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Abstract

This paper describes our contribution to
SemEval-2021 Task 5: Toxic Spans Detection.
Our solution is built upon RoBERTa language
model and Conditional Random Fields (CRF).
We pre-trained RoBERTa on Civil Comments
dataset, enabling it to create better contextual
representation for this task. We also employed
the semi-supervised learning technique of self-
training, which allowed us to extend our train-
ing dataset. In addition to these, we also iden-
tified some pre-processing steps that signifi-
cantly improved our F1 score. Our proposed
system achieved a rank of 41 with an F1 score
of 66.16%.

1 Introduction

In recent years there has been an exponential in-
crease in the use of social network platforms. With
rising abusive language and hate on such plat-
forms, it is more important than ever to main-
tain online conversations constructive and inclu-
sive. This problem can be tackled by filtering toxic
comments/posts. The massive volume of data gen-
erated at a fast pace makes manually filtering each
comment complicated and time-consuming. This
process can be automated by modelling it as a su-
pervised classification problem. A similar task was
proposed in SemEval-2019 Task 6: Identifying and
Categorizing Offensive Language in Social Media
(OffensEval) (Zampieri et al., 2019). Most of the
top-ranked teams in this task used transformer lan-
guage models (Liu et al., 2019a; Zhu et al., 2019;
Pelicon et al., 2019; Wu et al., 2019) or an ensemble
of CNN and RNN (Mahata et al., 2019; Mitrović
et al., 2019) to classify the sentences.

The problem with the above approach is that it
doesn’t give moderators much knowledge about
the reason for a sentence’s toxicity. Highlighting
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toxic spans can help human moderators who fre-
quently deal with long comments and prefer at-
tribution rather than just an unexplained toxicity
score. SemEval 2021 Task 5: Toxic Span Detection
(Pavlopoulos et al., 2021) gave a chance to propose
NLP systems to solve this problem. The task is con-
cerned with developing systems that can recognise
spans that contribute to the text’s toxicity.

This task had a few challenges. Since the sam-
ples were from an online commenting platform,
they were grammatically incorrect and consisted of
many out of vocabulary words. The noisy and am-
biguous structure of comments significantly ham-
pers the performance of general NLP models. The
training dataset had a little less than 8000 sam-
ples. Thus, there was a need to select systems that
can produce meaningful results, even with a lim-
ited number of training samples. Undoubtedly, the
hardest part is to identify spans that can account
for the toxicity of the sample. The span could be
as small as a single token and as large as the sam-
ple itself. The linguistic variations in the usage of
words and phrases make such attribution even more
difficult.

We formulated the task as a sequence tagging
problem and used RoBERTa (Liu et al., 2019b),
a pre-trained Transformer-based (Vaswani et al.,
2017) language model as our base model. We fur-
ther pre-trained RoBERTa on the Civil Comments
Dataset as a masked language model (Devlin et al.,
2018) to create a domain-specific model. We em-
ployed a Conditional Random Field (CRF) layer
(Lafferty et al., 2001) for predicting the most prob-
abilistic sequence of labels for each input sequence.
We also applied a few pre-processing steps, which
lead to significant performance improvements.
Lastly, we leveraged the semi-supervised learning
technique of self-training (Yarowsky, 1995; Liao
and Veeramachaneni, 2009; Jurkiewicz et al., 2020)
by training our model on the manually annotated
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Figure 1: Our Model Architecture. We used RoBERTa as our transformer. Classifier constitutes two dense layers
and a CRF layer with three labels.

dataset and using it to further extend the training
set by generating toxic spans for other unannotated
datasets. We have made our system’s implementa-
tion available through GitHub1.

The rest of the paper is organised as follows. Sec-
tion 2 explains our model implementation in detail.
Section 3 and 4 presents our experimental setup
and achieved results, respectively. In section 4, we
perform error analysis, followed by conclusions in
the last section.

2 System Description

2.1 Pre-Training

Toxic comments have a different language con-
struct from the general language. Their slang and
obfuscated content (van Aken et al., 2018) make
it difficult for the language models pre-trained on
broader datasets to understand them. Similar to
other domain-specific models (Beltagy et al., 2019;
Lee et al., 2020; Paraschiv et al., 2020), we pre-
trained the RoBERTa-base model on the Civil com-
ments dataset using Masked Language Modelling
(MLM) (Devlin et al., 2018) to provide the nec-
essary domain knowledge and created our model
RoBERTa(p). The original weights of RoBERTa-
base served as the starting point for the pre-training.
The pre-training was done for 0.2 million steps with
a batch size of 32 and a learning rate of 2e-5.

1https://github.com/jain-abhinav02/
Toxic_Spans_Detection

2.2 Fine-Tuning

We formulated the task as a token level sequence
tagging problem where we classify each token as
Begin, Inside or Outside (BIO scheme). Having
begin and end tags helps formulate the notion of
spans better and creates dependencies between var-
ious tokens of a toxic span (Singh et al., 2020),
allowing it to perform better than other alternatives
such as IO (Inside Outside).

Pre-Processing: We applied a few pre-
processing steps before fine-tuning RoBERTa on
the input text samples. First, we converted all
the text samples to lowercase. We observed that
punctuation marks did not add any significant
information to the semantics of a sentence. There-
fore, as a part of the data cleaning, punctuation
marks such as commas and dashes were removed.
We also collapsed multiple space characters into a
single space.

Model: We provided the text samples as input
to our pre-trained RoBERTa(p) model to get 768-
dimensional contextual embeddings for each token.
These contextual embeddings were passed through
two dense layers of 512 and 128 dimensions, fol-
lowed by a Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) layer with three labels (B-Begin,
I-Inside or O-Outside). The CRF layer models the
correlation between the labels predicted for the in-
dividual tokens. It receives the logits for each input
token and predicts the most probabilistic sequence

https://github.com/jain-abhinav02/Toxic_Spans_Detection
https://github.com/jain-abhinav02/Toxic_Spans_Detection
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Model Tag F1 Precision Recall
RoBERTa IO 0.6091 0.5831 0.7224
RoBERTa(p) IO 0.6183 0.5841 0.7408
RoBERTa(p) + PP IO 0.6376 0.6259 0.7264
RoBERTa(p) + PP + CRF IO 0.6422 0.6323 0.7246
RoBERTa(p) + PP + CRF BIO 0.6566 0.6512 0.7203
RoBERTa(p) + PP + CRF + ST(1) BIO 0.6613 0.6537 0.7295
RoBERTa(p) + PP + CRF + ST(2) BIO 0.6634 0.6590 0.7262

Table 1: Our model results on Test Set. RoBERTa(p) is our model pre-trained on domain-specific data. PP stands
for Pre-processing. ST(1) and ST(2) represents self-training first and second iteration results, respectively.

Figure 2: Self-Training of RoBERTa

of labels for each input sequence. Figure 1 shows
our model architecture.

Post-Processing: The tokens decoded as B-
Begin or I-Inside were marked as toxic. The char-
acter spans corresponding to these toxic tokens
were added to the predicted spans. Two consecu-
tive spans were merged if separated by at most five
characters, provided all of them are non-alphabetic.

2.3 Self-Training
The best performing model on the manually anno-
tated dataset (gold dataset) was used to generate
toxic spans for the unannotated dataset. When
selecting the unannotated data, we followed the
process similar to the one used for creating the
gold dataset (Pavlopoulos et al., 2021) that is, filter
the most toxic samples (toxicity ≥ 0.80 ) from the
Civil Comments dataset and select a random set
of 10,000 samples. This process allowed the sil-
ver data to have similar toxicity distribution as the
gold data. The newly generated annotations (silver
dataset) were then used along with the gold dataset
to train a new model. The model trained on the
combined gold and silver dataset gave better per-
formance (F1 score: 66.13%) than the one trained

only on the gold dataset (F1 score: 65.66%). We
repeated this process for one more iteration with
another random set of 10,000 samples (F1 score:
66.34%). Figure 2 gives a simplistic idea of self-
training.

3 Experimental Setup

Data: Each training example consisted of a text
sample in English, and its ground truth toxic span
provided as a list of character offsets (possibly
empty). The posts were sampled from the publicly
available Civil Comments dataset. The training
set consisted of 7939 samples. We randomly sam-
pled 20% of it as the development set. The test
set for the evaluation phase had 2000 samples. In
the training dataset, sample length varies from 1
to 421 tokens, with an average length of 47 tokens
when tokenized using the RoBERTa-base tokenizer.
Nearly 10% of all tokens in the training dataset
are marked as toxic. The mean span length is 17.5
characters and 485 samples have empty spans. Fur-
ther details about the dataset can be found in the
task description paper (Pavlopoulos et al., 2021).

Evaluation measures: The evaluation measure
for a sample is the F1 score between the predicted
spans and the ground truth spans as defined in the
SemEval-2021 Task 5 paper (Pavlopoulos et al.,
2021). The overall score is obtained by taking the
mean of the F1 score of all samples in the test set.

Implementation details: Since the text samples
were lengthy, we split them into sentences. We
used spacy’s sentence tokenizer for this purpose.
Adam (Kingma and Ba, 2014) was used as the op-
timizer with a learning rate of 1e-5. The batch size
was set to 32. All the model variants were trained
for at most five epochs. We used the RoBERTa-
base tokenizer and model implementation provided
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Original Spans Predicted Spans
Small Sentences

[Sick pervert] Sick pervert
[bloody wankers] bloody wankers

Rare Words
Just another day in the Trump [kleptocracy]. Just another day in the Trump kleptocracy.
Should ha taken his weapon n [pulverized] him Should ha taken his weapon n pulverized him

Non-swear words
When you’re ready to place a monetary bet on
whether these guys get charged with terrorism,
lemme know. Otherwise, I know you’re [all blus-
ter and no balls].

When you’re ready to place a monetary bet on
whether these guys get charged with terrorism,
lemme know. Otherwise, I know you’re all bluster
and no [balls].

Yes, I agree. We need an electoral college for
Washington so that Seattle no longer votes for
Washington. My goodness,they are a [bunch of
loons]!

Yes, I agree. We need an electoral college for
Washington so that Seattle no longer votes for
Washington. My goodness,they are a bunch of
[loons]!

Table 2: Common errors made by our model. Spans are made bold and are present in between square brackets.

by Huggingface2. The RoBERTa model was fol-
lowed by two dense layers with 512 and 128 units
with relu (Agarap, 2018) as the activation function
and a dropout rate of 0.1. The output layer had two
or three labels depending on the tagging scheme.
We applied the post-processing steps mentioned in
section 2.2 for all the model variants.

4 Results

Table 1 shows that our RoBERTa(p) model out-
performs the original RoBERTa model. As sug-
gested earlier, domain-specific pre-training allows
the model to understand the language construct of
toxic comments better. Additionally, we observe a
significant increase in performance by adding pre-
processing steps as it makes the model more robust
to the noise present in the text samples. Adding the
CRF layer further improves the F1 score by elim-
inating the problem of independent label predic-
tion. It is evident from table 1 that the BIO tagging
scheme performs better than the IO tagging scheme
when working with CRF, suggesting it can better
understand the span nature of the output. Finally,
using two rounds of self-training helped us achieve
our best F1 score, 66.34%3.

One interesting observation that can be drawn
from Table 1 is that for almost all the models, the

2https://github.com/huggingface/
transformers

3We achieved an F1 score of 66.16% in the official compe-
tition. However, our model achieved a even higher F1 score
66.34%, when the predictions of a different epoch were used
for evaluation.

Figure 3: Distribution of F1 Score across different span
lengths. Here span length refers to the total length of
the toxic span in each sample. The value represented is
the mean F1 score of all the text samples whose toxic
span length falls in a particular range.

recall remains constant and improvement in F1 is
due to improvement in precision. The constancy of
recall indicates that few spans are not captured as
toxic by any of the models.

5 Error Analysis

Figure 3 shows the variation of the F1 score across
different toxic span lengths on the test dataset. Our
model achieved a very high F1 score when one
(Span Length 1-9, Mean F1 Score: 83.17%) or
two (Span Length 10-17, Mean F1 Score: 74.44%)
words are marked as toxic in a text sample. As
the number of characters marked as toxic increases,

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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the F1 score falls drastically, reaching as low as
24.82% when more than 58 characters are marked
as toxic. There are two main reasons for this. First,
it is easier for the model to capture short-term de-
pendencies than long-term dependencies. Second,
only 10% of the training data has a span length
of more than 25 characters making the model less
equipped to capture such toxic spans.

To investigate our model’s most problematic
cases, we analysed the samples for which our
model gave a zero F1 score. There were 447 such
samples, of which 349 samples did not have any
toxic span in the ground truth. This is also reflected
in Figure 3, as the mean F1 score of all the samples
with zero span length is 11.42%. Further analysis
revealed that our model tends to mark those tokens
as toxic, which were frequently found to be toxic
elsewhere. A few samples with empty toxic spans
had doubtful gold annotations. However, in other
samples, our model failed to capture the sentence’s
context precisely and predicts tokens that were not
used in a toxic sense.

Table 2 shows other standard errors our model
makes. It seems that our model has a problem with
small sentences. More often than not, it misses
the toxic span present in it and returns an empty
span. A similar case occurs when it encounters text
samples with rare toxic words. These words may
be present in very few examples or be completely
absent from the training dataset, making our model
less endowed to understand them. Other than these,
our model sometimes misses the non-swear words
in a toxic span.

6 Conclusion

This paper described our system developed for
SemEval-2021 Task 5: Toxic Span Detection. We
built our solution on the RoBERTa language model
and Conditional Random Fields (CRF). Though
RoBERTa alone can achieve great results, we
highlighted the benefits of using external datasets
and the performance improvements it can help
us achieve. We pre-trained RoBERTa on the
Civil Comments dataset to impart domain-specific
knowledge to it. We also employed the semi-
supervised learning technique of self-training to
extend our training dataset. In addition to these, we
also discovered some pre-processing steps that sig-
nificantly improved our F1 score. Experimenting
with different tagging schemes, we found out that
the BIO scheme works the best with CRF.

In future, we plan to experiment with other lan-
guage models such as T5 (Raffel et al., 2019), XL-
Net (Yang et al., 2019) and DeBERTa (He et al.,
2020). The system could also benefit from the addi-
tion of syntactic and semantic features at the word
and sentence level.
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