
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 820–826
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

820

PINGAN Omini-Sinitic at SemEval-2021 Task 4:
Reading Comprehension of Abstract Meaning

Ye Wang Yanmeng Wang Haijun Zhu Bo Zeng
Zhenghong Hao Shaojun Wang Jing Xiao

Ping An Technology, Beijing 100191, China
{wangye430,wangyanmeng219,zhuhaijun416,zengbo345,

haozhenghong145,wangshaojun851,xiaojing661}@pingan.com.cn

Abstract

This paper describes the winning system for
subtask 2 and the second-placed system for
subtask 1 in SemEval 2021 Task 4: Reading
Comprehension of Abstract Meaning. We pro-
pose to use pre-trained ELECTRA discrimina-
tor to choose the best abstract word from five
candidates. An upper attention and auto de-
noising mechanism is introduced to process
the long sequences. The experiment results
demonstrate that this contribution greatly fa-
cilitates the contextual language modeling in
reading comprehension task. The ablation
study is also conducted to show the validity of
our proposed methods.

1 Introduction

Reading Comprehension of Abstract Meaning (Re-
CAM) (Zheng et al., 2021) is a cloze-style task,
which takes a document and related human written
abstract with one word replaced by a placeholder
as input. The model is required to choose the best
word from five candidates. The ReCAM consists
of three subtasks. In subtask 1 and 2, participating
systems are required to choose the best impercepti-
ble concept and hyper-nyms concepts word respec-
tively. Subtask 3 aims to evaluate performance of
a system trained on one definition and test on the
other.

Traditional cloze-style reading comprehension
model (SA reader) (Kadlec et al., 2016) uses at-
tention to directly pick the answer from the con-
text, which makes model incapable to answer the
question where the answer does not appear in pas-
sage. Furthermore, GA reader (Dhingra et al.,
2017) adopts multi-hop attention mechanism to
build query-specific representation of answer for
ranking the candidates which is not part of passage.

Pre-trained language models (Radford et al.,
2018; Devlin et al., 2019; Yang et al., 2019; Lan
et al., 2020) have been widely adopted for context
modeling in many Natural Language Processing

tasks. These models are pre-trained on huge cor-
pora with plain texts and can better model con-
textual dependencies of tokens, thus enhance the
performance of downstream approaches. As de-
scribed in (Lai et al., 2017; Zhang et al., 2020;
Chen et al., 2019; Zhu et al., 2018), they improved
the performance of single-choice reading compre-
hension tasks by introducing pre-trained model,
but they takes excessive memory for concatenating
each option with the question and the passage.

GPT2 (Radford et al., 2018) has outperformed
the SOTA result on cloze-style task CBT (Hill et al.,
2016). As stated in (Radford et al., 2018), GPT2
computes the probability of each choice and the
rest of the sentence conditioned on this choice ac-
cording to the pre-trained model, the answer is the
choice with highest probability. GPT2 outperforms
RNN-based models without fine-tuning on CBT
task, we assume that pre-trained language model
has better potential to address the cloze-style prob-
lem than fine-tuning the pre-trained model with an
additional ranking network.

The most relevant work to our model is Pattern-
Exploiting Training (PET) (Schick and Schütze,
2020a,b), which proposed to reformulate the sen-
tence classification task to cloze-style task with
defined golden answer word as supervising signal.
The comparison between PET and our proposed
method is reported in section 5.

Different with PET, We propose a novel Auto
Denoising Discriminator for Abstract Concept in
reading comprehension (ADDAC) by fine-tuning
the pre-trained discriminator of ELECTRA (Clark
et al., 2020). Auto Denoising is introduced while
processing long sequences. By fine-tuning the pre-
trained model on its own structure with the original
pre-training loss , the tasks results is significantly
improved even with small train dataset, we suppose
the representations stored in the pre-trained model
has been maximum reserved in this way.
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2 Background

2.1 Task Description

The task intends to answer a cloze-style question,
the answer to which depends on the understanding
of a context document provided with the question.
The model is also provided with a set of possible an-
swers from which the correct one is to be selected.
This can be formalized as follows:

The training data consists of tuples (q, d, a, A),
where q is an abstract sentence of document d and
one word in q is replaced with a placeholder. A is
a set of possible options and a ∈ A is the golden
answer. Both q and d are sequences of words and
golden answer a does not appear in the article d.

2.2 ELECTRA vs ALBERT

Since the success of BERT (Devlin et al., 2019),
pre-trained language models have adopted a large
amount of parameters to achieve better model-
ing performance. ALBERT (Lan et al., 2020)
uses factorized embedding parameterization and
cross-layer parameter sharing to greatly reduce the
amount of model parameters and achieved SOTA
in multiple natural language understanding task.
ALBERT outperforms other pre-trained language
models which is trained by MLM(masked language
model) in combination with PET method for this
task.

ELECTRA (Clark et al., 2020) proposed the
RTD (replaced token detection) task with adver-
sarial learning as an alternative to the MLM task.
A smaller generator is used to replace the special
token [MASK] in training samples, and then a dis-
criminator is trained to predict each word in the in-
put is real or generated by generator. In section 3.1,
we will elaborate the details about our proposed
discriminator mechanisms based on ELECTRA.
The performance comparison between ALBERT
with PET and our proposed discriminator model on
ReCAM task is reported in Section 5.

3 System overview

3.1 Pre-trained Discriminator

We approach the competition tasks as cloze-style
task, which can be reformulated to masked lan-
guage modeling (Devlin et al., 2019) problems. As
shown in Figure 1, we replace placeholder with
golden and negative options in question q denoted
as qA, which is further concatenated with corre-
sponding document d in pre-trained model input

…
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Figure 1: Discriminator overview, the placeholder in
q is replaced by a which is one of candidate options,
the label of golden option is 0 followed the ELECTRA
pre-training setting.

style ([CLS]qA[SEP ]d[SEP ]). We ignore the
part of sequence which exceed the maximum length
of input sequence . The input sequence is forward
to ELECTRA discriminator and the hidden states
are calculated by Equation 1

HqA = F ([qA; d]) (1)

logitp = D(Hp) (2)

where F is the pre-trained 24-layer transformers
and D is a linear layer which classify the hidden
states of replaced word from ELECTRA Discrimi-
nator. HqA ∈ RN×d are the hidden states of input
sequence, in which N and d are the maximum
length of input sequence and the dimension of hid-
den states. Then we only use the hidden states of
placeholder Hp ∈ Rd selected from HqA as the
input to D. BCE (Binary Cross Entropy) loss,
which measures the Binary Cross Entropy between
the golden label and the output, is used for binary
classification as Equation 3.

LBCE = BCE(Sigmoid(logitp), lp) (3)

where lp is the binary label of option word (replac-
ing placeholder in input sequence). The label is
set to 0 for golden option, 1 for negative options,
which is the same as ELECTRA pre-training set-
ting (Clark et al., 2020). While in inference, the
option with lowest logitp is regard as the right an-
swer to the question. The experiment results show
that discriminator outperforms the ranking and PET
implementation on this task (see section 5).
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We also implement a ranking model based on
ELECTRA for single-choice reading comprehen-
sion task to compare with the Discriminator ap-
proach. The question and document is combined
with each option as the input of ELECTRA en-
coder, which is denoted as S ∈ RN×m, where N
is the length of sequences and m is the number of
options. A linear layer and a softmax layer is added
after ELECTRA encoder as the ranking network,
which use the hidden states of [CLS] in S as input.

3.2 Processing Long Input Sequence

Most of the pre-trained models have a limitation
in processing long sequences. The maximum se-
quence length of ELECTRA is 512, which is much
shorter than the maximum length of input sequence
(i.e. concatenation of question and document). We
propose two methods for processing long input
sequences: 1) document is segmented to shorter
passages, which leads to the problem of mislabel
samples. We introduce an auto denoising mecha-
nism to address the problem. 2) We adopt an upper
attention upon transformers.

Auto Denoising The whole document d is seg-
mented into a set of fragments {sd1, sd2, · · · , sdk}
with a fixed window size. Then, these fragments
combine qa to form model input sequence. In the
inference phase, the lowest predicted logit is se-
lected from all results of fragments as Equation
4.

logitp =
k

min
i=1

D(F ([qA; s
d
i ])) (4)

where q with placeholder replaced by a specific
option from A denote as qA. However, this method
causes the noisy-label problem. Supposed that the
answer a just finds proof from fragment sd1, which
results in other samples (0, [qa; s

d
i 6=1]) to be mis-

labeled samples, which significantly impact train-
ing of model and decrease the prediction accuracy.
Therefore, we take the advantage of a noise-tolerant
loss (bi-tempered logistic loss, BT (Amid et al.,
2019)) and a noise detection method (over-fitting
to under-fitting, O2U (Huang et al., 2019)) in this
work. The BT logistic loss lowers gradient on
noisy samples which relieve the negative effects on
model training via adjusting bi-temperature. The
O2u makes full use of the property that model is
easier to forget the mislabeled samples than the
clean samples, to identify and filter the mislabeled
samples.

Upper Attention The long sequence of input is
segmented into small segments with the length of
512 tokens and each segments are concatenated
with same question to form the input sequences,
which are encoded into hidden states Hi ∈ Rd×512

, where i is the index of segments of passage, the
d is the dimension of hidden states and 512 is the
sequence length. The hidden states of placeholder
is denoted as Hp

i ∈ Rd. We use a 1-layer multi-
head self-attention block to fuse the hidden states
of placeholder from multiple segments output.

Hp
fuse = Ag(H

p
1 , H

p
2 ...H

p
k) (5)

where k is the number of segments, Ag is 1-layer
multi-head-attention, without residual connection.
Hp

fuse is applied in Equation 2 and Equation 3 for
training.

3.3 Optimizer

The ELECTRA-large which has large amount of pa-
rameters tends to over-fit on small training dataset.
We utilize RecAdam (Chen et al., 2020) to fine-
tune the pre-trained model to address the over-
fitting problem. RecAdam optimizer is proposed
to address the catastrophic forgetting problem of
sequential transfer learning paradigm by introduc-
ing a recall and learn mechanism into Adam opti-
mizer, which maintain the learned knowledge in
pre-trained model while learning a new task.

3.4 Data augmentation

To further boost the performance of our proposed
model, we conduct data augmentation.We random
pick 3000 articles in CNN/DailyMail (Hermann
et al., 2015), and craw 824 latest articles from BBC
news website. The CNN news is much longer than
the training samples, while the length of BBC news
is approximately same. The extra training samples
are generated in following steps: 1) The title of
news article is used as abstract. 2) We pick one
most meaningful word from abstract by TF-IDF
scores and the origin word is used as golden op-
tion. 3) We use words with same category of POS
(Part Of Speech) from other documents as negative
options. We train models on the extra to dataset
as warming up and further train the models with
training dataset. Unfortunately, extra training data
did not effectively improve the performance of our
model on this task. We just use extra data in models
ensemble phase.
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4 Experimental setup

4.1 Data
We use the official released dataset of SemEval2021
Task4 for experiments. The dataset of subtask
1 contains 3227/837/2025 samples for train, dev
and test data. The subtask 2 dataset contains
3318/851/2017 samples for train, dev and test
data. The maximum/mean length of subtask 1
and subtask 2 training data are 2275/374.34 and
2274/578.31, respectively. The statistics of sample
length shows that length of article in subtask 2 is
much longer than the length in subtask 1. The rate
of the sequences exceeding 512 tokens is 13.95%
in subtask 1, 42.46% in subtask 2, which may cause
that the methods for processing long sequences are
more effective in subtask 2.

Since the provided dataset is small, we apply
data augmentation in model ensemble to further
improve generalization of the model (see Section
3.4).

4.2 Parameter settings
Our implementation is based on the Pytorch frame-
work for transformer-based models(Wolf et al.,
2020). We trained our model based on the pre-
trained ELECTRA-Large discriminator, and adopt
the same model structure for subtask 1 and sub-
task 2. We use Adam optimizer with a learning
rate of 1e-5, batch-size of 32 to train the baseline
model, which is actually the ELECTRA discrim-
inator. The max sequence length is 512 and the
epoch of training is set to 5. To address the over-
fitting problem, we apply RecAdam with sigmoid
annealing function, where the annealing rate is 0.01
and the annealing time-step is 500. The coefficient
of the quadratic penalty is set to be 5,0000. For
Auto Denoising, the two temperatures and label
smoothing of BT are equal to 0.9, 1.5 and 0.1 re-
spectively. The maximum learning rate, minimum
learning rate and epochs in cyclical round about
O2U are set to be 5e-5, 1e-6 and 5.0 respectively.

Since only 5 submissions are permitted in sub-
mitting phase, we trained multiple models under
different settings for model ensemble. We also
adopt 8-fold cross-validation training to improve
the model generalization.

4.3 Ensemble
Two strategies are used for our final submissions on
test data: 1) we ensemble all 8 models from 8-fold
cross-validation training by averaging their outputs,

which is trained on the train data of each subtask;
2) we trained multiple models on the train data and
the augmented data with different model structures.
7 top different models are selected based on the
dev accuracy for models ensemble, then average
their outputs as the final output. Moreover, the
model trained in cross-validation is Discriminator
with Auto Denoising and RecAdam optimizer for
subtask 2, and Discriminator with RecAdam for
subtask 1. While in top ensemble, the techniques
of Discriminator, Auto Denoising, RecAdam and
Upper Attention are applied in different models.

5 Results and Analysis

5.1 Single Model Performance

We implement two baseline models for comparison
with our proposed method. The ALBERT PET
is the combination of PET method (Schick and
Schütze, 2020a,b) and ALBERT-xxlarge model,
which is trained by the MLM. The golden answer
of training dataset is used as the target for MLM,
but the negative ones are omitted in training. The
ELECTRA Rank reformulates the cloze-style task
to single-choice task, which is described in section
3.1.

Label accuracy is the official metric of the
tasks and Table 1 shows the results on develop-
ment dataset. Task3(1-2) is the subtask 3 which
is trained on subtask 1 dataset and test on sub-
task 2, Task3(2-1) means train on subtask 2 and
test on subtask 1. It is obvious that our pro-
posed ELECTRA Discriminator significantly im-
prove the performance of all tasks and outperform
the best baseline by 4.7%/1.16%/3.76%/8.85% in
subtask1/subtask2/subtask3(1-2)/subtask3(2-1) re-
spectively. This confirms our hypothesis that pre-
trained language model has more potential for
cloze-style task. The PET with ALBERT is not suit-
able for this task because it can not utilize the nega-
tive options. The ELECTRA Rank performance is
unsatisfactory, suggesting that fine-tuning on rank-
ing network damage the knowledge stored in the
pre-trained model.

The results of ablation study are also reported
in Table 1. Disc (Discriminator) with RecAdam
achieves further improvement in all tasks by
0.25% / 0.53% / 0.25% / 0.26% in subtask1 /
subtask2 / subtask3(1-2) / subtask3(2-1) respec-
tively, which prove the RecAdam optimizer is
more effective for pre-trained model and also
promotes the model generalization. Disc+Upper,
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Table 1: Single Model Performance on dev dataset, the ablation study is demonstrated below.

Method Task1 Task3(1-2) Task2 Task3(2-1)
ALBERT PET 89.25 83.31 90.48 82.80
ELECTRA Rank 88.53 88.13 90.24 83.75
ELECTRA Discriminator 93.42 90.71 93.88 91.16
+RecAdam 93.66 91.19 94.12 91.40
+Upper 93.54 89.54 94.35 91.39
+Upper+RecAdam 93.31 91.42 94.12 91.51
+AutoDenoise+RecAdam 93.55 91.42 94.01 91.88

Table 2: Ensemble Performance on dev and test dataset, where 8-fold is the models from 8-fold cross-validation
training, top ensemble means that ensemble the models with top dev accuracy.

Method Task1 Task3(1-2) Task2 Task3(2-1)

Dev set
8-fold ensemble 92.47 - 92.94 -
top ensemble 94.50 - 95.53 -

Test set
8-fold ensemble 93.04 93.90 94.99 91.35
top ensemble 92.74 94.19 95.29 91.65

Disc+AutoDenoise+RecAdam achieve the best re-
sults in task2 and task3(2-1) respectively. This
prove the validity of the two methods we proposed
for long sequences. The Upper Attention achieve
the best result on task2, while AutoDenoise achieve
the best result on task3. We ensemble them to
produce a stronger system. The Upper and Auto-
Denoise do not effectively improve the baseline
in subtask 1, since the mean length of subtask 1
is 374.34 which is much shorter than the max se-
quence length of original pre-trained model.

5.2 Ensemble Performance

The performances of ensemble models are shown
on Table 2, which is obtained from the competition
leader-board. Our system got the first place in sub-
task 2 and the second place in subtask 1. For the
subtask 3, our ranking is first place in subtask3(2-
1), and second place in subtask3(1-2), that indicates
our system has strong transfer capability in abstrac-
tive reading comprehension tasks. Ensemble re-
sults on dev dataset are exhibited for comparison,
and we do not experiment model ensemble on dev
data of subtask 3.

5.3 Memory-Efficiency

We trained all compared models on 16GB Tesla-
V100 GPU, except for ELECTRA Rank which
takes 17GB with batch size set to 1. Our proposed
Discriminator only take 9GB, since one option with
article and question is considered as single training

sample for binary classification task. In contrast,
ELECTRA Rank is required to encode the input
sequence with different options at once to learn
the ranking function between positive and negative
options. ELECTRA Discriminator is much faster
than ELECTRA Rank to converge. The epoch of
training ELECTRA Discriminator is less than 5
and ELECTRA Rank needs at least 10 train epochs
to converge.

Conclusion

In this paper, we propose an effective framework of
combining ELECTRA discriminator with denois-
ing learning method to boost the performance of
cloze-style reading comprehension task. Our pro-
posed model outperforms all others participating
system on subtask 2 and gets the second-placed on
subtask 1. We have conducted an ablation study,
demonstrating the validity of Discriminator, Upper
attention and Auto denoising. Pre-trained models
have made great performance gain compared to
traditional neural network models in many natural
language tasks and is able to build comprehensive
hidden representation of input text. The above
experiment results may suggest that the current
pre-trained model mechanism still has room for
improvement.
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