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Abstract

This paper presents the results and main find-
ings of SemEval-2021 Task 1 - Lexical Com-
plexity Prediction. We provided participants
with an augmented version of the CompLex
Corpus (Shardlow et al., 2020). CompLex
is an English multi-domain corpus in which
words and multi-word expressions (MWEs)
were annotated with respect to their complex-
ity using a five point Likert scale. SemEval-
2021 Task 1 featured two Sub-tasks: Sub-task
1 focused on single words and Sub-task 2 fo-
cused on MWEs. The competition attracted
198 teams in total, of which 54 teams submit-
ted official runs on the test data to Sub-task 1
and 37 to Sub-task 2.

1 Introduction

The occurrence of an unknown word in a sentence
can adversely affect its comprehension by read-
ers. Either they give up, misinterpret, or plough on
without understanding. A committed reader may
take the time to look up a word and expand their
vocabulary, but even in this case they must leave
the text, undermining their concentration. The nat-
ural language processing solution is to identify can-
didate words in a text that may be too difficult
for a reader (Shardlow, 2013; Paetzold and Specia,
2016a). Each potential word is assigned a judgment
by a system to determine if it was deemed ‘com-
plex’ or not. These scores indicate which words are
likely to cause problems for a reader. The words
that are identified as problematic can be the subject
of numerous types of intervention, such as direct
replacement in the setting of lexical simplification
(Gooding and Kochmar, 2019), or extra informa-
tion being given in the context of explanation gen-
eration (Rello et al., 2015).

Whereas previous solutions to this task have typ-
ically considered the Complex Word Identification
(CWI) task (Paetzold and Specia, 2016a; Yimam
et al., 2018) in which a binary judgment of a word’s

complexity is given (i.e., is a word complex or
not?), we instead focus on the Lexical Complexity
Prediction (LCP) task (Shardlow et al., 2020) in
which a value is assigned from a continuous scale
to identify a word’s complexity (i.e., how complex
is this word?). We ask multiple annotators to give
a judgment on each instance in our corpus and take
the average prediction as our complexity label. The
former task (CWI) forces each user to make a sub-
jective judgment about the nature of the word that
models their personal vocabulary. Many factors
may affect the annotator’s judgment including their
education level, first language, specialism or famil-
iarity with the text at hand. The annotators may
also disagree on the level of difficulty at which to
label a word as complex. One annotator may label
every word they feel is above average difficulty,
another may label words that they feel unfamiliar
with, but understand from the context, whereas an-
other annotator may only label those words that
they find totally incomprehensible, even in context.
Our introduction of the LCP task seeks to address
this annotator confusion by giving annotators a
Likert scale to provide their judgments. Whilst
annotators must still give a subjective judgment
depending on their own understanding, familiarity
and vocabulary — they do so in a way that better
captures the meaning behind each judgment they
have given. By aggregating these judgments we
have developed a dataset that contains continuous
labels in the range of 0–1 for each instance. This
means that rather than a system predicting whether
a word is complex or not (0 or 1), instead a system
must now predict where, on our continuous scale,
a word falls (0–1).

Consider the following sentence taken from a
biomedical source, where the target word ‘observa-
tion’ has been highlighted:

(1) The observation of unequal expression leads
to a number of questions.



2

In the binary annotation setting of CWI some anno-
tators may rightly consider this term non-complex,
whereas others may rightly consider it to be com-
plex. Whilst the meaning of the word is reasonably
clear to someone with scientific training, the con-
text in which it is used is unfamiliar for a lay reader
and will likely lead to them considering it com-
plex. In our new LCP setting, we are able to ask
annotators to mark the word on a scale from very
easy to very difficult. Each user can give their sub-
jective interpretation on this scale indicating how
difficult they found the word. Whilst annotators
will inevitably disagree (some finding it more or
less difficult), this is captured and quantified as part
of our annotations, with a word of this type likely
to lead to a medium complexity value.

LCP is useful as part of the wider task of lexi-
cal simplification (Devlin and Tait, 1998), where
it can be used to both identify candidate words for
simplification (Shardlow, 2013) and rank poten-
tial words as replacements (Paetzold and Specia,
2017). LCP is also relevant to the field of readabil-
ity assessment, where knowing the proportion of
complex words in a text helps to identify the overall
complexity of the text (Dale and Chall., 1948).

This paper presents SemEval-2021 Task 1: Lex-
ical Complexity Prediction. In this task we devel-
oped a new dataset for complexity prediction based
on the previously published CompLex dataset. Our
dataset covers 10,800 instances spanning 3 genres
and containing unigrams and bigrams as targets for
complexity prediction. We solicited participants
in our task and released a trial, training and test
split in accordance with the SemEval schedule. We
accepted submissions in two separate Sub-tasks,
the first being single words only and the second
taking single words and multi-word expressions
(modelled by our bigrams). In total 55 teams par-
ticipated across the two Sub-tasks.

The rest of this paper is structured as folllows:
In Section 2 we discuss the previous two iterations
of the CWI task. In Section 3, we present the
CompLex 2.0 dataset that we have used for our task,
including the methodology we used to produce trial,
test and training splits. In Section 5, we show the
results of the participating systems and compare
the features that were used by each system. We
finally discuss the nature of LCP in Section 7 and
give concluding remarks in Section 8

2 Related Tasks

CWI 2016 at SemEval The CWI shared task
was organized at SemEval 2016 (Paetzold and Spe-
cia, 2016a). The CWI 2016 organizers introduced
a new CWI dataset and reported the results of 42
CWI systems developed by 21 teams. Words in
their dataset were considered complex if they were
difficult to understand for non-native English speak-
ers according to a binary labelling protocol. A word
was considered complex if at least one of the anno-
tators found it to be difficult. The training dataset
consisted of 2,237 instances, each labelled by 20
annotators and the test dataset had 88,221 instances,
each labelled by 1 annotator (Paetzold and Specia,
2016a).

The participating systems leveraged lexical fea-
tures (Choubey and Pateria, 2016; Bingel et al.,
2016; Quijada and Medero, 2016) and word em-
beddings (Kuru, 2016; S.P et al., 2016; Gillin,
2016), as well as finding that frequency features,
such as those taken from Wikipedia (Konkol, 2016;
Wróbel, 2016) were useful. Systems used binary
classifiers such as SVMs (Kuru, 2016; S.P et al.,
2016; Choubey and Pateria, 2016), Decision Trees
(Choubey and Pateria, 2016; Quijada and Medero,
2016; Malmasi et al., 2016), Random Forests (Ron-
zano et al., 2016; Brooke et al., 2016; Zampieri
et al., 2016; Mukherjee et al., 2016) and threshold-
based metrics (Kauchak, 2016; Wróbel, 2016) to
predict the complexity labels. The winning system
made use of threshold-based methods and features
extracted from Simple Wikipedia (Paetzold and
Specia, 2016b).

A post-competition analysis (Zampieri et al.,
2017) with oracle and ensemble methods showed
that most systems performed poorly due mostly to
the way in which the data was annotated and the
the small size of the training dataset.

CWI 2018 at BEA The second CWI Shared Task
was organized at the BEA workshop 2018 (Yimam
et al., 2018). Unlike the first task, this second task
had two objectives. The first objective was the
binary complex or non-complex classification of
target words. The second objective was regression
or probabilistic classification in which 13 teams
were asked to assign the probability of a target word
being considered complex by a set of language
learners. A major difference in this second task was
that datasets of differing genres: (TEXT GENRES)
as well as English, German and Spanish datasets
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for monolingual speakers and a French dataset for
multilingual speakers were provided (Yimam et al.,
2018).

Similar to 2016, systems made use of a variety
of lexical features including word length (Wani
et al., 2018; De Hertog and Tack, 2018; AbuRa’ed
and Saggion, 2018; Hartmann and dos Santos,
2018; Alfter and Pilán, 2018; Kajiwara and Ko-
machi, 2018), frequency (De Hertog and Tack,
2018; Aroyehun et al., 2018; Alfter and Pilán, 2018;
Kajiwara and Komachi, 2018), N-gram features
(Gooding and Kochmar, 2018; Popović, 2018; Hart-
mann and dos Santos, 2018; Alfter and Pilán, 2018;
Butnaru and Ionescu, 2018) and word embeddings
(De Hertog and Tack, 2018; AbuRa’ed and Sag-
gion, 2018; Aroyehun et al., 2018; Butnaru and
Ionescu, 2018). A variety of classifiers were used
ranging from traditional machine learning classi-
fiers (Gooding and Kochmar, 2018; Popović, 2018;
AbuRa’ed and Saggion, 2018), to Neural Networks
(De Hertog and Tack, 2018; Aroyehun et al., 2018).
The winning system made use of Adaboost with
WordNet features, POS tags, dependency parsing
relations and psycholinguistic features (Gooding
and Kochmar, 2018).

3 Data

We previously reported on the annotation of the
CompLex dataset (Shardlow et al., 2020) (hereafter
referred to as CompLex 1.0), in which we anno-
tated around 10,000 instances for lexical complex-
ity using the Figure Eight platform. The instances
spanned three genres: Europarl, taken from the
proceedings of the European Parliament (Koehn,
2005); The Bible, taken from an electronic dis-
tribution of the World English Bible translation
(Christodouloupoulos and Steedman, 2015) and
Biomedical literature, taken from the CRAFT cor-
pus (Bada et al., 2012). We limited our annotations
to focus only on nouns and multi-word expressions
following a Noun-Noun or Adjective-Noun pat-
tern, using the POS tagger from Stanford CoreNLP
(Manning et al., 2014) to identify these patterns.

Whilst these annotations allowed us to report on
the dataset and to show some trends, the overall
quality of the annotations we received was poor
and we ended up discarding a large number of the
annotations. For CompLex 1.0 we retained only
instances with four or more annotations and the
low number of annotations (average number of
annotators = 7) led to the overall dataset being less

reliable than initially expected
For the Shared Task we chose to boost the num-

ber of annotations on the same data as used for
CompLex 1.0 using Amazon’s Mechanical Turk
platform. We requested a further 10 annotations
on each data instance bringing up the average num-
ber of annotators per instance. Annotators were
presented with the same task layout as in the anno-
tation of CompLex 1.0 and we defined the Likert
Scale points as previously:

Very Easy: Words which were very familiar to an
annotator.

Easy: Words with which an annotator was aware
of the meaning.

Neutral: A word which was neither difficult nor
easy.

Difficult: Words which an annotator was unclear
of the meaning, but may have been able to
infer the meaning from the sentence.

Very Difficult: Words that an annotator had never
seen before, or were very unclear.

These annotations were aggregated with the re-
tained annotations of CompLex 1.0 to give our new
dataset, CompLex 2.0, covering 10,800 instances
across single and multi-words and across 3 genres.

The features that make our corpus distinct from
other corpora which focus on the CWI and LCP
tasks are described below:

Continuous Annotations: We have annotated our
data using a 5-point Likert Scale. Each in-
stance has been annotated multiple times and
we have taken the mean average of these anno-
tations as the label for each data instance. To
calculate this average we converted the Likert
Scale points to a continuous scale as follows:
Very Easy → 0, Easy → 0.25, Neutral → 0.5,
Difficult → 0.75, Very Difficult → 1.0.

Contextual Annotations: Each instance in the
corpus is presented with its enclosing sentence
as context. This ensures that the sense of a
word can be identified when assigning it a
complexity value. Whereas previous work
has reannotated the data from the CWI–2018
shared task with word senses (Strohmaier
et al., 2020), we do not make explicit sense
distinctions between our tokens, instead leav-
ing this task up to participants.
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Repeated Token Instances: We provide more
than one context for each token (up to a maxi-
mum of five contexts per genre). These words
were annotated separately during annotation,
with the expectation that tokens in different
contexts would receive differing complexity
values. This deliberately penalises systems
that do not take the context of a word into
account.

Multi-word Expressions: In our corpus we have
provided 1,800 instances of multi-word ex-
pressions (split across our 3 sub-corpora).
Each MWE is modelled as a Noun-Noun or
Adjective-Noun pattern followed by any POS
tag which is not a noun. This avoids select-
ing the first portion of complex noun phrases.
There is no guarantee that these will corre-
spond to true MWEs that take on a meaning
beyond the sum of their parts, and further in-
vestigation into the types of MWEs present in
the corpus would be informative.

Aggregated Annotations: By aggregating the
Likert scale labels we have generated crowd-
sourced complexity labels for each instance
in our corpus. We are assuming that, although
there is inevitably some noise in any large an-
notation project (and especially so in crowd-
sourcing), this will even out in the averaging
process to give a mean value reflecting the
appropriate complexity for each instance. By
taking the mean average we are assuming uni-
modal distributions in our annotations.

Varied Genres: We have selected for diverse gen-
res as mentioned above. Previous CWI
datasets have focused on informal text such as
Wikipedia and multi-genre text, such as news.
By focusing on specific texts we force systems
to learn generalised complexity annotations
that are appropriate in a cross-genre setting.

We have presented summary statistics for Com-
pLex 2.0 in Table 1. In total, 5,617 unique words
are split across 10,800 contexts, with an average
complexity across our entire dataset of 0.321. Each
genre has 3,600 contexts, with each split between
3,000 single words and 600 multi-word expres-
sions. Whereas single words are slightly below the
average complexity of the dataset at 0.302, multi-
word expressions are much more complex at 0.419,

indicating that annotators found these more dif-
ficult to understand. Similarly Europarl and the
Bible were less complex than the corpus average,
whereas the Biomedical articles were more com-
plex. The number of unique tokens varies from
one genre to another as the tokens were selected at
random and discarded if there were already more
than 5 occurrences of the given token already in
the dataset. This stochastic selection process led to
a varied dataset with some tokens only having one
context, whereas others have as many as five in a
given genre. On average each token has around 2
contexts.

4 Data Splits

In order to run the shared task we partitioned our
dataset into Trial, Train and Test splits and dis-
tributed these according to the SemEval schedule.
A criticism of previous CWI shared tasks is that
the training data did not accurately reflect the dis-
tribution of instances in the testing data. We sought
to avoid this by stratifying our selection process
for a number of factors. The first factor we consid-
ered was genre. We ensured that an even number
of instances from each genre was present in each
split. We also stratified for complexity, ensuring
that each split had a similar distribution of com-
plexities. Finally we also stratified the splits by
token, ensuring that multiple instances containing
the same token occurred in only one split. This last
criterion ensures that systems do not overfit to the
test data by learning the complexities of specific
tokens in the training data.

Performing a robust stratification of a dataset
according to multiple features is a non-trivial op-
timisation problem. We solved this by first group-
ing all instances in a genre by token and sorting
these groups by the complexity of the least com-
plex instance in the group. For each genre, we
passed through this sorted list and for each set of
20 groups we put the first group in the trial set, the
next two groups in the test set and the remaining 17
groups in the training data. This allowed us to get
a rough 5-85-10 split between trial, training and
test data. The trial and training data were released
in this ordered format, however to prevent systems
from guessing the labels based on the data ordering
we randomised the order of the instances in the test
data prior to release. The splits that we used for the
Shared Task are available via GitHub1.

1https://github.com/MMU-TDMLab/CompLex

https://github.com/MMU-TDMLab/CompLex
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Subset Genre Contexts Unique Tokens Average Complexity

All

Total 10,800 5,617 0.321
Europarl 3,600 2,227 0.303
Biomed 3,600 1,904 0.353
Bible 3,600 1,934 0.307

Single

Total 9,000 4,129 0.302
Europarl 3,000 1,725 0.286
Biomed 3,000 1,388 0.325
Bible 3,000 1,462 0.293

MWE

Total 1,800 1,488 0.419
Europarl 600 502 0.388
Biomed 600 516 0.491
Bible 600 472 0.377

Table 1: The statistics for CompLex 2.0.

Table 2 presents statistics on each split in our
data, where it can be seen that we were able to
achieve a roughly even split between genres across
the trial, train and test data.

Subset Genre Trial Train Test

All

Total 520 9179 1101
Europarl 180 3010 410
Biomed 168 3090 342
Bible 172 3079 349

Single

Total 421 7662 917
Europarl 143 2512 345
Biomed 135 2576 289
Bible 143 2574 283

MWE

Total 99 1517 184
Europarl 37 498 65
Biomed 33 514 53
Bible 29 505 66

Table 2: The Trial, Train and Test splits that were used
as part of the shared task.

5 Results

The full results of our task can be seen in Ap-
pendix A. We had 55 teams participate in our 2
Sub-tasks, with 19 participating in Sub-task 1 only,
1 participating in Sub-task 2 only and 36 partici-
pating in both Sub-tasks. We have used Pearson’s
correlation for our final ranking of participants, but
we have also included other metrics that are appro-
priate for evaluating continuous and ranked data
and provided secondary rankings of these.

Sub-task 1 asked participants to assign complex-
ity values to each of the single words instances in
our corpus. For Sub-task 2, we asked participants
to submit results on both single words and MWEs.
We did not rank participants on MWE-only submis-

sions due to the relatively small number of MWEs
in our corpus (184 in the test set).

The metrics we chose for ranking were as fol-
lows:

Pearson’s Correlation: We chose this metric as
our primary method of ranking as it is well
known and understood, especially in the con-
text of evaluating systems with continuous
outputs. Pearson’s correlation is robust to
changes in scale and measures how the input
variables change with each other.

Spearman’s Rank: This metric does not consider
the values output by a system, or in the test
labels, only the order of those labels. It was
chosen as a secondary metric as it is more
robust to outliers than Pearson’s correlation.

Mean Absolute Error (MAE): Typically used
for the evaluation of regression tasks, we
included MAE as it gives an indication of
how close the predicted labels were to the
gold labels for our task.

Mean Squared Error (MSE): There is little dif-
ference in the calculation of MSE vs. MAE,
however we also include this metric for com-
pleteness.

R2: This measures the proportion of variance of
the original labels captured by the predicted
labels. It is possible to do well on all the other
metrics, yet do poorly on R2 if a system pro-
duces annotations with a different distribution
than those in the original labels.

In Table 3 we show the scores of the top 10 sys-
tems across our 2 Sub-tasks according to Pearson’s
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Team Task 1
Pearson R2

JUST BLUE 0.7886 (1) 0.6172 (2)
DeepBlueAI 0.7882 (2) 0.6210 (1)
Alejandro Mosquera 0.7790 (3) 0.6062 (3)
Andi 0.7782 (4) 0.6036 (4)
CS-UM6P 0.7779 (5) 0.3813 (47)
tuqa 0.7772 (6) 0.5771 (12)
OCHADAI-KYOTO 0.7772 (7) 0.6015 (5)
BigGreen 0.7749 (8) 0.5983 (6)
CSECU-DSC 0.7716 (9) 0.5909 (8)
IA PUCP 0.7704 (10) 0.5929 (7)
Frequency Baseline 0.5287 0.2779

Task 2
DeepBlueAI 0.8612 (1) 0.7389 (1)
rg pa 0.8575 (2) 0.7035 (5)
xiang wen tian 0.8571 (3) 0.7012 (7)
andi gpu 0.8543 (4) 0.7055 (4)
ren wo xing 0.8541 (5) 0.6967 (8)
Andi 0.8506 (6) 0.7107 (2)
CS-UM6P 0.8489 (7) 0.6380 (17)
OCHADAI-KYOTO 0.8438 (8) 0.7103 (3)
LAST 0.8417 (9) 0.7030 (6)
KFU 0.8406 (10) 0.6967 (9)
Frequency Baseline 0.6571 0.4030

Table 3: The top 10 systems for each task according to
Pearson’s correlation. We have also included R2 score
to help interpret the former. For full rankings, see Ap-
pendix A

Correlation. We have only reported on Pearson’s
correlation and R2 in these tables, but the full re-
sults with all metrics are available in Appendix A.
We have included a Frequency Baseline produced
using log-frequency from the Google Web1T and
linear regression, which was beaten by the majority
of our systems. From these results we can see that
systems were able to attain reasonably high scores
on our dataset, with the winning systems reporting
Pearson’s Correlation of 0.7886 for Sub-task 1 and
0.8612 for Sub-task 2, as well as high R2 scores of
0.6210 for Sub-task 1 and 0.7389 for Sub-task 2.
The rankings remained stable across Spearman’s
rank, MAE and MSE, with some small variations.
Scores were generally higher on Sub-task 2 than on
Sub-task 1, and this is likely to be because of the
different groups of token-types (single words and
MWEs). MWEs are known to be more complex
than single words and so this fact may have im-
plictly helped systems to better model the variance
of complexities between the two groups.

6 Participating Systems

In this section we have analysed the participating
systems in our task. System Description papers
were submitted by 32 teams. In the subsections
below, we have first given brief summaries of some
of the top systems according to Pearson’s correla-
tion for each task for which we had a description.
We then discuss the features used across different
systems, as well as the approaches to the task that
different teams chose to take. We have prepared
a comprehensive table comparing the features and
approaches of all systems for which we have the
relevant information in Appendix B.

6.1 System Summaries
DeepBlueAI: This system attained the highest
Pearson’s Correlation on Sub-task 2 and the sec-
ond highest Pearson’s Correlation on Sub-task 1. It
also attained the highest R2 score across both tasks.
The system used an ensemble of pre-trained lan-
guage models fine-tuned for the task with Pseudo
Labelling, Data Augmentation, Stacked Training
Models and Multi-Sample Dropout. The data was
encoded for the transformer models using the genre
and token as a query string and the given context
as a supplementary input.

JUST BLUE: This system attained the highest
Pearson’s Correlation for Sub-task 1. The sys-
tem did not participate in Sub-task 2. This system
makes use of an ensemble of BERT and RoBERTa.
Separate models are fine-tuned for context and to-
ken prediction and these are weighted 20-80 re-
spectively. The average of the BERT models and
RoBERTa models is taken to give a final score.

RG PA: This system attained the second highest
Pearson’s Correlation for Sub-task 2. The system
uses a fine-tuned RoBERTa model and boosts the
training data for the second task by identifying
similar examples from the single-word portion of
the dataset to train the multi-word classifier. They
use an ensemble of RoBERTa models in their fi-
nal classification, averaging the outputs to enhance
performance.

Alejandro Mosquera: This system attained the
third highest Pearson’s Correlation for Sub-task 1.
The system used a feature-based approach, incor-
porating length, frequency, semantic features from
WordNet and sentence level readability features.
These were passed through a Gradient Boosted Re-
gression.
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Andi: This system attained the fourth highest
Pearson’s Correlation for Sub-task 1. They com-
bine a traditional feature based approach with fea-
tures from pre-trained language models. They use
psycholinguistic features, as well as GLoVE and
Word2Vec Embeddings. They also take features
from an ensemble of Language models: BERT,
RoBERTa, ELECTRA, ALBERT, DeBERTa. All
features are passed through Gradient Boosted Re-
gression to give the final output score.

CS-UM6P: This system attained the fifth highest
Pearson’s Correlation for Sub-task 1 and the sev-
enth highest Pearson’s Correlation for Sub-task 2.
The system uses BERT and RoBERTa and encodes
the context and token for the language models to
learn from. Interestingly, whilst this system scored
highly for Pearson’s correlation the R2 metric is
much lower on both Sub-tasks. This may indicate
the presence of significant outliers in the system’s
output.

OCHADAI-KYOTO: This system attained the
seventh highest Pearson’s Correlation on Sub-task
1 and the eight highest Pearson’s Correlation on
Sub-task 2. The system used a fine-tuned BERT
and RoBERTa model with the token and context en-
coded. They employed multiple training strategies
to boost performance.

6.2 Approaches
There are three main types of systems that were
submitted to our task. In line with the state of
the art in modern NLP, these can be categorised
as: Feature-based systems, Deep Learning Sys-
tems and Systems which use a hybrid of the former
two approaches. Although Deep Learning Based
systems have attained the highest Pearson’s Corre-
lation on both Sub-tasks, occupying the first two
places in each task, Feature based systems are not
far behind, attaining the third and fourth spots on
Sub-task 1 with a similar score to the top systems.
We have described each approach as applied to our
task below.

Feature-based systems use a variety of features
known to be useful for lexical complexity. In par-
ticular, lexical frequency and word length feature
heavily with many different ways of calculating
these metrics such as looking at various corpora
and investigating syllable or morpheme length. Psy-
cholinguistic features which model people’s per-
ception of words are understandably popular for
this task as complexity is a perceived phenomenon.

Semantic features taken from WordNet modelling
the sense of the word and it’s ambiguity or abstract-
ness have been used widely, as well as sentence
level features aiming to model the context around
the target words. Some systems chose to identify
named entities, as these may be innately more dif-
ficult for a reader. Word inclusion lists were also
a popular feature, denoting whether a word was
found on a given list of easy to read vocabulary.
Finally, word embeddings are a popular feature,
coming from static resources such as GLoVE or
Word2Vec, but also being derived through the use
of Transformer models such as BERT, RoBERTa,
XLNet or GPT-2, which provide context dependent
embeddings suitable for our task.

These features are passed through a regres-
sion system, with Gradient Boosted Regression
and Random Forest Regression being two popu-
lar approaches amongst participants for this task.
Both apply scale invariance meaning that less pre-
processing of inputs is necessary.

Deep Learning Based systems invariably rely on
a pre-trained language model and fine-tune this us-
ing transfer learning to attain strong scores on the
task. BERT and RoBERTa were used widely in
our task, with some participants also opting for AL-
BERT, ERNIE, or other such language models. To
prepare data for these language models, most par-
ticipants following this approach concatenated the
token with the context, separated by a special token
(〈SEP 〉). The Language Model was then trained
and the embedding of the 〈CLS〉 token extracted
and passed through a further fine-tuned network for
complexity prediction. Adaptations to this method-
ology include applying training strategies such as
adversarial training, multi-task learning, dummy
annotation generation and capsule networks.

Finally, hybrid approaches use a mixture of Deep
Learning by fine-tuning a neural network alongside
feature-based approaches. The features may be
concatenated to the input embeddings, or may be
concatenated at the output prior to further train-
ing. Whilst this strategy appears to be the best of
both worlds, uniting linguistic knowledge with the
power of pre-trained language models, the hybrid
systems do not tend to perform as well as either
feature based or deep learning systems.

6.3 MWEs

For Sub-task 2 we asked participants to submit
both predictions for single words and multi-words
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from our corpus. We hoped this would encourage
participants to consider models that adapted single
word lexical complexity to multi-word lexical com-
plexity. We observed a number of strategies that
participants employed to create the annotations for
this secondary portion of our data.

For systems that employed a deep learning ap-
proach, it was relatively simple to incorporate
MWEs as part of their training procedure. These
systems encoded the input using a query and con-
text, separated by a 〈SEP 〉 token. The number
of tokens prior to the 〈SEP 〉 token did not mat-
ter and either one or two tokens could be placed
there to handle single and multi-word instances
simultaneously.

However, feature based systems could not em-
ploy this trick and needed to devise more imagina-
tive strategies for handling MWEs. Some systems
handled them by averaging the features of both to-
kens in the MWE, or by predicting scores for each
token and then averaging these scores. Other sys-
tems doubled their feature space for MWEs and
trained a new model which took the features of
both words into account.

7 Discussion

In this paper we have posited the new task of Lex-
ical Complexity Prediction. This builds on previ-
ous work on Complex Word Identification, specif-
ically by providing annotations which are contin-
uous rather than binary or probabilistic as in pre-
vious tasks. Additionally, we provided a dataset
with annotations in context, covering three diverse
genres and incorporating MWEs, as well as single
tokens. We have moved towards this task, rather
than rerunning another CWI task as the outputs
of the models are more useful for a diverse range
of follow-on tasks. For example, whereas CWI
is particularly useful as a preprocessing step for
Lexical simplification (identifying which words
should be transformed), LCP may also be useful
for readability assessment or as a rich feature in
other downstream NLP tasks. A continuous annota-
tion allows a ranking to be given over words, rather
than binary categories, meaning that we can not
only tell whether a word is likely to be difficult for
a reader, but also how difficult that word is likely
to be. If a system requires binary complexity (as
in the case of lexical simplification) it is easy to
transform our continuous complexity values into a
binary value by placing a threshold on the complex-

ity scale. The value of the threshold to be selected
will likely depend on the target audience, with more
competent speakers requiring a higher threshold.
When selecting a threshold, the categories we used
for annotation should be taken into account, so for
example a threshold of 0.5 would indicate all words
that were rated as neutral or above.

To create our annotated dataset, we employed
crowdsourcing with a Likert scale and aggregated
the categorical judgments on this scale to give a
continuous annotation. It should be noted that this
is not the same as giving a truly continuous judg-
ment (i.e., asking each annotator to give a value
between 0 and 1). We selected this protocol as
the Likert Scale is familiar to annotators and al-
lows them to select according to defined points (we
provided the definitions given earlier at annotation
time). The annotation points that we gave were
not intended to give an even distribution of anno-
tations and it was our expectation that most words
would be familiar to some degree, falling in the
very easy or easy categories. We pre-selected for
harder words to ensure that there were also words in
the difficult and very difficult categories. As such,
the corpus we have presented is not designed to be
representative of the distribution of words across
the English language. To create such a corpus, one
would need to annotate all words according to our
scale with no filtering. The general distribution of
annotations in our corpus is towards the easier end
of the Likert scale.

A criticism of the approach we have employed
is that it allows for subjectivity in the annotation
process. Certainly one annotator’s perception of
complexity will be different to another’s. Giving
fixed values of complexity for every word will not
reflect the specific difficulties that one reader, or
one reader group will face. The annotations we
have provided are averaged values of the annota-
tions given by our annotators, we chose to keep
all instances, rather than filtering out those where
annotators gave a wide spread of complexity anno-
tations. Further work may be undertaken to give
interesting insights into the nature of subjectivity
in annotations. For example, some words may be
rated as easy or difficult by all annotators, whereas
others may receive both easy and difficult annota-
tions, indicating that the perceived complexity of
the instance is more subjective. We did not make
the individual annotations available as part of the
shared task data, to encourage systems to focus
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primarily on the prediction of complexity.

An issue with the previous shared tasks is that
scores were typically low and that systems tended
to struggle to beat reasonable baselines, such as
those based on lexical frequency. We were pleased
to see that systems participating in our task returned
scores that indicated that they had learnt to model
the problem well (Pearson’s Correlation of 0.7886
on Task 1 and 0.8612 on Task 2). MWEs are typi-
cally more complex than single words and it may
be the case that these exhibited a lower variance,
and were thus easier to predict for the systems. The
strong Pearson’s Correlation is backed up by a high
R2 score (0.6172 for Task 1 and 0.7389 for Task
2), which indicates that the variance in the data
is captured accurately by the models’ predictions.
These models strongly outperformed a reasonable
baseline based on word frequency as shown in Ta-
ble 3.

Whilst we have chosen in this report to rank sys-
tems based on their score on Pearson’s correlation,
giving a final ranking over all systems, it should
be noted that there is very little variation in score
between the top systems and all other systems. For
Task 1 there are 0.0182 points of Pearson’s Corre-
lation separating the systems at ranks 1 and 10. For
Task 2 a similar difference of 0.021 points of Pear-
son’s Correlation separates the systems at ranks 1
and 10. These are small differences and it may be
the case that had we selected a different random
split in our dataset this would have led to a different
ordering in our results (Gorman and Bedrick, 2019;
Søgaard et al., 2020). This is not unique to our task
and is something for the SemEval community to
ruminate on as the focus of NLP tasks continues to
move towards better evaluation rather than better
systems.

An analysis of the systems that participated
in our task showed that there was little variation
between Deep Learning approaches and Feature
Based approaches, although Deep Learning ap-
proaches ultimately attained the highest scores on
our data. Generally the Deep Learning and Feature
Based approaches are interleaved in our results ta-
ble, showing that both approaches are still relevant
for LCP. One factor that did appear to affect system
output was the inclusion of context, whether that
was in a deep learning setting or a feature based
setting. Systems which reported using no context
appeared to perform worse in the overall rankings.
Another feature that may have helped performance

is the inclusion of previous CWI datasets (Yimam
et al., 2017; Maddela and Xu, 2018). We were
aware of these when developing the corpus and
attempted to make our data sufficiently distinct in
style to prevent direct reuse of these resources.

A limitation of our task is that it focuses solely
on LCP for the English Language. Previous CWI
shared tasks (Yimam et al., 2018) and simplifi-
cation efforts (Saggion et al., 2015; Aluı́sio and
Gasperin, 2010) have focused on languages other
than English and we hope to extend this task in the
future to other languages.

8 Conclusion

We have presented the SemEval-2021 Task 1 on
Lexical Complexity Prediction. We developed a
new dataset focusing on continuous annotations in
context across three genres. We solicited partici-
pants via SemEval and 55 teams submitted results
across our two Sub-tasks. We have shown the re-
sults of these systems and discussed the factors that
helped systems to perform well. We have analysed
all the systems that participated and categorised
their findings to help future researchers understand
which approaches are suitable for LCP.
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A Full Results

Rank Team Pearson Spearman MAE MSE R2
1 JUST BLUE 0.7886 0.7369 0.0609 0.0062 0.6172
2 DeepBlueAI 0.7882 0.7425 0.0610 0.0061 0.6210
3 Alejandro Mosquera 0.7790 0.7355 0.0619 0.0064 0.6062
4 Andi 0.7782 0.7287 0.0637 0.0064 0.6036
5 CS-UM6P 0.7779 0.7366 0.0803 0.0100 0.3813
6 tuqa 0.7772 0.7344 0.0635 0.0068 0.5771
7 OCHADAI-KYOTO 0.7772 0.7313 0.0617 0.0065 0.6015
8 BigGreen 0.7749 0.7294 0.0629 0.0065 0.5983
9 CSECU-DSG 0.7716 0.7326 0.0632 0.0066 0.5909

10 ia pucp 0.7704 0.7361 0.0618 0.0066 0.5929
11 CLP 0.7692 0.7336 0.0631 0.0067 0.5854
12 ess 0.7656 0.7308 0.0635 0.0069 0.5747
13 ismail2022 0.7653 0.7245 0.0641 0.0069 0.5766
14 andi gpu 0.7651 0.7275 0.0629 0.0068 0.5810
15 TUDA-CCL 0.7649 0.7164 0.0643 0.0067 0.5846
16 rg pa 0.7628 0.7251 0.0634 0.0069 0.5749
17 ren wo xing 0.7618 0.7229 0.0639 0.0069 0.5715
18 CLULEX 0.7588 0.7089 0.0649 0.0069 0.5753
19 acccb 0.7586 0.7207 0.0635 0.0069 0.5730
20 jiu mo zhi 0.7584 0.7175 0.0635 0.0070 0.5691
21 Eslam93 0.7577 0.7224 0.0640 0.0070 0.5648
22 archer 0.7561 0.7067 0.0641 0.0069 0.5707
23 Cambridge 0.7556 0.7105 0.0646 0.0070 0.5705
24 eee 0.7553 0.7203 0.0673 0.0078 0.5181
25 CompNA 0.7552 0.7153 0.0641 0.0070 0.5701
26 LAST 0.7534 0.6988 0.0652 0.0070 0.5652
27 Stanford MLab 0.7533 0.7044 0.0653 0.0071 0.5615
28 mau lih 0.7513 0.7263 0.0645 0.0071 0.5587
29 IITK@LCP 0.7511 0.7167 0.0654 0.0071 0.5598
30 cognience 0.7510 0.7193 0.0652 0.0071 0.5625
31 qnamqj 0.7509 0.7086 0.0649 0.0072 0.5536
32 feras1515 0.7503 0.7180 0.0652 0.0073 0.5477
33 eslam 0.7482 0.7237 0.0649 0.0072 0.5525
34 RS GV 0.7478 0.7077 0.0698 0.0079 0.5144
35 LucasHub 0.7434 0.6995 0.0658 0.0073 0.5486
36 LRL NC 0.7402 0.7013 0.0661 0.0074 0.5440
37 Manchester Metropolitan 0.7389 0.7135 0.0656 0.0074 0.5398
38 UPB 0.7340 0.6785 0.0699 0.0079 0.5098
39 KFU 0.7201 0.6899 0.0687 0.0079 0.5109
40 PolyU CBS-Comp 0.7188 0.6935 0.0682 0.0078 0.5162
41 LCP RIT 0.7086 0.6535 0.0716 0.0086 0.4695
42 UNBNLP 0.6953 0.6544 0.0716 0.0089 0.4495
43 chenshi 0.6951 0.6532 0.0740 0.0091 0.4366
44 UTFPR 0.6875 0.6588 0.0735 0.0088 0.4577
45 Katildakat 0.6715 0.6454 0.0756 0.0096 0.4060
46 jct 0.6663 0.6457 0.0736 0.0091 0.4402
47 LECCE 0.6452 0.6405 0.0772 0.0096 0.4046
48 S3003183 0.5834 0.5437 0.0804 0.0110 0.3182
– Frequency Baseline 0.5287 0.5263 0.0870 0.0136 0.2779

49 C3SL 0.4598 0.3983 0.0866 0.0130 0.1989
50 SINAI 0.4428 0.3961 0.0875 0.0131 0.1930
51 ProjectLIN513 0.3884 0.4316 0.1019 0.0159 0.0198
52 glitterosu 0.1807 0.1516 0.1024 0.0194 -0.2016
53 PyGuajo 0.0971 0.1440 0.1166 0.0338 -1.0861
54 RACAI -0.0272 -0.0268 0.2777 0.1270 -6.8449

Table 4: Sub-task 1: Results and rank (in brackets) in terms of Pearson, Spearman, MAE, MSE, and R2. The rank
corresponds to Pearson.
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Rank Team Pearson Spearman MAE MSE R2
1 DeepBlueAI 0.8612 0.8526 0.0616 0.0063 0.7389
2 rg pa 0.8575 0.8529 0.0672 0.0072 0.7035
3 xiang wen tian 0.8571 0.8548 0.0675 0.0072 0.7012
4 andi gpu 0.8543 0.8448 0.0664 0.0071 0.7055
5 ren wo xing 0.8541 0.8473 0.0677 0.0073 0.6967
6 Andi 0.8506 0.8381 0.0667 0.0070 0.7107
7 CS-UM6P 0.8489 0.8406 0.0760 0.0087 0.6380
8 OCHADAI-KYOTO 0.8438 0.8285 0.0660 0.0070 0.7103
9 LAST 0.8417 0.8299 0.0677 0.0072 0.7030
10 KFU 0.8406 0.8337 0.0686 0.0073 0.6967
11 jiu mo zhi 0.8355 0.8277 0.0710 0.0083 0.6560
12 CSECU-DSG 0.8311 0.8153 0.0678 0.0077 0.6825
13 acccb 0.8310 0.8157 0.0697 0.0076 0.6850
14 Stanford MLab 0.8280 0.8124 0.0711 0.0080 0.6671
15 IITK@LCP 0.8277 0.8228 0.0811 0.0098 0.5949
16 qnamqj 0.8246 0.8227 0.0787 0.0094 0.6097
17 LRL NC 0.8244 0.8156 0.0702 0.0079 0.6737
18 mau lih 0.8234 0.8211 0.0790 0.0096 0.6042
19 TUDA-CCL 0.8190 0.8091 0.0711 0.0080 0.6677
20 Alejandro Mosquera 0.8093 0.8017 0.0731 0.0084 0.6519
21 LucasHub 0.8000 0.7797 0.0754 0.0089 0.6323
22 UPB 0.7962 0.7988 0.0788 0.0099 0.5917
23 CompNA 0.7931 0.7800 0.0783 0.0093 0.6160
24 justglowing 0.7902 0.7851 0.0786 0.0092 0.6169
25 BigGreen 0.7898 0.7769 0.0903 0.0124 0.4858
26 Katildakat 0.7848 0.7869 0.0807 0.0101 0.5816
27 Manchester Metropolitan 0.7611 0.7711 0.0806 0.0102 0.5770
28 UTFPR 0.7601 0.7504 0.0817 0.0102 0.5754
29 UNBNLP 0.7515 0.7420 0.0802 0.0106 0.5623
30 chenshi 0.7500 0.7497 0.0867 0.0112 0.5365
31 PolyU CBS-Comp 0.7416 0.7222 0.0839 0.0109 0.5473
32 cognience 0.7232 0.7301 0.0851 0.0117 0.5144
– Frequency Baseline 0.6571 0.6345 0.0924 0.0140 0.4030
33 C3SL 0.3941 0.3675 0.1145 0.0206 0.1470
34 PyGuajo 0.3931 0.3902 0.1132 0.0205 0.1488
35 SINAI 0.3197 0.3508 0.1217 0.0243 -0.0062
36 LECCE 0.2821 0.3138 0.1202 0.0226 0.0624
37 glitterosu 0.1860 0.1316 0.1332 0.0255 -0.0564

Table 5: Sub-task 2: Results and rank (in brackets) in terms of Pearson, Spearman, MAE, MSE, and R2. The Rank
Corresponds to Pearson.
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B System Features

Team Features Classification Approach System Paper
Alejandro Mosquera Length, Frequency, Semantic, Sentence Gradient Boosted Regression (Mosquera, 2021)
Andi Psycholinguistic, Glove, Word2Vec, Con-

ceptNet NumberBatch, BERT, RoBERTa,
ELECTRA, ALBERT, DeBERTa

Ridge Regression, Gradient
Boosted Regression

(Rotaru, 2021)

Archer Length, Frequency, Psycholinguistic,
Scrabble Score, Word Inclusion, Semantic

Random Forest Regression, Gradi-
ent Boosted Regression

(Russo, 2021)

BigGreen Length, Semantic, Glove, Elmo, InferSent,
Phonetic, Frequency, POS

Gradient Boosted Regression,
BERT

(Islam et al., 2021)

C3SL Sent2Vec Multi-layer Perceptron
Cambridge Frequency, Syntactic, Length BERT, Random Forest Regression (Yuan et al., 2021)
CLULEX Frequency, POS, Named Entities, Word In-

clusion, Sentence, Bert
Decision Tree (Smolenska et al., 2021)

CompNA Length, Semantic, Glove, Word Inclusion, Decision Tree Ensemble (Vettigli and Sorgente, 2021)
CS-UM6P Token and Context Encoded BERT, RoBERTa (Mamoun et al., 2021)
CSECU-DSG Token and Context Encoded BERT, RoBERTa (Aziz et al., 2021)
DeepBlueAI Token and Context Encoded BERT, ALBERT, RoBERTa,

ERNIE
(Pan et al., 2021)

Hub TF-IDF, Context Encoded RoBERTa, Inception (Huang et al., 2021)
IA PUCP Sentence, POS, N-gram Frequency,

RoBERTa, XLNet, BERT
Gradient Boosted Regression (Rojas and Alva-Manchego,

2021)
IITK@LCP Electra + Glove Linear Regression, Support Vector

Machine
(Shirude et al., 2021)

JCT POS, Frequency, BERT, Cluster Features Gradient Boosted Regression (Liebeskind et al., 2021)
JUST BLUE Token Encoded and Context Encoded Average of Weighted Bert and

Roberta
(Yaseen et al., 2021)

Katildakat BERT, Length, BERT-score, Frequency, Se-
mantic,

Linear Regression, Multi-layer Per-
ceptron

(Voskoboinik, 2021)

LAST Frequency, Psycholinguiistic, Sentence, Bi-
gram Association

Gradient Boosted Regression (Bestgen, 2021)

LCP-RIT Length, Frequency, Character N-Grams,
Psycholinguistic, POS

Random forest Regressor (Desai et al., 2021)

LRL NC Frequency, Semantic, Laanguage Model,
Psycholinguistic, Word Inclusion

Random forest regressor

Manchester Metropolitan Frequency, Psycholinguistic, Length, Em-
beddings

CNN (Flynn and Shardlow, 2021)

OCHADAI-KYOTO Token and Context Encoded BERT, RoBERTa (Taya et al., 2021)
PolyU CBS-Comp Frequency, Length, Capitalisation, POS,

Embeddings, BERT, GPT-2
Gradient Boosted Regression (Xiang et al., 2021)

RG PA Context Encoded RoBERTa (Rao et al., 2021)
RS GV GLoVE, ELMo, BERT, Flair, Readability,

Length, Frequency, Semantic, Psycholin-
guistic, Morphological, Word Inclusion,
Named Entity

Feed-Forward Neural Network (Stodden and Venugopal,
2021)

Stanford MLab Glove, Length, POS, Named Entity Gradient Boosted Regression (Rozi et al., 2021)
TUDA-CCL Linguistic, Semantic, Embeddings, Psy-

cholinguistic, Frequencies, Word Inclusion
Gradient Boosted Regression (Gombert and Bartsch, 2021)

UNBNLP Length, Frequency, Character-Level-
Encoder, BERT

Neural Network, Support Vector
Machine

(King et al., 2021)

UPB Transformers, Word Embeddings, Charac-
ter Embeddings, Length, Psycholinguistic

BERT, RoBERTa, Regression (Zaharia et al., 2021)

UTFPR Frequency, Length, Semantic, Bert Embed-
ding

Support Vector Machine (Paetzold, 2021)

Table 6: Systems that participated and submitted a paper, the features and classification approaches they employed.


