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Abstract
In this study, we compared the performance
of a long short-term memory (LSTM) neural
network to the behavior of human participants
on a language task that requires hierarchically
structured knowledge. We show that humans
interpret ambiguous phrases, such as second
blue ball, in line with their hierarchical con-
stituent structure. LSTMs, instead, only do so
after unambiguous training data, and they do
not systematically generalize to novel items.
Overall, the results of our simulations indicate
that a model can behave hierarchically without
relying on hierarchical constituent structure.

1 Introduction

It has long been recognized that phrases and sen-
tences are interpreted in line with their underly-
ing hierarchical constituent structure (Chomsky,
1957; Everaert et al., 2015). Contrasting with these
arguments in theoretical linguistics, however, it
has been argued in (computational) psycholinguis-
tics that language use is fundamentally sequen-
tial (Frank et al., 2012). This claim is strength-
ened by recent findings from natural language pro-
cessing, which show that computational models
of language learn structure-dependent phenomena,
seemingly without invoking hierarchical structure
(Linzen et al., 2016).

In response to the claim that language use is
fundamentally sequential, we present experimental
evidence which suggests that language interpre-
tation might in fact be biased towards hierarchy.
Specifically, we used an experimental paradigm
based on Hamburger and Crain (1984) to exam-
ine whether participants interpret ambiguous noun
phrases, such as second blue ball, as a hierarchical
structure or as a linear string. On the hierarchical
interpretation (Figure 1B), the phrase refers to ‘the
second among blue balls’ (fourth ball in Figure 1C).
On the linear interpretation (Figure 1A), instead,

Figure 1: Linear (A) and hierarchical (B) representa-
tions for the noun phrase second blue ball. (C) presents
a picture from the behavioral experiment.

‘second’ and ‘blue’ are interpreted conjunctively, re-
ferring to ‘the ball that is blue and second’ (second
ball in Figure 1C). In a behavioral experiment with
such phrases (ordinal, color, shape) and pictures
in which the hierarchical and linear interpretations
were always both present (e.g. Figure 1C), partic-
ipants overwhelmingly interpreted these phrases
hierarchically.

Having shown a strong bias for hierarchical con-
stituent structure in human language interpretation,
we then trained and tested a recurrent neural net-
work (RNN) on a computational version of our
task. We tested whether the model would be able
to reproduce such ‘hierarchical’ behavior, and eval-
uated whether its performance varied as a function
of the data on which it was trained. The model
received either purely hierarchical training or fully
ambiguous training, from which both the hierar-
chical and the linear interpretations are possible
inductions. The ambiguous training-test regime in-
directly models language acquisition, for which the
input is also compatible with many possible gener-
alizations. The fact that humans consistently arrive
at the same generalizations, despite the fact that
these generalizations are underdetermined by the
input, reflects the “poverty of the stimulus” prob-
lem (Chomsky, 1980).
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Recent modeling studies have adopted a poverty-
of-the-stimulus approach to look at the inductive
biases of RNNs. McCoy et al. (2020), for instance,
compared sequential and tree-based RNNs on their
ability to learn structure-dependent syntactic phe-
nomena, such as question formation (i.e. convert-
ing a declarative into an interrogative sentence).
The training data presented to these models were
consistent with two generalizations, one of which
was based on hierarchical structure (move main
verb), the other was based on linear order (move
first verb). The models were then tested on sen-
tences for which these generalizations make differ-
ent predictions, such as complex sentences with a
subject-relative clause, for which the first verb is
not the main verb. The only model which showed a
bias towards the hierarchical generalization on all
syntactic phenomena was the tree-structured model,
suggesting that human-like syntactic generalization
requires an explicit reference to hierarchical syn-
tactic structure.

In the following paragraphs, we will describe our
study, which has a similar poverty-of-the-stimulus
logic, but rather than looking at generalization be-
tween syntactic forms (i.e. form-only generaliza-
tion), we look at semantic interpretation (i.e. form-
meaning generalization), for which the solution
to the learnability problem is similarly underdeter-
mined (Gleitman and Gleitman, 1992).

2 Methods

2.1 Model

We trained and tested an LSTM (Hochreiter and
Schmidhuber, 1997) on a computational version
of our experimental task. The model’s task was to
take the phrase and the picture as input, and pro-
vide as output the position of the target. The input
to the model consisted of four vectors, which were
sequentially presented in four time steps (Figure
2). These vectors were one-hot representations of
respectively the ordinal, color, and shape of the tar-
get, and the picture. Each input vector had a length
of 170, where the first 10 elements were reserved
for the phrase (elements 1-6 represented the ordi-
nals second through seventh, 7 and 8 represented
the colors blue and green, 9 and 10 represented
the shapes ball and triangle) and the last 160 ele-
ments were reserved for the eight-element picture,
wherein each element had a color and a shape. The
picture was normalized to make sure that its net
content is 1, in line with the other one-hot vectors.

Figure 2: Experimental setup. The LSTM receives four
inputs, sequentially presented in time, where x<t> rep-
resents the input at time step t and a<t−1> the activa-
tion state of the model after the previous time step.

To give an example of an input vector, the word
‘blue’ would be represented as a 170-element vector
which has a one in position 7 and zeros everywhere
else.

The hidden layer consisted of 100 units, whose
activation function at the last time step was for-
warded to a softmax layer, which provided the out-
put of the network. The output was a nine-element
one-hot vector which had a one at the position of
the target (positions 1-8) on target-present trials or
a one at position 9 to indicate that the target was
absent from the picture.

We trained the LSTM in a supervised manner
on datasets of different types (see Section 2.2) and
different sizes (100-1000 trials), in 50 epochs (100
steps per epoch) using the optimizer “Adam” and
the categorical-crossentropy loss function. For
each dataset, the model was evaluated on 100 test
trials, and this training-test evaluation was simu-
lated 100 times.

2.2 Training
We created different training and test datasets,
which contained both target-present and target-
absent trials. The “hierarchical” training and test
set consisted of target-present trials in which only
the hierarchical interpretation of the phrase was
present (e.g. for the phrase second blue ball, the
second ball in the figure would not be blue), and
target-absent trials in which it was absent. The “am-
biguous” training set was fully ambiguous between
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the hierarchical and linear interpretations of the tar-
get phrase, both on target-present and target-absent
trials. For instance, on target-present training tri-
als the first two balls were blue (Figure 2), such
that the ball that was blue and in second position
(linear) was also the second of the set of blue balls
(hierarchical). On target-present test trials the lin-
ear and hierarchical interpretation did not converge
on the same target (e.g. Figure 1C). The training
data are thus equally compatible with the hierar-
chical and linear interpretations, but as these two
generalizations make different predictions for the
test trials, the model’s answers on these test trials
can reveal its inductive bias in this setup.

3 Results

3.1 Induction of hierarchy

When the model is trained on unambiguously hier-
archical data, it learns to give hierarchical answers.
Its performance starts at 39% correct on target-
present trials after 100 training trials, steadily in-
creases with increasing training size up to 700 trials,
and stabilizes around 97-100% correct (Figure 3A).
After “ambiguous” training, however, the model
mainly gives linear answers on target-present trials
(M = 81.1%, SD = 5.51%), and never gives a hier-
archical answer (Figure 3B). Moreover, when the
same “ambiguous” model is tested on hierarchical
test trials, in which the linear answer is not even
present, it still never gives a hierarchical answer.

These data suggest that the model does not have
a bias to generalize in a hierarchical way, in con-
trast to what has been argued for humans. One
could argue, however, that our ambiguous training
regime is not representative of the language input
children receive, and therefore does not provide an
adequate test of the poverty of the stimulus argu-
ment. To make our simulations more representative
of natural language acquisition, we ran 100 simula-

tions in which the model was trained on a dataset
which was half ambiguous and half unambiguous.
On unambiguous training trials, the output is only
compatible with the hierarchical interpretation, so
overall, the hierarchical interpretation is the only
generalization fully compatible with these mixed
training data. When tested on unambiguous test tri-
als, the model did give some hierarchical answers
(M = 12.9%, SD = 5.66%), yet the majority of its
answers were still linear (M = 58.8%, SD = 8.36%).
This again suggests that the model can learn to
answer “hierarchically”, but that it needs unam-
biguous trials to overcome its non-hierarchical bias
(cf. McCoy et al., 2018).

3.2 Generalization to novel items

We then investigated what the model has learned af-
ter the hierarchical training regime by evaluating its
ability to generalize to completely novel items that
were not observed during training, such as third red
ball. Specifically, we looked the model’s response
to phrases that included the word ‘red’ when the
training data did not contain red at all (i.e. ‘ex-
trapolation’), or only in combination with specific
ordinals. In the latter case, the model was trained
on all combinations of features except the combi-
nation of ‘third’ with ‘red’ and ‘ball’, and was then
tested on ‘third red ball’. While these features are
observed during training, their combination is new
and therefore requires ‘interpolation’.

As representations of the words in our vocab-
ulary we used one-hot vectors as well as 300-
dimensional word embeddings from word2vec
(Mikolov et al., 2013) and a dimensionality-
reduced version of these word embeddings. We
added these word embeddings because they might
enhance the model’s generalization ability. That
is, the one-hot vectors [0,1...0,0] and [0,0...1,0]
are fully independent, although they would have

Figure 3: The model’s performance on test trials after hierarchical training (A) and ambiguous training (B). Panel
(C) represents the percentage of hierarchical responses on both generalization tests after different types of training.
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to be related if they are to represent the words
‘blue’ and ‘red’. Word embeddings, instead, do
capture this similarity and might therefore aid the
model in generalizing (in particular, interpolat-
ing). For each type of input vector (one-hot, full
and dimensionality-reduced word embeddings) and
each generalization test (extrapolation and interpo-
lation), we ran 100 simulations in which the model
was trained on 500 training trials and evaluated
on 100 test trials, which were identical in each
simulation run. The model’s overall accuracy was
compared to chance level, defined as the accuracy
of the model when it was trained on pseudorandom
input-output mappings.

Accuracy on both generalization tests was de-
fined as the percentage of hierarchical answers. As
Figure 3C shows, the model’s accuracy was not
above chance level on the extrapolation test in any
of the conditions. The chance level of 12.5% re-
flects the probability of each of the eight possible
target positions attested during training. Statistical
comparison of the groups indicated that the accu-
racies in the conditions were different (F(3,396)
= 5.12, p = .002), but pairwise follow-up tests
showed that none of the conditions scored above
chance. On the interpolation test, the accuracies of
the groups were again different (F(3,396) = 20.4,
p < .001), and pairwise follow-up tests showed
that only the accuracy for the full word embed-
dings (M = 29.1%, SD = 15.3%) was higher than
expected by chance (Tukey test, p < .001). These
findings show that the inherent similarity between
word embeddings that represent related words, in
combination with the statistical information that
these words occur in the same distributional envi-
ronments, allows the model to generalize to a novel
combination of words. Still, the model’s accuracy
varies considerably across simulations, plausibly
related to the variability in each training set as well
as random initializations of the model in each simu-
lation run. Such stochasticity is strikingly different
from the systematic behavior of humans on similar
generalization tests (Lake and Baroni, 2018).

4 Discussion

In this study, we investigated whether LSTMs are
biased to interpret phrases such as second blue ball
hierarchically, like humans, or linearly, and how
this interpretation is affected by the training data.
While we show that an LSTM can learn to give hi-
erarchical answers, comparison of the performance

of the model and the behavior of the human par-
ticipants on our task reveals a number of critical
differences. First, while the model learned to give
hierarchical answers, it only did so when it was
explicitly given hierarchical information during su-
pervised training. When the training data were
ambiguous with respect to the correct representa-
tion underlying the noun phrases, the model had
a strongly linear bias, never giving a hierarchical
answer during the test phase. This suggests that
without an inductive hierarchical bias, the neural
network interprets ambiguous input in the way that
is most in line with the simplest statistical informa-
tion computed over sequences of words (i.e. the
linear interpretation).

Second, as shown in previous work, the LSTM
did not systematically generalize to items that were
not observed during training (Lake and Baroni,
2018; Loula et al., 2018; Puebla et al., 2020). In our
simulations, only when the model was trained on
full word embeddings, it scored higher than chance
level on the interpolation test. However, even on
this successful test, the model’s average accuracy
was about 30% and its performance was variable,
indicating that it achieved its performance on hier-
archical test trials without resorting to truly hier-
archical constituent structure, which is commonly
assumed to be built from representations with a
symbolic format (cf. Figure 1B; Everaert et al.,
2015). The inability to generalize thus suggests
that the model does not rely on the type of (sym-
bolic) constituent structure we believe underlies the
responses of the human participants (Doumas and
Martin, 2018; Martin, 2020).

5 Conclusion

The difficulty with which computational models of
language acquire hierarchical behavior is at odds
with both the ease with which it is acquired by chil-
dren as well as with the pervasiveness of structure
dependence in natural language. To address this is-
sue, we believe that incorporating inductive biases
for hierarchy, perhaps in the form of model archi-
tecture (Kuncoro et al., 2018; McCoy et al., 2020),
is a sensible next step in computational modeling of
language. This will make these models more valid
as models of human cognition and might also make
their performance more human-like (Martin and
Doumas, 2017), especially when presented with
limited data (Wilcox et al., 2019).
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