A Rate-Distortion view of human pragmatic reasoning
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What computational principles underlie human
pragmatic reasoning? A prominent approach to
pragmatics is the Rational Speech Act (RSA)
framework (Frank and Goodman, 2012; Good-
man and Frank, 2016), which formulates prag-
matic reasoning as probabilistic speakers and lis-
teners recursively reasoning about each other with
the goal of cooperatively gaining communicative
utility. While RSA enjoys broad empirical sup-
port, much remains unknown about the dynamics
of RSA recursion and whether it can be character-
ized by a general optimization principle. It has
been conjectured that RSA dynamics is guaran-
teed to increase expected utility (e.g., Yuan et al.,
2018; Peloquin et al., 2019), but these explorations
have relied on numeric simulations, leaving open
key questions about the dynamics of RSA models.

In this work we present a set of analytic re-
sults, demonstrated by model simulations, that ex-
tend the mathematical understanding of the RSA
framework and ground it in Rate—Distortion (RD)
theory (Shannon, 1948). First, we show that RSA
recursion optimizes a tradeoff between expected
utility and communicative effort, disconfirming
the conjecture that expected utility is guaranteed
to improve with recursion depth. Second, we show
that RSA can be grounded in RD theory, while
maintaining a similar ability to account for human
behavior and avoiding a bias of RSA toward ran-
dom utterance production. Taken together, these
results suggest that human pragmatic reasoning
may be understood in terms of RD theory.

RSA as Alternating—-Maximization. In RSA,
the speaker is defined by a production distribution
S(ulm) over possible utterances u given mean-
ing m, and the listener is defined by an inference
distribution L(m|u). RSA recursively relates the
speaker and listener (see Figure 1) by assuming
a Bayesian listener—L(m|u) o S(u|m)P(m),
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with P(m) a prior distribution on speaker mean-
ings that is assumed to be in common ground—
and a speaker that is bounded-rational with re-
spect to a utility function V' (u, m), typically de-
fined as V(m,u) = log L(m|u) — C(u) where
C'(u) specifies the cost of u. That is, S(ulm)
exp(aV (u,m)), where « controls the degree to
which the speaker maximizes utility.

Our first theoretical result is that RSA’s recur-
sive reasoning implements an alternating maxi-
mization (AM) algorithm (Csiszar and Shields,
2004). However, this optimization does not max-
imize expected utility as previously conjectured,
but rather a tradeoff between maximizing expected
utility, Eg[Vz], and minimizing communicative
effort measured by the conditional entropy of
the speaker’s production distribution, Hg(U|M),
such that low effort corresponds to high entropy.
Formally, we prove that for any o > 0, each up-
date step in RSA maximizes

GalS, L] = Hs(U|M) + aEg[VL]. (1)

This analytic result is demonstrated numerically
in Figure 1. Note that this does not imply that
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Figure 1: Model simulations demonstrate that the

RSA recursion implements an alternating maximiza-
tion algorithm. RSA’s tradeoff G, improves with each
speaker (blue) and listener (orange) update. Inset: Il-
lustration of the RSA recursion.
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the expected utility is necessarily maximized, and
our analysis finds counter-examples where the ex-
pected utility decreases with recursion depth while
the conditional entropy increases.

RD-RSA: Grounding RSA in Rate-Distortion.
In the communication setup of RSA, the speaker
can be seen as a probabilistic encoder and the
listener as a probabilistic decoder. From an
information-theoretic perspective, RD theory pre-
dicts that the speaker and listener should jointly
optimize the tradeoff between maximizing the ex-
pected utility and minimizing the number of bits
required for communication. The latter is cap-
tured by the mutual information between speaker
meanings and utterances, Ig(M;U). Formally,
this tradeoff is given by

FolS, L) = Is(M;U) — aEg[Vy], 2)

which is closely related to G, and can similarly
be optimized via an AM algorithm. The optimal
RD-RSA listener is Bayesian, as in RSA; how-
ever, the optimal speaker takes the form S(u|m)
S(u) exp(aV (u,m)), differing from the RSA
speaker in weighting the soft-max utility term
by marginal utterance probability S(u) (note that
S(u) is not pre-determined but rather changes with
each iteration as the speaker reasons about the lis-
tener). We refer to this modified model of prag-
matic reasoning as RD-RSA.

While RD-RSA and RSA are closely related,
their theoretical motivation and precise predictions
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Figure 2: Top: Simulated model trajectories in RSA
(left) and RD-RSA (right). Bottom: Pearson correla-
tion between model predictions and human behavioral
results from Vogel et al. (2014).
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differ. This raises the question: which model
may better characterize human pragmatic reason-
ing? To begin to address this question, we study
the dynamics of RSA and RD-RSA and compare
their predictions against human behavior in prag-
matic reference games (Vogel et al., 2014). Fig-
ure 2 shows simulated trajectories of pragmatic
reasoning from the two models, and reveals that
RD-RSA can account for human behavior as well
as RSA. At the same time, our theoretical analy-
sis reveals that the RSA speaker has an inherent
bias toward non-informative utterance production,
while the RD-RSA speaker does not.

Conclusions. We have shown that with a small
adjustment, the RSA framework can be grounded
in Shannon’s RD theory, while maintaining a sim-
ilar ability to account for human data and avoid-
ing a bias toward random utterance production.
This work furthers the mathematical understand-
ing of RSA models, and suggests that fundamen-
tal information-theoretic principles may give rise
to human pragmatic reasoning.
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