
Strong Learning of Probabilistic Tree Adjoining Grammars

Alexander Clark
alexsclark@gmail.com

Department of Philosophy,
King’s College London

1 Introduction

In this abstract we outline some theoretical work
on the probabilistic learning of a representative
mildly context-sensitive grammar formalism from
positive examples only. In a recent paper, Clark
and Fijalkow (2020) (CF from now on) present
a consistent unsupervised learning algorithm for
probabilistic context-free grammars (PCFGs) sat-
isfying certain structural conditions: it converges
to the correct grammar and parameter values, tak-
ing as input only a sample of strings generated
by the PCFG. Here we extend this to the prob-
lem of learning tree grammars from derived trees,
and show that under analogous conditions, we can
learn a probabilistic tree grammar, of a type that
is equivalent to Tree Adjoining Grammars (TAGs)
(Vijay-Shankar and Joshi, 1985). In this learn-
ing model, we have a probabilistic tree grammar
which generates a probability distribution over
trees; given a sample of these trees, the learner
must converge to a grammar that has the same
structure as the original grammar and the same pa-
rameters.

This work is motivated ultimately by the prob-
lem of first language acquisition, and in particular
the acquisition of syntactic structure. The deriva-
tion trees of these grammars are richer than those
of context-free grammars and naturally account
for limited forms of syntactic movement (Rogers,
2003), and so the issue of how these structural de-
scriptions can be learned is of great theoretical im-
portance.

However, an important limitation of this ap-
proach is that the input consists of trees not strings;
the hope then is that this approach can be com-
bined with the CF approach of learning trees from
strings, to get a more plausible model, though
there are various technical problems to be over-
come.

g

c g

x

f

a a

x

h

x x

−→ g

c g

f

a a

h

x x

Figure 1: The three trees on the left are combined to
form the one on the right, by substituting the bottom
two for the two variables in the top; one tree is a 0-stub
and the other 3 are all 2-stubs, as they contain two xs.

2 Definitions

We will give a technical presentation in the ap-
pendix, and in the body of the abstract just give
some ostensive definitions with examples to give
the fundamental intuitions. The observed objects
we use are binary trees over a ranked alphabet Σ,
where each node has either 0 or 2 children; the set
of all such trees is called TΣ. The set of terminals
of rank k is written Σk.

The grammars we use are a sort of simple
context-free tree grammar in a variant of Chom-
sky Normal Form (CNF), that build up a tree us-
ing various combinatorial operations that manipu-
late fragments of trees. We have two sorts of frag-
ments – complete trees which we call 0-stubs and
trees where one node is missing its two children,
which we call a 2-stub, the gaps being indicated
by the symbol x of rank 0. Given a 2-stub and two
other stubs , we can combine them to form a larger
tree, by replacing the two variables in the first 2-
stub with the two other stubs as shown in Figure 1.

A context-free tree grammar of the sort we con-
sider here, is like a context-free grammar except

406
Proceedings of the Society for Computation in Linguistics (SCiL) 2021, pages 406-414.

Held on-line February 14-19, 2021

Unary Branching

πa : A→ a πS : S → X(D,D)
πb : B → b
πd : D → d

πa′ : A′ → a′(x, x) πA : X →M(A,A′(x, x))
πb′ : B′ → b′(x, x) πA′ : A′ → X(M(x, x), A)
πc : X → c(x, x) πB : X →M(B,B′(x, x))
πm : M → m(x, x) πB′ : B′ → X(M(x, x), B)

Table 1: Sample grammar which generates a set of trees
with noncontext-free string yield.

we combine trees using these operations, rather
than strings using the concatenation operation.
So a CFG in CNF, manipulates string fragments
(which are just strings) and combines them using
productions like A → BC, after introducing the
minimal fragments with productions like A → a;
here and throughout we use the convention that
upper case letters are nonterminals and lower case
letters are terminals.

Our tree grammars then have two sets of non-
terminals of rank 0 and 2, written N0 and N (2),
and combining productions of these three types:
A → F,

B C

F → G,

A H

x x

F → G

H

x x

A

where
A,B,C are of rank 0 (inN0)) and F,G,H of rank
2, (in N2)). As is normal we have a start symbol
S, which must be of rank 0. It’s helpful to save
space by writing these productions in a flat format
as A → B(C,D) instead. We also have produc-
tions that introduce individual terminals of rank 0
and 2, that look like A→ a and F → g(x, x).

Consider the following simple example gram-
mar G1 where Σ(0) = {a, b, d}, Σ(2) =
{a′, b′, c,m} the start symbol is S, N (0) =
{S,A,B,D},N (2) = {A′, B′,M,X}. The pro-
ductions are shown in Table 1 and a sample deriva-
tion, which we will explain shortly, in Figure 2.
The string language defined by this grammar is

{w(a|b|λ)ddw | w ∈ {a, b}∗},
which is clearly not context-free.

A derivation tree of a CFG in CNF is binary
branching, but here we have ternary branching
derivation trees because we have three nontermi-
nals on the right hand side; and we label each node

πS

πA

πm πa πA′

πB

πm πb πB′

πc πm πb

πm πa

πd πd

→ty m

a m

b c

m

m

d d

a

b

→sy abddab

Figure 2: Example derivation tree, derived tree and
string yield for the example grammar. Note that the
unbounded dependencies between the as (and the bs)
which can be arbitrarily distant from each other in the
derived tree are local in the derivation tree. The boxed
subtree in the derivation tree has tree yield which is the
boxed 2-stub in the derived tree, which has discontinu-
ous string yield of the two underlined bs in the string.

in the tree with a production, which we write as
π with some subscript. See Figure 2 for an exam-
ple. Crucially, in this setting we observe the binary
derived trees, but not the ternary derivation trees
which are what we want to learn, in the same way
that when doing unsupervised learning of CFGs
we observe the derived strings, but not the deriva-
tion trees.

A weighted grammar is a grammar where each
production has a nonzero parameter associated
with it; we can get the probability of a derivation
tree by multiplying the parameter of every produc-
tion used, of course requiring that the sum of the
probability of every derivation tree is equal to 1.
Rather than the standard parameterization of this,
we follow CF and use a bottom-up parameterisa-
tion (see appendix for details).

We also want to define the notion of an envi-
ronment: this plays the role of the context of a
fragment in a whole tree. We assume we have two
distinguished symbols #2 and #0 of rank 2 and
0 respectively. A k-environment is a tree t with
a single occurrence of this ”gap” symbol. Write
the set of all such as EkΣ. We can combine a k-
environment and a k-stub using the operator �k
which will give us a complete tree. This is the
analogue of combining a context and a string l�r
with a string u to form a string lur; see Figure 3
for an example. The distribution of a k-stub in a

407

a

#2

c d

e

f g

�2 b

h

x x

i

= a

b

h

c d

i

e

f g

Figure 3: A 2-environment and a 2-stub being com-
bined, via substitution of the symbol #2 to form a
whole tree.

tree language L is just the set of environments in
which it can occur. This again is precisely analo-
gous to the structuralist idea of the distribution of
a string in a corpus.

3 Structural conditions

We now define three conditions on the grammars
that are parallel to those for CFGs defined by CF.

Definition 3.1. A FCFTG is anchored if for every
nonterminal A of rank k there is a terminal, say a,
of rank k that is derived only from that nontermi-
nal; in other words where A → a(xk) is the only
production that uses a in the grammar. We call
such a terminal an anchor for A.

Suppose this assumption holds and nontermi-
nals F,G,H of rank 2, are anchored by terminals
f, g, h, and A,B of rank 0 by a, b. Then if there
was a production of the form F → G(BH(x, x));
we would expect the distribution of the two 2-
stubs f(x, x) and g(b, h(x, x)) to be similar in the
sense that they tend to occur in the same environ-
ments.

The main result is that for any such productions
(and mutatis mutandis for the other various com-
bining productions)

log θ(F → G(BH(x, x))) = PMI(g(b, h(x, x)))

−ρ(f(x, x), g(b, h(x, x)))

where θ is the parameter of the production in the
bottom-up parameterisation, PMI(t) is a measure
of association, approximately the pointwise mu-
tual information, which measures the extent to
which the fragment t occurs more often than ex-
pected by chance, and ρ(t, t′) is a particular asym-
metric measure of the distributional similarity of
the two 2-stubs, a type of Rényi divergence. Again
see the appendix for the definitions. Note that the

right hand side of this equation depends only on
the distribution over trees that we observe, and can
as a result be estimated from a sample of trees, and
the left hand side is a parameter of the grammar.

For the productions that introduce fragments it
is even simpler; for rank 0 A and c we can show
that:

log θ(A→ c) = logE[c]− ρ(a, c)

Here E[t] is just the expected frequency of the
fragment t.

We need two more fairly natural conditions to
make this work:

Definition 3.2. We say that a grammar is strictly
upward monotonic (SUM) if adding a production
increases the set of strings generated by the lan-
guage.

This implies that if a production is not in the
grammar then the divergence term, ρ(t, t′), will be
infinite, which will have the effect of setting the
parameter to zero. Finally we have a fairly weak
condition bounding the ambiguity of the model,
which is called local unambiguity (LUA), which
informally states that for every production there is
a tree in which that production is always used in
an unambiguous position; this guarantees that the
divergence has the correct value. This is satisfied
for example if every production is used to derived
an unambiguous tree.

We can show that the class of all of these gram-
mars that satisfy these conditions can be learned
from a sufficiently large sample of trees by a com-
putationally quite trivial learner. To be explicit
about the learning model, we define an algorithm
that takes as input a sample of derived trees gen-
erated by some probabilistic tree grammar. For
every probabilistic grammar in the class defined
above, that satisfies the three conditions — an-
choring, SUM and LUA– and for any ε, δ > 0 there
is someN such that with probability at least 1−δ,
given at least N trees, the learner outputs a gram-
mar that is first of all isomorphic to the original
grammar, and secondly, such that all of the pa-
rameters are within ε of the true values. This is
therefore a strong learning algorithm in that it con-
verges to the correct grammar, not just to some
grammar that generates the same set of derived
trees.

408

4 Discussion

There are very few algorithms for learning tree
grammars beyond regular tree grammars, which
generate only context-free string languages, be-
yond various extensions of distributional learning
(Kasprzik and Yoshinaka, 2011), and they are all
only weak learners; this paper shows that one can
learn the derivation trees from derived trees, in a
realistic learning model; contrast with the negative
results of Florêncio (2012) in a non probabilistic
learning paradigm.

This is really the first algorithm for strong learn-
ing of a representative mildly context-sensitive
formalism; this is the least powerful formalism
that is not clearly inadequate for natural language
syntax (Vijay-Shanker and Weir, 1994). TAGs do
not explicitly make a distinction between nonter-
minals and terminals; though the tree grammar
formalism we use does, the fact that the nontermi-
nals are each anchored by a terminal does blur the
distinction significantly, and suggest a more direct
connection to the TAG formalism than explored
here.

A combination of this algorithm with CF sug-
gests that these rich derivation trees can be learned
just from surface strings, though it is far from
straightforward to directly combine the two, as the
modeling assumptions are to a certain extend in-
compatible. However it is simplistic to consider
the entire process of language acquisition to be
captured by a single model, and perhaps better to
consider it as a sequence of processes, one learn-
ing simple constituent structure and another of
learning movement within that structure (see for
example Hamburger and Wexler (1975)). While
the anchoring assumption is not implausible in the
case of PCFGs, with these tree grammars it isn’t
clear what precisely the terminal symbols should
be, and thus how realistic this assumption is.

As Hao (2019) argues, weak learning is prob-
ably too powerful to explain typological general-
izations of interest to syntacticians; the structural
constraints we require for strong learning seem to
be potentially more fruitful in this regard: these
are structurally sensitive constraints on movement,
in the case of rank 2 productions, that we derive
from learnability considerations. However, we are
still at a distance from being able to explain, for
example, island constraints; the conditions here
are sufficient but clearly not necessary, and the
learnability is asymptotic and not a finite sample

result.

Acknowledgments

I would like to thank Ryo Yoshinaka; and the re-
viewers for comments on the paper of which this
is an extended abstract.

References
Alexander Clark and Nathanaël Fijalkow. 2020.

Consistent unsupervised estimators for anchored
PCFGs. Transactions of the Association for Com-
putational Linguistics, 8:409–422.

Christophe Costa Florêncio. 2012. Learning tree ad-
joining grammars from structures and strings. In
Proceedings of the Eleventh International Confer-
ence on Grammatical Inference, volume 21 of Pro-
ceedings of Machine Learning Research, pages 129–
132, University of Maryland, College Park, MD,
USA. PMLR.

Henry Hamburger and Kenneth Wexler. 1975. A
mathematical theory of learning transformational
grammar. Journal of Mathematical Psychology,
12(2):137 – 177.

Yiding Hao. 2019. Learnability and overgeneration in
computational syntax. Proceedings of the Society
for Computation in Linguistics, 2(1):124–134.

Anna Kasprzik and Ryo Yoshinaka. 2011. Distribu-
tional learning of simple context-free tree grammars.
In Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen,
and Thomas Zeugmann, editors, Algorithmic Learn-
ing Theory, volume 6925 of Lecture Notes in Com-
puter Science, pages 398–412. Springer Berlin Hei-
delberg.

Stephan Kepser and Jim Rogers. 2011. The equiva-
lence of tree adjoining grammars and monadic lin-
ear context-free tree grammars. Journal of Logic,
Language and Information, 20(3):361–384.

James Rogers. 2003. Syntactic structures as multi-
dimensional trees. Research on Language and Com-
putation, 1(3-4):265–305.

Yves Schabes. 1992. Stochastic lexicalized tree-
adjoining grammars. In COLING 1992 Volume
2: The 15th International Conference on Computa-
tional Linguistics.

K Vijay-Shankar and Aravind K Joshi. 1985. Some
computational properties of tree adjoining gram-
mars. In Proceedings of the 23rd annual meeting
on Association for Computational Linguistics, pages
82–93. Association for Computational Linguistics.

K. Vijay-Shanker and David J. Weir. 1994. The equiv-
alence of four extensions of context-free grammars.
Mathematical Systems Theory, 27(6):511–546.

409

Appendix

We will give in this technical appendix a more for-
mal definition of the ideas we have used here.

We will start by giving some standard defini-
tions of trees and context-free tree grammars; fol-
lowing the notation of Kasprzik and Yoshinaka
(2011) among others.

4.1 Trees and tree languages
Let Σ be a ranked alphabet. We define Σ(k) to be
the set of elements of rank k, then the set of trees
over this alphabet is written as TΣ. We can count
the number of times an element of Σ occurs in a
tree t using the notation n(a; t). A tree language
is a subset of TΣ.

We assume that Σ may contain a distinguished
symbol λ of rank 0 which is interpreted as an
empty string. We define a string yield operation
sy : TΣ → (Σ(0) \ {λ})∗ in the standard way.

We have a distinguished symbol x of rank 0.1

We define SkΣ, the set of k-stubs over a ranked al-
phabet Σ, to be the set of trees t over Σ ∪ {x},
where x occurs exactly k times, n(x; t) = k.
When a ∈ Σ is of rank k, we will write a(xk)
for the k-stub where a has k children all labeled
x; k may be zero. Occasionally to reduce clutter
we will write this as just a.

We can replace a single occurrence of a symbol
of rank k in a tree, by a k-stub, in the standard
way, attaching the children of the symbol to the
occurrences of x in the k-stub. We denote this infix
substitution by←k.

We also want to define the notion of an environ-
ment: this plays the role of a context of a k-stub.
We assume we have distinguished symbols #k of
rank k.

A k-environment is a tree t over Σ∪{#k}where
n(#k; t) = 1. Write the set of all such as EkΣ. We
can combine a k-environment and a k-stub using
the operator�k which will give us a complete tree
which we define; for e ∈ EkΣ and s ∈ SkΣ,

e�k s = e[#k ←k s]

The notation here is well defined since there is
only one occurrence of #k in e. This is the ana-
logue of combining a context and a string l�r with
a string u to form a string lur.

Now we want to define the idea of the distribu-
tion of a k-stub in a tree language L: For a s ∈ SkΣ

1Because of the restricted class, we can make do with 1
variable symbol rather than countably many of the form xi.

and a tree language L we define

s|L〉 = {e ∈ EkΣ | e�k s ∈ L}

4.2 Stochastic languages
We are interested in probabilistic learning: so we
will consider the probabilistic analogue of a dis-
tribution which will be a probability distribution
over EkΣ.

A stochastic tree language over TΣ is a function
P from TΣ into non negative real numbers such
that

∑
t∈TΣ

P(t) = 1.
For any element of a ∈ Σ we can define the ex-

pected number of times that a occurs in a tree sam-
pled according to P; which we define as E(a) =∑

t∈TΣ
P(t)n(a; t).

We are interested in some sense in unusually
frequent substructures; and we can measure this
using a generalisation of a familiar association
measure:

Definition 4.1. For a k-stub t, define the pointwise
mutual information of t to be:

PMI(t) = log
E(t)∏

a∈Σ E(a)n(a;t))

If a stochastic tree language over TΣ has sup-
port2 L, then a tree t ∈ SkΣ defines a distribution
over environments,D(t), whose support is t|L〉 de-
fined as

D(t)[e] =
P(e� t)
E(t)

where E(t) is a normalisation constant which is
the expected number of times we see the k-stub t
in a tree sampled according to the stochastic lan-
guage.

E(t) =
∑

e∈Ek
Σ

P(e� t)

This coincides with the earlier definition. Given
these environment distributions we will want to
define a type of distance measure between them
and we will use a Renyi divergence, which is not
strictly a distance since it is asymmetric. Suppose
t, t′ ∈ SkΣ, then we define

ρ(t, t′) = R∞
(
D(t)

∥∥D(t′)
)

Where the Renyi divergence of order∞ over two
discrete distributions over a set X is defined to be

R∞ (D1‖D2) = sup
x∈X

log
D1(x)

D2(x)

2The support of a distribution is the set of elements with
nonzero probability.

410

This takes a value in R≥0 ∪ {∞}. with it being
zero iff D1 = D2. It also satisfies the triangle
inequality but is asymmetric. Note that

e−ρ(t,t′) = inf
x∈Ek

Σ

P(x�k t)E(t′)
P(x�k t′)E(t)

which is a value in [0, 1].

4.3 Tree grammars
We now define the special type of tree grammar
that we are interested in: footed simple context
free tree grammars in a simple normal form that
only generate binary trees.

Definition 4.2. A footed simple context free
tree grammar of order 2 (FCFTG) is a tuple
(N,Σ, P, S) where

• N is a finite ranked alphabet of nonterminals,
all of rank 0 or 2.

• Σ is a finite ranked alphabet of terminals, all
of rank 0 or 2, which may include λ.

• S is a nonterminal of rank 0, which occurs
only on the left hand side of a production.

• P is a finite set of productions, each of which
is in N (k) × SkΣ∪N for k ∈ {0, 2}, written
A → t, where A is the left hand side (lhs),
and t the righthand side (rhs), of the follow-
ing types:

– If A,C,D are nonterminals of rank 0, a
a terminal of rank 0, B a nonterminal of
rank 2,
∗ A→ a

∗ A→ B(CD)

– If A,B,D are nonterminals of rank 2, a
a terminal of rank 2, and C a nontermi-
nal of rank 0:
∗ A→ a(x, x)

∗ A→ B(C,D(x, x))

∗ A→ B(D(x, x), C)

All of the production are such that the rank
of the nonterminal is equal to the number of oc-
currences of x on the right hand side. We can
put this more succinctly as the following two rule
schemas, where

• A→ a(xk), where rank of A is k

• A → B(C(xi), D(xj)), where rank of A is
i+ j.

These are a subset of footed tree grammars
(Kepser and Rogers, 2011), which are weakly
TAG-equivalent, so these generate a subset of the
tree languages of TAGs. The string languages gen-
erated are the same as those of TAGs.

4.4 Derivation trees and contexts
We can consider the set P of productions of a
grammar G, as a ranked alphabet, where the rank
of each production is the number of nonterminals
on the right hand side of the production, which in
this case is always 0 or 3. A derivation tree forG is
a tree in TP where each node is labeled with a pro-
duction such that that the preorder list of nontermi-
nals on the rhs of the production matches the list
of lhs of labels of the children. To reduce confu-
sion between derived and derivation trees we will
use Greek letters for notations involving the more
abstract derivation tree, and Roman letters for the
derived trees and related concepts. These deriva-
tions are really 3-dimensional trees (Rogers, 2003)
but we flatten them out to make them 2d trees for
presentational purposes. Note that the derivation
trees (which we will denote by τ) are ternary and
the derived trees (which we denote by t) are bi-
nary. Let Ω(G,A) be the set of all derivation trees
where the root of the tree is labeled with a produc-
tion whose lhs is A.

The tree yield of a derivation tree τ of a nonter-
minal of rank k is a k-stub. We can define tree
yield, t = ty(τ) recursively bottom up in the
derivation tree:

• the tree yield of a derivation tree whose root
is of rank 0 is just the right hand side of that
production labeling the root.

• the tree yield of a tree whose root is of rank 3
is formed by substituting the tree yields of the
three child derivation trees into the right hand
side of the production labeling the root. For
example if the root is labeled with π0 = A→
B(C,D) and the children are τ1, τ2, τ3 then
ty(π0(τ1, τ2, τ3)) will be B(C,D with the
three substitutions of B ←2 ty(τ1), C ←0

ty(τ2), and D ←0 ty(τ3).

The tree language defined by the grammar is
then just the set of tree yields of Ω(S):

L(G) = {ty(τ) | τ ∈ Ω(S)}

We also need the notion of a derivation con-
text of a nonterminal A. We assume that we have

411

some gap symbols, one for each nonterminal A,
of rank 0, written �A. The set of derivation con-
texts of A, written Ξ(G,A), is a tree whose root is
labeled with a production with S, over the ranked
alphabet P ∪{�A} with a single occurrence of the
gap symbol. These are just elements of Ω(G,S)
where a single subtree in Ω(G,A) has been re-
placed with the gap symbol. We can fill the gap
by replacing the gap symbol with some element of
Ω(G,A) and get a whole tree in Ω(G,S); defin-
ing the operation ⊕ to be this substitution opera-
tion then if ξ ∈ Ξ(G,A) and τ ∈ Ω(G,A) then
ξ ⊕ τ ∈ Ω(G,S). We can lift this to sets of trees
and contexts in the standard way.

The yield (cy) of a derivation context ξ is an
environment, defined as with the tree yield, but
where the gap symbol �A, has yield #k where
rank of A is k.

We will often omit the grammar symbol where
clear and given a set X of k-stubs or k-
environments, use Ω(A,X) or Ξ(A,X) to refer to
the set of derivation trees/contexts of sortAwhose
yield is in X .

5 Probabilistic grammars

We want to model a distribution over the set of
derivation trees and via that over the set of derived
trees; this is more straightforward than it is with
TAGs (Schabes, 1992). A weighted FCFTG is a
grammar together with a function θ from the set
of parameters into the nonnegative reals. We de-
fine the score or weight of a derivation tree as the
product of the parameters of productions used in
the derivation tree.

s(τ) =
∏

π∈P
θ(π)n(π;τ) (1)

For a nonterminal A we can define two normal-
isation constants, the inside and outside values of
the nonterminal:

O(A) = s(Ξ(G,A))

I(A) = s(Ω(G,A))

We assume that I(S) = 1 so we have a well-
defined probability distribution. Since S only oc-
curs on the lhs of a production, O(S) = 1. The
expected number of times we see a production of
sort A in a tree τ is

E(A) = O(A)I(A)

There are two natural ways of parameterising
these models: one is to set I(A) = 1 for all
nonterminals, which gives a standard top-down
probabilistic model. The other is to stipulate that
O(A) = 1; and so I(A) = E(A) for all A. These
is the same as the bottom-up parameterization of
WCFGs from CF. For a production π : A→ t, the
expected number of times it is used satisfies:

E(π) = O(A)θ(π)
∏

B

I(B)n(B;t)

Therefore if O(A) = 1, for a production π : A→
t the parameter will be:

θ(π) =
E(π)∏

B E(B)n(B;t)

Here the parameters are, roughly speaking, being
normalised with respect to the right hand side of
the productions, rather than by the left hand side
in the more normal top down parameterisation. If
π has no nonterminals on the left hand side then
θ(π) = E(π).

6 Structural Conditions

Definition 6.1. A FCFTG is anchored if for every
nonterminalA of rank k there is a terminal of rank
k that is derived only from that nonterminal; we
call such a terminal an anchor for A.

If a grammar is anchored then an anchoring is a
function φ : N → Σ that maps each nonterminal
to an anchor; we can extend this naturally to k-
stubs over N .

Definition 6.2. We say that a grammar
(N,Σ, P, S) is strictly upward monotonic (SUM) if
for every set of productions Q such that Q) P , it
is the case that: L(N,Σ, Q, S)) L(N,Σ, P, S).

Definition 6.3. Let A be a nonterminal of rank k.
A production π : A→ t is locally unambiguous if
there is a r ∈ L(G) which can be split into e ∈ EkΣ
and s ∈ SkΣ such that e� s = r and where

Ω(G,S, r) = Ξ(G,A, {e})⊕ Ω(G,A, {s})

and where all the elements of Ω(G,A, {s})
have the root labeled π.

A grammar is locally unambiguous (LUA) if ev-
ery production is locally unambiguous.

Lemma 6.1. Let G be an anchored grammar,
SUM, LUA and φ an anchoring, Then if A → t
is a production in G then:

log θ(A→ t) = PMI(φ(t))− ρ(φ(A), φ(t))

412

The proof follows exactly the method used in
CF.

Lemma 6.2. If A→ t is not in the grammar, then
ρ(φ(A), φ(t)) =∞.

The proof here uses SUM.

6.1 Estimators
In order to translate this into a learning algorithm
we need some estimators; we use a natural naive
plugin estimator for all quantities we use below;
these are all consistent so we assume standard ε, δ
convergence. These are trivial except for the ρ di-
vergences which need a little more work (see CF
for details)

We assume we have N samples of derived trees
drawn i.i.d. from a fixed distribution. We use the
following estimators for E, ˆPMIN , and ρ(t, t′).
Writing n(t) for the number of times that a t ∈ TΣ

occurs in the data, so n(t)/N is an unbiased esti-
mate of P(t), we define

ÊN (t) =
1

N

∑

e∈Ek
Σ

n(e� t)

ˆPMIN (t) = log
ÊN (t)∏

a∈Σ ÊN (a)n(a;t)

ρ̂N (t→ t′) = log
ÊN (t′)

ÊN (t)
max

e:n(e�t)>
√
N

n(e� t)
n(e� t′)

For any t and t′, these naive estimators will con-
verge to the true values, albeit extremely slowly.
Here we will only consider cases where t is a sin-
gle terminal a(xk) and where t′ is either a single
terminal or a small k-stub b(c(xi), d(xj)) where
i, j, i+ j are in {0, 2}.

7 Algorithm

Algorithm A on the next page gives pseudocode.
Informally, the algorithm receives a sample of N
derived trees. By inspection we obtain a ranked
alphabet, which will be the alphabet of the learned
grammar; we compute ρ̂N (a → b) for all pairs
of terminals of the same rank. For each rank k,
we identify terminals that cannot be anchors: if
we have terminals a, b where ρ̂N (a → b) = ∞
and ρ̂N (b → a) < ∞ then a is not a possible an-
chor. We may have multiple anchors a, b for the
same nonterminal, in which case ρ(a, b) should
be zero; anchors for different nonterminals should

have ρ(a, b) =∞. For sufficiently largeN we can
divide these into equivalence classes and pick one
anchor from each class. These will give us a set of
representatives for each of the two sets of nonter-
minals. We then try all possible legal productions
using these representatives. If nonterminal A is
represented by a, then for each terminal b of the
same rank, we compute ÊN (b), and estimate the
log parameter of A → b as log ÊN (b) − ρ̂N (a →
b).

Similarly if we have nonterminals B,C,D an-
chored by b, c, d; we compute ˆPMIN (b(c, d)) and
ρ̂N (a→ b(c, d)) and set the log parameter ofA→
B(C,D) to ˆPMIN (b(c, d)) − ρ̂N (a → b(c, d)),
and likewise for the remaining production types.
The start symbol is picked trivially: this will be
anchored by a terminal of rank 0 that can occur as
a whole tree in the data. We discard the produc-
tions where the log parameter is −∞ as these are
productions with zero probability. This will give
us a weighted grammar in bottom-up form which
can then be converted to a probabilistic grammar
using the techniques described in CF.

413

Input: A sequence of trees D = t1, t2, . . . , tN
Output: A FCFTG G and a parameter function θ
Σ← all the ranked terminal symbols in D;
for k ∈ {0, 2} do

compute ρ̂N (a→ b) for all a, b ∈ Σ(k);
Γ(k) ← {a ∈ Σ(k) | ∀b ∈ Σ(k), ρ̂N (a→ b) <∞∨ ρ̂N (b→ a) =∞} ;
Define the equivalence relation on Γ(k) given by a ∼(k) b iff ρ̂N (a→ b) <∞ and
ρ̂N (b→ a) <∞. Let ∆(k) be the set formed by picking the terminal a with maximal m(a)
from each equivalence class in Γ(k)/ ∼(k) ;
V (k) ← {a | a ∈ ∆(k)};

end
s← arg max{n(a) | a ∈ ∆(0)} ;
PL ← ∅ ;
PB ← ∅;
for k ∈ {0, 2} do

for a ∈ ∆(k) do
PL ← PL ∪ {a→ b | a ∈ ∆(k), b ∈ Σ(k)} ;
if k = 0 then

for b ∈ ∆(2), c, d ∈ ∆(0)} do
PB ← PB ∪ {a→ b(c,d)} ;

end
end
if k = 2 then

for b, c ∈ ∆(2), d ∈ ∆(0)} do
PB ← PB ∪ {a→ b(c,d(x, y))} PB ← PB ∪ {a→ b(d(x, y), c)} ;

end
end

end
end
for a→ b ∈ PL do

θ(a→ b)← Ê(b) exp(−ρ̂N (a→ b)). ;
end
for a→ t ∈ PB do

θ(a→ t)← exp(−ρ̂N (a→ t) ˆPMIN (t)).;
end
G← 〈Σ, V, s, {a→ t ∈ PL ∪ PB | θ(a→ t) > 0}〉 ;
return G; θ

Algorithm A: Basic primal learning algorithm A. We use the notation a for a nonterminal symbol
defined by a.

414

