
Proceedings of the Second Workshop on Scholarly Document Processing, pages 110–115
June 10, 2021. ©2021 Association for Computational Linguistics

110

Unsupervised document summarization using pre-trained sentence
embeddings and graph centrality

Juan Ramirez-Orta∗ and Evangelos Milios
Department of Computer Science

Dalhousie University

Abstract

This paper describes our submission for the
LongSumm task in SDP 2021. We propose
a method for incorporating sentence embed-
dings produced by deep language models into
extractive summarization techniques based on
graph centrality in an unsupervised manner.
The proposed method is simple, fast, can sum-
marize any document of any size and can sat-
isfy any length constraints for the summaries
produced. The method offers competitive
performance to more sophisticated supervised
methods and can serve as a proxy for abstrac-
tive summarization techniques.

1 Introduction

Automatic text summarization is a very old and im-
portant task in Natural Language Processing (NLP)
that has received continued attention since the cre-
ation of the field in the late 50’s (Luhn, 1958),
mainly because of the ever-increasing size of col-
lections of text. The objective of the task is, given
a document, to produce a shorter text with maxi-
mum information content, fluency and coherence.
The summarization task can be classified into ex-
tractive and abstractive. Extractive summarization
means that the summary is composed exclusively
of passages present in the original document and
abstractive summarization means that there can be
words in the summary that did not appear in the
original document.

Since the creation of the first neural language
models (Bengio et al., 2003), vector representa-
tions of text that encode meaning (called embed-
dings) have played a significant role in NLP. They
allow the application of statistical and geometri-
cal methods to words, sentences and documents
((Pennington et al., 2014), (Mikolov et al., 2013),
(Reimers and Gurevych, 2019)), leading to state-
of-the-art performance on several NLP tasks like

∗Please send correspondence to juan.ramirez.orta@dal.ca

Information Retrieval, Question Answering or Para-
phrase Identification. Among these neural lan-
guage models, very deep pre-trained neural lan-
guage models, like BERT (Devlin et al., 2018), T5
(Raffel et al., 2020), and GPT-3 (Brown et al., 2020)
have shown impressive performance in tasks like
language modelling and text generation or bench-
marks like GLUE (Wang et al., 2018).

An important variation of extractive summariza-
tion that goes back as far as the late 90’s (Salton
et al., 1994, 1997) utilizes graphs, where the nodes
represent text units and the links represent some
measure of semantic similarity. These early graph-
based summarization techniques involved creating
a graph where the nodes were the sentences or
paragraphs of a document and two nodes were con-
nected if the corresponding text units had a similar
vocabulary. After creating the document graph, the
system created a summary by starting at the first
paragraph and following random walks defined by
different algorithms that tried to cover as much of
the graph as possible.

A more evolved approach was the creation of lex-
ical centrality (Erkan and Radev, 2004) (Mihalcea
and Tarau, 2004) (Wolf and Gibson, 2004), which
is a measure of the importance of a passage in a text
where the sentences of the document are connected
by the similarity of their vocabularies.

The current state of the art in automatic summa-
rization with graphs is mainly based on algorithms
like PageRank (Brin and Page, 1998) enhanced
with statistical information of the terms in the doc-
ument (like in (Ramesh et al., 2014)) or Graph
Neural Networks (Kipf and Welling, 2016) on top
of deep language models (like in (Xu et al., 2019)).

Only two systems from the previous Scholarly
Document Processing workshop held in 2020 are
based on graphs: CIST-BUPT and Monash-Summ.

In CIST-BUPT (Li et al., 2020), they used Re-
current Neural Networks to create sentence em-
beddings that can be used to build a graph which

111

is then fed into a Graph Convolutional Network
(Kipf and Welling, 2016) and a Graph Attention
Network (Veličković et al., 2018) to create extrac-
tive summaries. To generate abstractive summaries,
they used the gap-sentence method of (Zhang et al.,
2019) to fine-tune T5 (Raffel et al., 2020).

In Monash-Summ (Ju et al., 2020), they propose
an unsupervised approach that leverages linguistic
knowledge to construct a sentence graph like in
SummPip (Zhao et al., 2020). The graph nodes,
which represent sentences, are further clustered to
control the summary length, while the final abstrac-
tive summary is created from the key phrases and
discourse from each cluster.

This work focuses on extractive summarization
using graphs leveraging sentence embeddings pro-
duced by pre-trained language models. The essen-
tial idea is that, while the sentence embeddings pro-
duced by SBERT (Reimers and Gurevych, 2019)
are not well suited for clustering algorithms like
Hierarchical Clustering or DBSCAN (Ester et al.,
1996), they produce excellent results in Paraphrase
Identification or Semantic Textual Similarity when
compared with Cosine Similarity, which implies
that they can be used along with graph centrality
methods. The text summarization method proposed
in this paper has the following contributions:

• Is unsupervised and can be used as a proxy
for more advanced summarization methods.

• Can easily scale to arbitrarily large amounts
of text.

• Is fast and easy to implement.

• Can fit any length requirements for the pro-
duction of summaries.

2 Methodology

In this section, we describe how the system works.
The system is composed of three main steps: first,
we use SBERT to produce sentence embeddings
for every sentence in the document to summarize;
next, we form a graph by comparing all the pairs
of sentence embeddings obtained and finally, we
rank the sentences by their degree centrality in this
graph. Fig. 1 gives an overview of the whole
method.

2.1 Sentence tokenization
The first step of our pipeline is to split the input text
into a list of sentences. This step is critical because

Document

Tokenization

Sentence
Embeddings

Graph
Generation

Ranking

Selection

Summary

Figure 1: The complete pipeline of the proposed
method. In the first step, we split the input text into sen-
tences by using a regular expression handcrafted specif-
ically for scientific documents. In the second step, we
compute the sentence embeddings of the parsed sen-
tences using SBERT. In the third step, we create a graph
by comparing all the pairs of sentence embeddings ob-
tained using cosine similarity. In the fourth step, we
rank the sentences by the degree centrality in the gen-
erated graph. In the fifth and final step, we only keep
a certain number of sentences or words to adjust to the
length requirements of the summary.

if the sentences are too long, the final summary
will have a lot of meaningless content (therefore
losing precision). However, if the sentences are too
short, there is a risk of not having enough context to
produce an accurate sentence embedding for them
or extracting meaningless sequences, like data in
tables or numbers that lie in the middle of the text.
We found that the function sent_tokenize()
from the NLTK package (Bird et al., 2009) often
failed because of the numbers in the tables and the
abbreviations, like "et al.", which are very common
in scientific literature. Because of this, we used a
regular expression handcrafted specifically to split
the text found in scientific documents.

2.2 Computing sentence embeddings

After extracting the sentences, the next step is
to produce the sentence embedding of each sen-
tence using SBERT (Reimers and Gurevych, 2019),
which is a Transformer-based (Vaswani et al., 2017)
model built on top of BERT (Devlin et al., 2018)
that takes as input sentences and produces sentence
embeddings that can be compared with cosine sim-
ilarity, which is given by the following formula:

sim(x, y) =
x · y
|x||y|

.

As shown in (Reimers and Gurevych, 2019),
these sentence embeddings are superior in quality
than taking the CLS token of BERT or averaging
the sentence embeddings of the words in the sen-
tence produced by BERT, GloVe (Pennington et al.,
2014), or Word2Vec (Mikolov et al., 2013).

112

SBERT, like BERT, was pre-trained on a gen-
eral large text collection to learn good sentence
embeddings, but it has to be fine-tuned on a more
specific data set according to the task. Since we
are working with scientific papers, we picked the
"base" version of RoBERTa (Liu et al., 2019) that
was fine-tuned in the MSMARCO data set (Bajaj
et al., 2016) for the Information Retrieval task.

2.3 Generation of the sentence graph

After the sentence embeddings have been produced,
the next step is to produce a weighted complete
graph with a node for each sentence in the text. Its
edges are weighted according to the cosine simi-
larities of the corresponding sentence embeddings.
An example graph is depicted in Fig. 2.

s1

s2

s3

s4

1− sim(e1, e2)

1− sim(e1, e3)

1− sim(e1, e4)

Figure 2: The process of graph generation and rank-
ing of the sentences. Every node in the generated com-
plete graph represents a sentence in the document and
the weight of each edge is given by the similarity be-
tween the nodes it conects. The importance of the
sentence in the document is modelled as rank(si) =∑n

j=1 1− sim(ei, ej), where ei and ej are the corre-
sponding SBERT sentence embeddings of si and sj .

To build this graph, the first step is to gather all
the pairwise cosine similarities in a matrix. Let
D = (s1, s2, ..., sn) be a document. Using SBERT,
we produce a sequence of vectors (e1, e2, ..., en),
where ei is the sentence embedding of si. Then,
we can compute the matrix A, where A[i, j] =
1− sim(ei, ej).

We make the following observations:

• The diagonal of A is composed exclusively of
zeros, because A[i, i] = 1− sim(ei, ei) = 0.

• The matrix A is symmetric, because A[i, j] =
1− sim(ei, ej) = 1− sim(ej , ei) = A[j, i].

• All the entries in A are non-negative, because
−1 ≤ sim(ei, ej) ≤ 1.

These observations imply that the matrix A
can be interpreted as the adjacency matrix of a
weighted complete graph G = (V,E) where V =
{s1, s2, ..., sn}, E = {(s1, s2)|s1, s2 ∈ V } and
the edges are weighted by the following function:
w(s1, s2) = 1− sim(e1, e2).

2.4 Ranking by centrality
The forth step is to assign a score for each sentence
that allows us to sort them by their importance in
the document. As a consequence, we define the
importance rank for each sentence as follows:

rank(si) =
n∑

j=1

A[i, j] =
n∑

j=1

1− sim(ei, ej),

(1)
where ei and ej are the corresponding SBERT sen-
tence embedding for si and sj .

To motivate this definition, we observe that
adding the entries of the matrix A columnwise
gives naturally a ranking of the nodes of G that
is a natural generalization of the degree centrality.
However, in our ranking, the most "central" sen-
tences (sentences that are similar to many other
sentences in the document) have lower scores than
the ones that are less "central."

To further support this definition, we observe
that if G were an undirected, unweighted simple
graph G = (V,E) (that is, the entries of A are
either 0 or 1, A is symmetric and only has zeros in
its diagonal), then we would have that

n∑
j=1

A[i, j] = #{v ∈ V |(vi, v) ∈ E}, (2)

which is the definition of the degree of node vi
and is clearly a (somewhat crude) measure of the
importance of the node in the graph.

It is important to note that in scientific papers,
which have around 300 sentences, the proposed
method takes around 1 second for the whole pro-
cess. This result implies that there is no obsta-
cle for applying this method to longer documents
since producing the sentence embeddings with the
SBERT implementation is very efficient, and the
only thing that we are doing is compare all the pairs
of sentence embeddings, which can be done with
highly efficient linear algebra libraries.

2.5 Summary selection
The final step in the method is to select the sen-
tences that are going to form the summary. To do

113

this, we can take only the bottom n-percentile in
reverse (as opposed to the top n-percentile, since in
our method, a lower rank means that the sentence is
more important in the document) or concatenate the
ranked sentences in reverse (so that the sentences
with the lowest ranks -that is, the most important
ones- come first) and take the first k words to sat-
isfy a word-length constraint for the summaries.

3 Experimental setup

3.1 Data set
Since our method is for unsupervised extractive
summarization, we only used the extractive sum-
maries in the TalkSumm data set (Lev et al., 2019)
to estimate the appropriate threshold value for the
sentence selection phase. As suggested in the task,
we used science-parse (AllenAI, 2019) to extract
the text of the scientific articles and split it into
sections. Given that the objective of the task is
to produce long summaries for the documents, we
discarded the title and abstract and then took as in-
put for the algorithm the remaining text as a single
block.

3.2 Evaluation
As is customary in summarization tasks, we used
ROUGE (Lin, 2004) in its variations ROUGE-1,
ROUGE-2 and ROUGE-L.

3.3 Percentile threshold in the selection phase
We tried with p = {1, 1.5, 2, 2.5, 5, 10, 15} as the
value of the bottom percentage of sentences to keep
for the final summary and truncated the output to
satisfy the 600 word limit for the task when the
summary was longer. It is important to note that
the freedom of this parameter allows the system to
produce summaries of arbitrary length, depending
on the task at hand.

4 Results

Overall, we observed that the 600-word constraint
of the task prevented our method from performing
better, but we also observed that the best summaries
produced by our method are too long (around 1,000
words or more). Table 1 displays the performance
of the method variations that we submitted to the
task.

5 Conclusion and Future Work

The method introduced in this work displays com-
petitive performance with more sophisticated meth-

Bottom % R-1 F R-1 R R-2 F R-2 R R-L F R-L R
1.0 0.24 0.15 0.06 0.03 0.11 0.07
1.5 0.29 0.21 0.08 0.05 0.13 0.09
2.0 0.33 0.25 0.08 0.06 0.14 0.10
2.5 0.37 0.29 0.09 0.07 0.15 0.11
5.0 0.44 0.39 0.12 0.10 0.16 0.14

10.0 0.46 0.43 0.12 0.12 0.17 0.16
15.0 0.46 0.43 0.12 0.12 0.17 0.16

Table 1: performance of the different variations of the
proposed method submitted to the task. In this setting,
the ranked sentences were sorted in reverse and con-
catenated to form a preliminary output, which was trun-
cated at 600 words to comply with the task’s require-
ments. The "Bottom %" column displays the percentile
used in the sentence selection phase of the method. R-
N F stands for the F-measure in ROUGE-N, while R-N
R stands for the Recall in ROUGE-N.

ods and can be useful when there is not enough
labelled data to train a deep neural summarization
system while being fast, simple and efficient. Over-
all, we observed that the precision component of
ROUGE for the proposed method has much room
for improvement, as having sentences as the min-
imal text units prevents it from filtering out the
less important phrases. Another important future
direction is to reduce the redundancy of the sum-
maries, as it is common to have several versions
of the same important sentence scattered across
the document, so all these versions of the sentence
appear in the final summary.

References
AllenAI. 2019. Science parse. GitHub repos-

itory, https://github.com/allenai/
science-parse. Visited on April 23, 2021.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Ti-
wary, and Tong Wang. 2016. MS MARCO: A Hu-
man Generated MAchine Reading COmprehension
Dataset. arXiv preprint arXiv:1611.09268.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Janvin. 2003. A neural proba-
bilistic language model. J. Mach. Learn. Res.,
3(null):1137–1155.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Sergey Brin and Lawrence Page. 1998. The anatomy
of a large-scale hypertextual web search engine. In
COMPUTER NETWORKS AND ISDN SYSTEMS,
pages 107–117.

https://github.com/allenai/science-parse
https://github.com/allenai/science-parse
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://dl.acm.org/doi/pdf/10.5555/944919.944966
https://dl.acm.org/doi/pdf/10.5555/944919.944966
http://www.nltk.org/book_1ed/
https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X

114

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. J. Artif. Int. Res., 22(1):457–479.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Min-
ing, KDD’96, page 226–231. AAAI Press.

Jiaxin Ju, Ming Liu, Longxiang Gao, and Shirui
Pan. 2020. Monash-summ@LongSumm 20
SciSummPip: An unsupervised scientific paper sum-
marization pipeline. In Proceedings of the First
Workshop on Scholarly Document Processing, pages
318–327, Online. Association for Computational
Linguistics.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Guy Lev, Michal Shmueli-Scheuer, Jonathan Herzig,
Achiya Jerbi, and David Konopnicki. 2019. Talk-
Summ: A dataset and scalable annotation method
for scientific paper summarization based on confer-
ence talks. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2125–2131, Florence, Italy. Association for
Computational Linguistics.

Lei Li, Yang Xie, Wei Liu, Yinan Liu, Yafei Jiang, Siya
Qi, and Xingyuan Li. 2020. CIST@CL-SciSumm
2020, LongSumm 2020: Automatic scientific doc-
ument summarization. In Proceedings of the First
Workshop on Scholarly Document Processing, pages
225–234, Online. Association for Computational
Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

H. P. Luhn. 1958. The automatic creation of literature
abstracts. IBM Journal of Research and Develop-
ment, 2(2):159–165.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 404–411, Barcelona, Spain.
Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Animesh Ramesh, K. Srinivasa, and Pramod .N. 2014.
Sentencerank — a graph based approach to summa-
rize text. In 5th International Conference on the Ap-
plications of Digital Information and Web Technolo-
gies, ICADIWT 2014, pages 177–182.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Gerard Salton, James Allan, Chris Buckley, and Amit
Singhal. 1994. Automatic analysis, theme genera-
tion, and summarization of machine-readable texts.
Science, 264(5164):1421–1426.

Gerard Salton, Amit Singhal, Mandar Mitra, and Chris
Buckley. 1997. Automatic text structuring and sum-
marization. Information Processing & Management,
33(2):193–207. Methods and Tools for the Auto-
matic Construction of Hypertext.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. International

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://aaai.org/Papers/JAIR/Vol22/JAIR-2214.pdf
https://aaai.org/Papers/JAIR/Vol22/JAIR-2214.pdf
https://aaai.org/Papers/JAIR/Vol22/JAIR-2214.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://doi.org/10.18653/v1/2020.sdp-1.37
https://doi.org/10.18653/v1/2020.sdp-1.37
https://doi.org/10.18653/v1/2020.sdp-1.37
https://arxiv.org/pdf/1609.02907v4.pdf
https://arxiv.org/pdf/1609.02907v4.pdf
https://arxiv.org/pdf/1609.02907v4.pdf
https://doi.org/10.18653/v1/P19-1204
https://doi.org/10.18653/v1/P19-1204
https://doi.org/10.18653/v1/P19-1204
https://doi.org/10.18653/v1/P19-1204
https://doi.org/10.18653/v1/2020.sdp-1.25
https://doi.org/10.18653/v1/2020.sdp-1.25
https://doi.org/10.18653/v1/2020.sdp-1.25
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://www.aclweb.org/anthology/W04-3252
https://www.aclweb.org/anthology/W04-3252
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/ICADIWT.2014.6814680
https://doi.org/10.1109/ICADIWT.2014.6814680
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://www.jstor.org/stable/2884123
http://www.jstor.org/stable/2884123
https://doi.org/https://doi.org/10.1016/S0306-4573(96)00062-3
https://doi.org/https://doi.org/10.1016/S0306-4573(96)00062-3
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ

115

Conference on Learning Representations. Accepted
as poster.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Florian Wolf and Edward Gibson. 2004. Paragraph-,
word-, and coherence-based approaches to sentence
ranking: A comparison of algorithm and human per-
formance. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL-04), pages 383–390, Barcelona, Spain.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.
2019. Discourse-aware neural extractive model for
text summarization. CoRR, abs/1910.14142.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
arXiv preprint arXiv:1912.08777.

Jinming Zhao, Ming Liu, Longxiang Gao, Yuan Jin,
Lan Du, He Zhao, He Zhang, and Gholamreza
Haffari. 2020. Summpip: Unsupervised multi-
document summarization with sentence graph com-
pression. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’20, page
1949–1952, New York, NY, USA. Association for
Computing Machinery.

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.3115/1218955.1219004
https://doi.org/10.3115/1218955.1219004
https://doi.org/10.3115/1218955.1219004
https://doi.org/10.3115/1218955.1219004
http://arxiv.org/abs/1910.14142
http://arxiv.org/abs/1910.14142
https://arxiv.org/pdf/1912.08777.pdf
https://arxiv.org/pdf/1912.08777.pdf
https://doi.org/10.1145/3397271.3401327
https://doi.org/10.1145/3397271.3401327
https://doi.org/10.1145/3397271.3401327

