysis of Dual Networks for
Sequence Tagging

Viet Anh Nguyen ∗, Tam Minh Nguyen *, Huy Quang Dao *, Quang Huu Pham *

AI Research Team
R&D Lab, Sun Asterisk Inc.

{nguyen.viet.anh-d, nguyen.minh.tam-b,
dao.quang.huy-b, pham.huu.quang}

@sun-asterisk.com

Abstract

The SemEval 2021 task 5: Toxic Spans Detec-
tion is a task of identifying considered-toxic
spans in text, which provides a valuable, au-
tomatic tool for moderating online contents.
This paper represents the second-place method
for the task, an ensemble of two approaches.
While one approach relies on combining differ-
ent embedding methods to extract diverse se-
mantic and syntactic representations of words
in context; the other utilizes extra data with
a slightly customized Self-training, a semi-
supervised learning technique, for sequence
tagging problems. Both of our architectures
take advantage of a strong language model,
which was fine-tuned on a toxic classification
task. Although experimental evidence indi-
cates higher effectiveness of the first approach
than the second one, combining them leads to
our best results of 70.77 F1-score on the test
dataset.

1 Introduction

Social Network sites are an integral part of our
society. These platforms are often designed to max-
imize user interaction without sufficient means to
moderate such interactions. The amount of users
being cyber-bullied by toxic comments has reached
an alarming proportion (Chan et al., 2021). To effi-
ciently maintain the health of online communities,
an automatic online-content filtering tool needs to
be developed. Numerous previous attempts to re-
solve this issue have focused on toxic comment
classification (Georgakopoulos et al., 2018; Chu
et al., 2017; Pham et al., 2020; Risch and Krestel,
2020). Although these classification models are
capable of detecting toxic comments, their outputs
are not interpretable (Mathew et al., 2020).

On the other hand, Toxic Spans Detection
(Pavlopoulos et al., 2021) is a task of locating toxic

∗equal contribution

segments in texts. With such a system, the moder-
ators can easily highlight offensive words in com-
ments, which is an essential and explainable assis-
tance for automated comment rating. In this paper,
we propose our two approaches to resolve the task.
Our contributions are as follows:

• We investigate the effectiveness of our slightly
customized Self-training (Wei et al., 2021)
technique for a sequence tagging problem -
Toxic Spans Detection.

• We explore the benefits of combining differ-
ent word representations including Byte Pair
Encoding (Sennrich et al., 2015), contextual
character-level (Akbik et al., 2018), FastText
(Bojanowski et al., 2016) and RoBERTa (Liu
et al., 2019) word embeddings in order to uti-
lize different syntactic and semantic informa-
tion learned by these embedding methods.

• Taking advantage of a well-domain-adaptive
pre-trained language model on a classifica-
tion task (Unbiased-toxic-RoBERTa (Hanu
and Unitary team, 2020)), we successfully in-
tegrate our two above-mentioned methods to
achieve a high F1-score of 70.77 and rank
2nd at the Semeval 2021 Task 5: Toxic Spans
Detection.

• Numerous exciting insights of the system’s
performance have been drawn with detailed
error analysis.

2 Related Work

2.1 Word representation learning
Word2Vec (Mikolov et al., 2013) is among the earli-
est models for extracting continuous word represen-
tations. Although there have been numerous mod-
ern pre-trained text embeddings that outperformed
Word2Vec in downstream tasks, it is still widely

889

used due to its simplicity and effectiveness (Akbik
et al., 2018). However, Word2Vec fails to handle
rare or out-of-vocabulary words. To address this
problem, FastText (Bojanowski et al., 2016) learn a
word representation as sum of its character n-grams
embeddings. On the other hand, (Sennrich et al.,
2015) utilizes Byte Pair Encoding, an alternative
approach for learning sub-word representations.

Recent pre-trained language models learn
context-sensitive word representations by utilizing
different pretext tasks namely autoregressive lan-
guage modeling (Radford et al., 2019; Akbik et al.,
2018), masked language modeling (Devlin et al.,
2018) on a large amount of unlabeled data. Those
methods have led to significant improvements in
a wide range of downstream tasks, including Text
Classification (Howard and Ruder, 2018), Question
Answering (Devlin et al., 2018) and Named Entity
Recognition (Akbik et al., 2019b).

Unbiased Toxic RoBERTa (Hanu and Unitary
team, 2020) is a language model that utilizes gen-
eral pre-trained RoBERTa (Liu et al., 2019) to
continually pre-train a toxic comment classifica-
tion task on Civil Comments Dataset 1. This
toxic-domain-adaptive language model can be suc-
cessfully employed to Toxic Spans Detection task
whose domain is a subset of Civil Comments.

2.2 Self-training

Self-training, a semi-supervised method, incorpo-
rates the prediction of teacher models on extra
available in-domain unlabeled data into the train-
ing of a student model (Wei et al., 2021). Self-
training has been recently successfully applied in
both Computer Vision and Natural Language Pro-
cessing tasks, including Image Classification (He
et al., 2018), Object Detection (Xie et al., 2020),
Machine Translation (He et al., 2020), ect. Despite
its merits, issues such as the lack of in-domain unla-
beled data (Du et al., 2020) and unreliable-pseudo
labels (Pham et al., 2021) are the main obstacles
for the success of Self-training.

For sequence-tagging problems, there are vari-
ous methods of coping with noisy-pseudo labels.
Unlike classification tasks, noisy self-labeled data
can be easily eliminated by removing those which
have low confidence scores; there is a lack of a
comprehensive means to determine this score for a
sequence-labeling data point. In several recent re-

1https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification

search, a deep reinforcement learning (Chen et al.,
2018) and meta-learning (Wang et al., 2020) has
been proposed to reduce “error propagation from
noisy pseudo-labels” for sequence labeling tasks.

3 Methodology

In this section, we describe our proposed frame-
work in detail. Firstly, we develop a simple but
strong baseline to discover the effectiveness of dif-
ferent backbone models. Consequently, we build,
extend, and customize our two methods on top of
the best backbone and baseline model.

3.1 Baseline

We consider this task as a word-level binary classifi-
cation problem even though the label annotation of
the dataset is at character-level. Therefore, we first
align character annotations to word annotations.
We utilize a straightforward architecture, with a
pre-trained language model as the backbone and a
simple classifier on top of it. Specifically, let denote
w = {w1, w2, ..., wm} and y = {y1, y2, ..., ym}
with wi, yi is the word and its label at position i re-
spectively, and x = {x1, x2, ..., xn} with xj is the
jth subword tokens. Notice here that m and n can
be different because language models learns sub-
word representations instead of word-embeddings.
h = {h1, h2, ..., hn} is the set of contextual embed-
ding for all tokens in x (taken from the last layer’s
output of the backbone) and p = {pi, p2, ..., pm}
with pi is the set of all subword positions of the
word at position i. To obtain a word-level embed-
ding, we took the sum of its corresponding subword
embeddings.

ei =
∑
j∈pi

hj

Then probability distribution of the word at po-
sition i is formulized as follow.

p(wi) = Softmax(WcReLU(Whei + bh) + bc)

With Wc, bc and Wh, bh are the learnable
weights and bias respectively. We optimize the
model by minimize the Cross Entropy loss between
the ground-truth and model predictions.

3.2 Method 1: Feature-based Learning

We customize and extend the baseline model by
constructing a standard Named Entity Recognition

890

Figure 1: An illustration of our method. We start with a baseline, a simple sequence tagger utilizing Toxic
RoBERTa as the backbone. In the Self-training branch, the teacher- the best-scored baseline, generates soft pseudo
labels for the student to learn. On the other hand, the Feature-based Learning model concatenates the input vector
with different embedding methods i.e. Flair, FastText and BPE, then trains the Named Entity Recognition task.
Predicted character offsets (for each sentence) of two models are combined using Intersection Union (Ensemble
Section) to obtain the final prediction.

model using Flair package (Akbik et al., 2019a) 2 in
which each span is an entity encoded in IOB format.
The model consists of two parts: input representa-
tion using diverse embeddings and a feature-based
model.

3.2.1 Input Representation
In represent both syntactic and semantic informa-
tion of a word, we combine embeddings extracted
by different word embeddings methods. These rep-
resentations strengthen advantages of each other
while mutually easing their weaknesses.

These word embeddings and their usage in our
works are as follows:

• Flair: Contextual Flair model works on char-
acter level. We fine-tune two models ‘news-
forward’ and ‘news-backward’, on the Next
Character Prediction task (Akbik et al., 2018),
with 600K toxic texts from the Civil Com-
ment Dataset to adapt them to toxic comment
domain.

• Toxic RoBERTa: To utilize contextual em-
beddings from Toxic RoBERTa, besides fea-

2https://github.com/flairNLP/flair

tures derived from the last layer as our base-
line, we concatenate two more layers: the
first one (layer 1) and the middle one (layer
6). This choice allows the feature learning to
understand three levels of context-specificity
(Ethayarajh, 2019). The final word represen-
tation is obtained by taking the sum of its
subword embeddings.

• FastText with Byte Pair Embedding: It
has been practically proven that combining
contextual embeddings with static embed-
dings improves the performance of many NLP
downstream tasks (Peters et al., 2018). We dis-
card subword part, take only word vector part
of a FastText model (pre-trained on Common
Crawl dataset) for word representation and
utilize an external English Byte Pair Embed-
ding for out-of-vocabulary functionality. This
combination performs as well as the original
FastText while effectively reduces memory
usage.

All of the above embeddings are concatenated to
form a long vector for each word, which is digested
by a feature learning model.

891

3.2.2 Feature Learning
The feature learning part is a sequence-to-sequence
model that takes a sequence of word vectors and
learns higher-level features and inferences tags. We
use a linear layer to reproject the word embeddings
onto a vector space with dimensions equal to the
length of concatenated word embeddings. Two
follow-up BiLSTM (Hochreiter and Schmidhuber,
1997) (Dyer et al., 2015) blocks are added to learn
high-level semantic-syntactic dependencies of the
sequence. Finally, a Conditional Random Fields
(Sutton and McCallum, 2010) layer, placed on top
of the BiLSTMs, makes tag prediction for each
word.

3.3 Method 2: Self-training With In-domain
Unlabeled Data

3.3.1 In-domain data retrieval
In-domain unlabeled data is one of the determining
factors for Self-training. The Toxic Spans Detec-
tion task’s labeled dataset is a subset of toxic-and-
severe-toxic-labeled data in Civil Comment Dataset
(Pavlopoulos et al., 2021). To retrieve additional
data, we first selected posts classified as toxic by at
least half of its toxicity annotators. After removing
texts in both train and trial labeled datasets from
the retrieved data, we randomly select a subset of
30,000 unseen texts for the task. The choice of
extra datasets’ size is heuristic and limited due to
low-computing resources.

3.3.2 Data filtering and soft label
We slightly customized the pseudo-labels distilla-
tion process applied in classification tasks (He et al.,
2018) for the sequence-tagging problem. Instead
of evaluating and selecting each text in unlabeled
data, we use the teacher model’s post-softmax class
probabilities to evaluate and select each word in
a context. Specifically, if each word’s confidence
score is greater than a threshold, we keep the back-
propagation process through that word; otherwise,
we ignore it. Notice here that the probabilities men-
tioned above are also utilized as confidence scores
and pseudo-labels for the student training.

3.3.3 Combine generated-labeled data with
original-labeled data

The student model is trained on a combination of
original-labeled and synthetic-labeled datasets. It
has the same architecture as the teacher model ex-
cept for increases in dropout rates of dropout layers
and the hidden size in the model’s head classifier.

We chose the best checkpoint of the baseline model
as teacher model.

3.3.4 Post-processing
For each continuous toxic-predicted span, we elim-
inate any existing punctuation at both its begin-
ning and end. Additionally, to partially prevent our
model from predicting common toxic comments’
targets as toxic spans, we exclude any predicted
span in our predefined list of targets (described
in details in the Appendices section). This list is
based on the identity-targets list of toxic comments
in the Civil Comments Dataset.

3.4 Ensemble Learning
We combine our two approaches by taking intersec-
tion (Intersection Ensemble) or the union (Union
Ensemble) of predicted character offsets generated
by best model results, from each method, to obtain
the final offsets for each sentence.

SI = S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2}
SU = S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2}

With SI, SU, S1,S2 are the intersection, union
Feature-based Learning and Self-training offset pre-
dictions for one sentence of the ensemble model
respectively.

Figure 1 illustrates our composed framework:
the two approaches, built and extent on top of the
baseline, are combined for the final predictions.

4 Experiments

4.1 Dataset
The original dataset contains 7939 annotated sam-
ples for training and 2000 unlabeled samples for
testing. We use a small trial dataset, given by the
task organizer which consists of 690 labeled sam-
ples, as our development set. We train our models
on the training set, use the development set to find
the best hyper-parameters, and finally make our
submission on the private test set.

4.2 Experiment setup
This section focused on the hyper-parameters con-
figurations of our two methods and is mentioned in
the Appendices section.

4.3 System Configuration
Our experiments are conducted on a computer with
Intel Core i7 9700K Turbo 4.9GHz, 32GB of RAM,
GPU GeForce GTX 2080Ti, and 1TB SSD hard
disk.

892

4.4 Evaluation Metric
The evaluation metric of our system is defined, by
the task organizer (Pavlopoulos et al., 2021) , as
follow:

F t
1 (Ai, G) =

2 · P t (Ai, G) ·Rt (Ai, G)

P t (Ai, G) +Rt (Ai, G)

P t (Ai, G) =

∣∣St
Ai
∩ St

G

∣∣∣∣∣St
Ai

∣∣∣
Rt (Ai, G) =

∣∣St
Ai
∩ St

G

∣∣∣∣St
G

∣∣
if St

G = {φ} ⇒ F t
1 (Ai, G) =

{
1 if St

Ai
= {φ}

0 otherwise

F T
1 (Ai, G) =

1

n

n∑
t=1

F t
1 (Ai, G)

With:

• St
Ai

: character offsets of toxic post t, output
of system Ai

• Gt : ground truth character offsets of toxic
post t

• Ft
1 (Ai,G) : F1 score of system Ai , with

respect to ground truth Gt of post t

• FT
1 (Ai,G) : F1 score of system Ai on

dataset T

• |.| : set cardinality

4.5 Results
4.5.1 Baseline result
Table 1 indicates the performances of our baseline
model with two different backbones, RoBERTa
(Liu et al., 2019) and Unbiased Toxic RoBERTa
(which is refered as Toxic RoBERTa for the rest
of the paper) (Hanu and Unitary team, 2020). The
toxic domain-adaptive pre-trained language model
outperforms general RoBERTa by a large margin
(up to 0.68), which sheds light on the necessity of
adapting universal representations to task-specific
domains.

Backbone Private test
F1-score

RoBERTa 68.62

Toxic RoBERTa 69.30

Table 1: Performances of the baseline model with two
different backbones.

4.5.2 Feature-based Learning result
We froze Toxic RoBERTa backbone in all experi-
ments of feature-based learning except the last one.
This latest experiment compares the differences in
model performances between tuning and not tuning
Toxic RoBERTa.

Word Embeddings Private test
score

Toxic RoBERTa 69.89

FastText w/ BPE 67.89

Flair 67.92

Toxic RoBERTa + Flair 69.99

Toxic RoBERTa
+ FastText w/ BPE

69.95

Toxic RoBERTa
+ Flair + FastText w/ BPE

70.26

Toxic RoBERTa (fine-tuned)
+ Flair + FastText w/ BPE

67.37

Table 2: Results of different embedding combinations
for method one

Table 2 shows the feature-based model’s perfor-
mance with different word embeddings and the gap
in F1-score between feature-based and fine-tuning
models. Our findings are as follows:

Toxic RoBERTa was the best feature extractor
since using it achieved a competitive F1-score of
69.89. On the other hand, using only Flair results
in a slightly better performance than FastText with
BPE (67.92 and 67.89 respectively).

Adding more features (learned by Flair or Fast-
Text with BPE embeddings) to ones learned by
Toxic RoBERTa improved F1-score (69.99 and
69.95 respectively). Ultimately, combining all the
word-representations obtained the highest score at
70.26.

Fine-tuning RoBERTa dramatically decreased
the performance (up to 3-4).

893

4.5.3 Self-training result
Table 3 presents the performance result of the 2nd
method. Our choice of the teacher was the best-
performed baseline model with 69.30 F1-score.
Post-processing enhanced this performance, re-
sulted in 69.44 F1-score. Self-training only leads
to a better student with an improvement of 0.1 com-
pared to the post-processed teacher model. We
suspect that this unimpressive increase is due to the
teacher model’s confirmation bias and the unsolved
issue of noisy-pseudo labels (Pham et al., 2021).

Backbone Private test
F1-score

Teacher w/o Post processing 69.30

Teacher w/ Post processing 69.44

Student 69.54

Table 3: Performances of the teacher model with and
without post-processing and student model.

4.5.4 Ensemble learning result
Table 4 illustrates the effectiveness of our ensem-
ble methods. Intersection Ensemble results in a
significant improvements of our system prediction
(0.51 and 1.23 compared to Feature-based Learn-
ing and Self-training respectively) while Union En-
semble leads to a substantial decrease of F1-score
(-1.14 and -0.42 compared to method 1 and 2 re-
spectively). This exciting finding indicates that In-
tersection Ensemble can rule out numerous falsely
positive tokens of our two models whereas Union
Ensemble worsen the performance by integrate
these false positives.

Method Private test
F1-score

Feature-based Learning 70.26

Self-training 69.54

Union Ensemble 69.12

Intersection Ensemble 70.77

Table 4: Performance of ensemble models with differ-
ent ensemble methods.

5 Error Analysis

Carefully analyzing errors made by our ensemble
model on the test dataset has shed light on our sys-

Figure 2: Analysis of the detection of lengthy toxic
spans.

tem’s weaknesses. The following terms are defined
to aid the reading of this section:

• Toxic span: ground-truth toxic span.

• Long span: contains at least two words.

• True positive span: all words in the span are
correctly predicted as toxic.

• False negative span: at least one word in the
toxic span are predicted as non-toxic.

5.1 Unsuccessful detection of lengthy toxic
spans

Among false negative spans in our system’s predic-
tions, 218 spans are short spans, which constitutes
a small portion of the total short spans of the test
set. In contrast, the other 158 spans are long spans
while the total number of long spans of the test set
is 200. This means our model had a bad perfor-
mance on lengthy toxic spans with false negative
rate up to 79%.

Figure 2 further investigates on long span failure.
While 90% (38 spans/42 spans) of our correctly
predicted long spans contains only two word, this
numbers for false-negative spans decrease to 62%
(98 spans/158 spans). Longer spans are harder to
predict. Failing to detect spans with more than
three words contributes approximately 38% to the
model’s false-negative.

Table 5 demonstrates several instances of the
failure.

5.2 False negatives due to post-processing
Although experimentally showed its effectiveness,
post-processing after Self-training inevitably ex-
cluded continuous predicted spans such as “NIG-
GERS” and “MUSLIMS” which are potentially a
part of ground-truth toxic spans.

894

Ground-truth Prediction

Bunch of cowards cowards

burn them at the stake burn them

big, fat, orange buffoon None

you’re a fecking write-off None

Table 5: Several instances of errors in detecting long-spans

I wish this moron would have been shot to death by the US soldier instead of the other way around.
I hope that 10 million is given to the soldier’s family who actually deserve it.

Our ignorant, clueless legislators are working hard to ensure that Alaskans are as
ignorant and clueless as the legislators themselves are.
Stupid Alaskans are the only way these moronic legislators will continue to get re-elected.

Trash, and just not the regular bigoted flatulence, this crap you write is evil trash

Note: Underlines are the prediction of our models and bold text are our manually annotated toxic-spans.

Table 6: Several examples of our model predictions on no-span texts, which may have been mis-annotated

5.3 Failure due to mis-annotated spans

We notice our model predicted false positive to-
kens in 469 toxic comments and most of them (308
comments) are humanly annotated with no toxic
spans. In our opinion, many of these texts are mis-
annotated, which potentially lower the precision of
our system.

Table 6 presents several examples of this issue.
The underlines are our model predictions, while the
bold text spans are our opinion of what toxic anno-
tations should be for the given text. All these texts
contain no toxic spans, according to the dataset’s
annotators.

6 Conclusion

In this paper, we proposed a system to resolve
the SemEval task 5: Toxic Spans Detection. Our
method utilized a pre-trained language model in
toxic-domain and successfully combined two ap-
proaches Self-training and Feature-based Learning
to achieve a high F1-score of 70.77. Finally, we
provided insights into failure of the system and the
task’s potential falsely-negative annotations issue
with careful error analysis.

Despite our success on the leader board, in future
research, we determine to improve our model as
follow:

• Investigate a solution for the noisy-pseudo
label issue to enhance the performance of the

Self-training method.

• Combine Self-training with Feature-based
Learning to learn a more robust toxic-span
detection model.

Acknowledgment

This work is partially supported by Sun-Asterisk
Inc. We would like to thank our colleagues at Sun-
Asterisk Inc for their advice and expertise. Without
their support, this experiment would not have been
accomplished.

895

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019a.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alan Akbik, Tanja Bergmann, and Roland Vollgraf.
2019b. Pooled contextualized embeddings for
named entity recognition. In NAACL 2019, 2019 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, page
724–728.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Con-
ference on Computational Linguistics, pages 1638–
1649.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Tommy K.H. Chan, Christy M.K. Cheung, and
Zach W.Y. Lee. 2021. Cyberbullying on social
networking sites: A literature review and future
research directions. Information Management,
58(2):103411.

Chenhua Chen, Yue Zhang, and Yuze Gao. 2018.
Learning how to self-learn: Enhancing self-training
using neural reinforcement learning. pages 25–30.

T. Chu, Kylie Jue, and Max L. Wang. 2017. Comment
abuse classification with deep learning.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. 2020. Self-training im-
proves pre-training for natural language understand-
ing.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China. Associa-
tion for Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geome-
try of bert, elmo, and gpt-2 embeddings.

Spiros V. Georgakopoulos, Sotiris K. Tasoulis, Aris-
tidis G. Vrahatis, and Vassilis P. Plagianakos. 2018.
Convolutional neural networks for toxic comment
classification. In Proceedings of the 10th Hellenic
Conference on Artificial Intelligence, SETN ’18,
New York, NY, USA. Association for Computing
Machinery.

Laura Hanu and Unitary team. 2020. Detoxify. Github.
https://github.com/unitaryai/detoxify.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation.

Kaiming He, Ross Girshick, and Piotr Dollár. 2018.
Rethinking imagenet pre-training.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Binny Mathew, Punyajoy Saha, Seid Muhie Yi-
mam, Chris Biemann, Pawan Goyal, and Animesh
Mukherjee. 2020. Hatexplain: A benchmark dataset
for explainable hate speech detection.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space.

John Pavlopoulos, Léo Laugier, Jeffrey Sorensen, and
Ion Androutsopoulos. 2021. Semeval-2021 task 5:
Toxic spans detection (to appear). In Proceedings of
the 15th International Workshop on Semantic Evalu-
ation.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Lu-
ong, and Quoc V. Le. 2021. Meta pseudo labels.

Q. H. Pham, V. Anh Nguyen, L. B. Doan, N. N. Tran,
and T. M. Thanh. 2020. From universal language
model to downstream task: Improving roberta-based
vietnamese hate speech detection. In 2020 12th In-
ternational Conference on Knowledge and Systems
Engineering (KSE), pages 37–42.

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
https://doi.org/https://doi.org/10.1016/j.im.2020.103411
https://doi.org/https://doi.org/10.1016/j.im.2020.103411
https://doi.org/https://doi.org/10.1016/j.im.2020.103411
https://doi.org/10.1109/IALP.2018.8629107
https://doi.org/10.1109/IALP.2018.8629107
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.02194
http://arxiv.org/abs/2010.02194
http://arxiv.org/abs/2010.02194
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
https://doi.org/10.1145/3200947.3208069
https://doi.org/10.1145/3200947.3208069
http://arxiv.org/abs/1909.13788
http://arxiv.org/abs/1909.13788
http://arxiv.org/abs/1811.08883
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2012.10289
http://arxiv.org/abs/2012.10289
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/2003.10580
https://doi.org/10.1109/KSE50997.2020.9287406
https://doi.org/10.1109/KSE50997.2020.9287406
https://doi.org/10.1109/KSE50997.2020.9287406

896

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Julian Risch and Ralf Krestel. 2020. Toxic comment
detection in online discussions.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units.

Charles Sutton and Andrew McCallum. 2010. An in-
troduction to conditional random fields.

Yaqing Wang, Subhabrata Mukherjee, Haoda Chu,
Yuancheng Tu, Ming Wu, Jing Gao, and Ahmed Has-
san Awadallah. 2020. Adaptive self-training for few-
shot neural sequence labeling.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu
Ma. 2021. Theoretical analysis of self-training with
deep networks on unlabeled data.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V. Le. 2020. Self-training with noisy student
improves imagenet classification.

A Appendices

To form our target list in 3.3.4, we include original
form, plural form, upper or lower case of each word
in the table 7 to that list.

Target Identities

Male, female, transgender,
heterosexual, homosexual, gay,
lesbian, bisexual, Christian,
catholic, jewish, Muslim,
Islam, hindu, buddhist,
atheist, black, white,
asian, latino, Nigger, Mexican.

Table 7: Common target identities in Civil Comment
dataset.

Table 8 describes hyperparameter configuration
for training. For Feature-based Learning, Flair em-
beddings are fine-tuned before training the NER
model. Turn into Self-training, the best baseline
model is used as the teacher. If not specified, the
corresponding hyper-parameter value is used for
training both baseline and student models

http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1011.4088
http://arxiv.org/abs/1011.4088
http://arxiv.org/abs/2010.03680
http://arxiv.org/abs/2010.03680
http://arxiv.org/abs/2010.03622
http://arxiv.org/abs/2010.03622
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252

897

Task Hyperparameter Value Description

Fine-tune
Flair

pre-trained weights
”news-forward”/
”news-backward”

Initial weights of the Flair models.

sequence length 250 Length of character sequences

mini batch size 500 Size of batches during training

learning rate 20 Initial learning rate

patience 10 Number of epochs without improvement

max epochs 5 Number of maximum training epochs

optimizer SGD Optimizer used for training

scheduler AnnealOnPlateau Learning rate scheduler

Train NER
model

dropout 0.3995 Probability of an element to be zeroed

locked dropout 0.4413
Probability of entire parameters in
embedding space to be zeroed

word dropout 0.0677
Probability of entire words (or characters)
in embedding space to be zeroed

learning rate 0.0005 Initial learning rate

min learning rate 1e-07
Minimum learning rate to terminate
training

mini batch size 32 Size of batches during training

max epochs 50 Number of maximum training epochs

optimizer AdamW Optimizer used for training

scheduler AnnealOnPlateau Learning rate scheduler

Baseline +
Self-training

hidden size T 150
Size of the linear projection of
the teacher’s head classifier

hidden size S 160
Size of the linear projection of
the student’s head classifier

learning rate 1e-05 The learning rate used for training

optimizer AdamW Optimizer used for training

scheduler None No learning rate scheduler used

dropout T 0.3
Dropout rate of all dropout
layers in the teacher head classifer

dropout S 0.4
Dropout rate of all dropout layers in
the student head classifer

max epochs 5 Total training epochs

label smoothing 0.15 Label smoothing coefficient

confidence threshold 0.7

Use in obtaining extra data
for student model, all words with
post-softmax score (calculated
by the teacher model) less than this
threshold will be ignored

batch size 8 Size of batches during training

Table 8: Hyperparameters for feature-based model training.

