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Abstract

Toxic span detection requires the detection
of spans that make a text toxic instead of
simply classifying the text. In this paper, a
transformer-based model with auxiliary infor-
mation is proposed for SemEval-2021 Task
5. The proposed model was implemented
based on the BERT-CRF architecture. It con-
sists of three parts: a transformer-based model
that can obtain the token representation, an
auxiliary information module that combines
features from different layers, and an out-
put layer used for the classification. Vari-
ous BERT-based models, such as BERT, AL-
BERT, RoBERTa, and XLNET, were used to
learn contextual representations. The predic-
tions of these models were assembled to im-
prove the sequence labeling tasks by using a
voting strategy. Experimental results showed
that the introduced auxiliary information can
improve the performance of toxic spans detec-
tion. The proposed model ranked 5th of 91 in
the competition. The code of this study is avail-
able at https://github.com/Chenrj233/
semeval2021_task5

1 Introduction

Existing toxicity detection datasets and models
classify the entire comment or document and do
not identify the range that makes the text toxic. A
system that accurately locates the toxicity range in
the text is crucial in achieving semi-automatic re-
view. As a complete submission for the shared task,
systems are required to extract a list of toxic spans
or an empty list per text. We define a sequence
of words that attribute to the text’s toxicity as the
toxic span. Table 1 shows two toxic spans, ”stupid”
and ”a!@#!@,” which have character offsets from
10 to 15 (counting starts from 0) and from 51 to 56,
respectively. Systems are then expected to return
the offset list for this text.

Text
This is a stupid example, so thank you for
nothing a!@#!@.
Offset List
[10,11,12,13,14,15,51,52,53,54,55,56]

Table 1: Example of toxic spans detection shared task.

The main purpose of this task is to identify the
toxic spans in a given text; this can be transformed
into a sequence labeling task in natural language
processing. Unlike normal sequence labeling tasks,
this task is more challenging because the toxic
spans in the text may involve a word, phrase, or
even a sentence. Traditional methods used to ad-
dress the problem of sequence labeling include con-
ditional random fields (CRF) (Lafferty et al., 1999),
combined models of both long-short-term mem-
ory and CRF (LSTM-CRF) (Gupta et al., 2019),
and bidirectional encoder representation from trans-
formers (BERT) (Devlin et al., 2019).

In this study, we use BERT, ALBERT (Lan et al.,
2019), RoBERTa (Liu et al., 2019), and XLNET
(Yang et al., 2019) to solve this problem. Com-
pared with the conventional model, our model adds
auxiliary information to improve the performance
in this task. After a simple analysis of the text
data, it can be found that not all the words in the
toxic span have a toxic meaning, and some toxic
meanings occur in a specific context or semantic
conditions. Therefore, if the tokens can be classi-
fied with the auxiliary information such as sentence
representation, the performance of the model will
improve. The results of the experiment prove that
some of the proposed methods are effective. By us-
ing ensemble learning, we merge the results of the
BERT, ALBERT, RoBERTa, and XLNET models
into the final prediction, obtaining the 5th rank out
of 91 and a F1 score of 0.696.

https://github.com/Chenrj233/semeval2021_task5
https://github.com/Chenrj233/semeval2021_task5
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Figure 1: Overall architecture of the proposed transformer-based model with auxiliary information.

The remainder of this paper is organized as fol-
lows. Section 2 describes the specific structure
of the adopted model. The experimental results
are summarized in Section 3. Finally, Section 4
presents the conclusions of the study.

2 Transformer-based Model with
Auxiliary Information

Figure 1 shows the architecture of the pro-
posed model, which consists of three layers: a
transformer-based layer, an auxiliary information
layer, and an output layer. The transformer-based
layer can be BERT, ALBERT, RoBERTa, XLNET,
or any other transformer-based model. In the auxil-
iary information layer, several approaches are ap-
plied to combine token representation. The com-
bined token representations are used in the output
layer to output the label of each token.

2.1 Transformer-based Layer

The transformer-based layer is the first part of the
model. The purpose of this layer is to obtain the
representation of tokens and the entire text. For il-
lustration, we can use the BERT-large (Devlin et al.,
2019) model to produce token representations from
each layer. With BERT-large, 25 layers of token
representation vectors can be obtained: one embed-

ding representation and twenty-four hidden states.
Unlike previous methods, 25 layers of token rep-
resentation vectors are combined by using several
methods in the next layer. The representations pro-
duced by the transformer-based layer are then fed
into the next layer.

2.2 Auxiliary Information Layer
The traditional method directly passes the token
representation vectors to the classification layer. To
improve the performance of the model, we attempt
to combine token representation vectors and the
sentence representation vector in different ways.
Figure 2 depicts the attempted methods, which are
described as follows:

• Method 1. Token vector of the last layer and
the sentence vector.

• Method 2. Token vector of the last layer con-
catenated with the sentence vector.

• Method 3. Linear combination of the token
vector of each layer.

• Method 4. Linear combination of the token
vector of each layer and the sentence vector.

The combined representation of tokens passes
on to the next layer.



843

Sentence 
vector(CLS)

Last hidden state vectors

 

 

Add

(a) Add operation

Sentence 
vector(CLS)

Last hidden state 
vectors

 

 

Concatenate

Sentence 
vector(CLS)

Last hidden state 
vectors

 

 

ConcatenateConcatenate

(b) Concatenate operation

Last hidden state 
sentence vector

Embedding

First hidden state 
token vector

Last hidden state 
token vector

W1

W0

Wc

Wd

W1

W0

Wc

Wd

xi

Ci

Last hidden state 
sentence vector

Embedding

First hidden state 
token vector

Last hidden state 
token vector

W1

W0

Wc

Wd

xi

Ci

(c) Linear combination if WC = 0; linear combi-
nation plus sentence vector if WC = 1

Figure 2: Different types of representations in auxiliary information layer.

2.3 Output Layer

The output layer is a fully connected dense layer
with softmax activation. It aims to classify whether
a token belongs to the toxic span in a text. The
combined representation of each token passed by
the auxiliary information layer is the input of this
layer, and the output layer predicts the labels for the
candidate tokens. The loss function of the proposed
model is the categorical cross-entropy.

3 Experimental Results

In this section, we present the comparative results
of the proposed model.

3.1 Dataset

During the competition, we used only the data
(Pavlopoulos et al., 2021) provided by the task or-
ganizer for the experiments. This task involves trial
data (which include 689 posts and spans), training
data (which include 7939 posts and spans), and
test data (which include 2000 posts). We used the
training data as the training set and trial data as
the validation set. We needed to find the subscript
offset set of the toxic spans of each post in the test

data.
As this is a sequence labeling task, a common

data preprocessing method is to use the BIO tag-
ging format. We observed better performance when
the IO tagging format was adopted during the ac-
tual training process. Therefore, our output layer
was a two-classification layer that outputs the prob-
ability of a token belonging to a toxic span.

3.2 Evaluation Metrics
For this task, we employed the F1-score metric (da
San Martino et al., 2020) to evaluate the responses
of a system participating in the challenge.

For each post, ti, the predicted span was a set,
Si, of character offsets and Gi was the character
offset of the groundtruth annotations of ti. The F1

score of ti was calculated as follows:

F1(Si, Gi) =
2 ∗ P (Si, Gi) ∗R(Si, Gi)

P (Si, Gi) +R(Si, Gi)
(1)

where P (Si, Gi) and R(Si, Gi) are respectively
precision and recall scores defined as follows:

P (Si, Gi) =
|Si ∩Gi|
|Si|

(2)
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Transformer model Auxiliary information Validation set Test set

BERT-large

None 0.649 0.679
Add sentence vector 0.670 0.679
Concatenate sentence vector 0.671 0.671
Linear combination 0.661 0.683
Linear combination plus sentence vector 0.672 0.679

ALBERT-xlarge

None 0.659 0.675
Add sentence vector 0.665 0.665
Concatenate sentence vector 0.656 0.668
Linear combination 0.648 0.667
Linear combination plus sentence vector 0.657 0.670

RoBERTa-large

None 0.656 0.676
Add sentence vector 0.620 0.662
Concatenate sentence vector 0.610 0.673
Linear combination 0.663 0.667
Linear combination plus sentence vector 0.667 0.667

XLNET-large

None 0.659 0.679
Add sentence vector 0.674 0.674
Concatenate sentence vector 0.669 0.669
Linear combination 0.674 0.675
Linear combination plus sentence vector 0.678 0.681

Table 2: F1-score of different models on validation set and test set.

R(Si, Gi) =
|Si ∩Gi|
|Gi|

(3)

If Gi is empty for some post ti, we set
F1(Si, Gi) = 1 if Si is also empty and
F1(Si, Gi) = 0 otherwise. Finally, we averaged
F1(Si, Gi) over all posts ti.

3.3 Implementation Details

Each model was fine-tuned for eight epochs. We
used the Adam (Kingma and Ba, 2015), AdamW
(Loshchilov and Hutter, 2017), and Stochastic Gra-
dient Descent (SGD) algorithm for optimization.
The final one used was AdamW with a learning
rate of 5e− 6.

In the training process, we attempted to use the
cross-entropy loss, focal loss (Lin et al., 2020),
and Dice loss (Li et al., 2020). The results on the
validation set showed that the focal loss and Dice
loss are better than the cross-entropy loss. This
may be due to an imbalance between the toxic and
nontoxic categories in the text. In order to compare
with the baseline model, we finally used the cross-
entropy loss function to train all models.

3.4 Comparative Results

We used BERT, ALBERT, RoBERTa, and XLNET
as the transformer-based layers. The model exhibit-

ing the best performance on the validation set in
the eight epochs was used to predict the spans on
the test set in the competition. The results on the
test set are presented in Table 2. The model that
performed the best on the test set over the eight
epochs is also presented in Table 2.

In terms of the performance on the validation
set, the BERT and XLNET models with the auxil-
iary information layer are better than those without.
Method 4, mentioned earlier, achieves the high-
est F1 score. In case of ALBERT, only method 1
improves the performance. Methods 3 and 4 can
improve the performance of RoBERTa.

Regardless of the performance on the validation
set, the F1 score increases by 0.004 when using
method 3 in the BERT model and increases by
0.002 when using method 4 in XLNET. The auxil-
iary information layer does not improve the perfor-
mance of ALBERT and RoBERTa.

The results show that the performance of the
best-performing model on the validation set is sig-
nificantly different from that of the best-performing
model on the test set. The reason for this differ-
ence may be the inconsistent data distribution of
the validation and test sets.

However, the results indicate that when the vali-
dation set is not appropriate, the auxiliary informa-
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tion layer can effectively improve the performance
of the baseline model on the validation set. The
BERT and XLNET models are the most suitable
for the auxiliary information layer.

4 Conclusion

In this paper, we introduce the method we used in
SemEval-2021 Task 5. We improved the perfor-
mance of the basic model by reducing the number
of categories for each token, selecting the appro-
priate loss function, adding some additional infor-
mation to the representation vector of the tokens
during classification, and finally obtaining a model
that can detect the toxicity in a text. Our experimen-
tal results showed that adding auxiliary information
to the original token representation vector is helpful
in sequence labeling tasks.

In addition, we found that the model has some
limitations. After analyzing the prediction results,
we observed that although the model can learn the
representation of each token well, token classifica-
tion errors can occur when some tokens are toxic
without the entire text being toxic. One possible
solution for this is to add a text classification task
to train the model.
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