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Abstract

Robustness reduces the risk of information
loss. At present the notion of error-correcting
codes (ECCs) is used to achieve robustness in
technical fields only. Viewing fault-tolerant
natural systems as systems equipped with
error-correcting codes permits a formal com-
parison of natural and technical robustness.
Instancing natural language (NL), we show
differences in technical and natural error-
correcting approaches. By picking a specific
grammar phenomenon which some NLs
exhibit – vowel harmony (VH) – we show that
(1) VH can be formalized as an ECC as well
as (2) VH adds to the robustness of its NL. We
provide empirical as well as formal evidence
on this fact. (3) Consequently, the example of
VH shows that the notion of an ECC serves as
a suitable formal model not only for technical
but also for natural robustness.

1 Introduction

The phonological grammar rules of vowel harmony
can be formalized in a way reflecting their ability
to contribute to the robustness of a natural language
(NL). This paper combines the field phonology as
a subfield from linguistics with the field coding
theory which is part of the engineering disciplines
and mathematics. This new combination permits
a concise mathematical comparison of technical
and natural robustness. Why? Since NL is one ex-
ample of a fault-tolerant system in nature, picking
one phonological grammar phenomenon suffices
to show that a formal, mathematical comparison
is possible. Robust systems trigger a wide range
of research and may profit from a united formal
model.

First the dataset, methods and notations are pro-
vided in Section 2. After formalizing vowel har-
mony (VH) in Section 3 and error-correcting-codes

(ECCs) in Section 4, the combination of the two
in Section 5 allows to provide both mathematical
as well as empirical evidence that VH acts as an
ECC in Section 6. The NLs Finnish and Turkish
serve as running examples, abbreviated as fi and
tr, respectively.

Vowel harmony (Krämer, 2003; Archangeli and
Pulleyblank, 2007) is a linguistic grammar phe-
nomenon situated in the phonological layer. It re-
stricts the possibilities of vowels that can appear
within a scope. Since VH does not convey seman-
tic information, the purpose of this grammar phe-
nomenon is not obvious. We refer the reader to
(Lloret, 2008) which provides an overview of lit-
erature on the purpose of VH. Henriksen (2017)
provides empirical evidence for more reliable dis-
crimination with VH than without. Kimper (2017)
provides an elaborate literature review as well as
new empirical evidence on the benefit of VH dur-
ing perception. Artificial grammar learning experi-
ments show that speakers of languages not exhibit-
ing VH can acquire a presented harmony easily
(Pycha et al., 2003; Moreton and Pater, 2012; Fin-
ley and Badecker, 2008; Baer-Henney et al., 2015).
Complexity considerations link learnability to a
fine-grained subregular categorization (Heinz and
Lai, 2013; Hwangbo, 2015). All in all, due to this
vivid and thorough research, VH offers itself as
an example for comparing robustness in natural
and technical systems. On top of that, VH is a
semantic-free grammar phenomenon meaning that
it is not designed to transmit semantic information
by itself – perfect for our aim of analyzing the error-
correcting capabilities of VH, since no semantic
purpose of the grammar phenomenon causes in-
terferences. Choosing instead plural formation or
inflection as subject of study would exactly present
us with this problem.

Error-correcting codes (ECCs) aim at transmit-
ting information in a robust but at the same time
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efficient way. The raw information is not trans-
mitted. Instead, the information is first content
enriched with redundancy to enable the detection
and correction of transmission errors. Although
the basics of coding theory have been solved in an
efficient way, still new research questions pop up
when adapting ECC to new contexts. For example,
ECC for Mud Pulse Telemetry (MPT) (Mwachaka
et al., 2019) and for the 5G mobile network (Man-
soor and Ismaeel, 2019; Wonterghem et al., 2018;
Dubrova et al., 2016) received interest in current
literature. ECCs have been picked up as a method
itself for hardness amplification in complexity the-
ory (Arora and Barak, 2009; Dwork et al., 2009;
Sudan et al., 1999). The field dealing with ECCs
is called coding theory. The algebraic (Berlekamp,
1968) perspective prevails here and was the starting
point (Hamming, 1950). Viewing channel codes
from an automata and formal language theory’s per-
spective is rare but exists (Marchenko et al., 2018;
Zavadskyi, 2015; Anisimov and Zavadskyi, 2014).
Formal languages have proven useful for process-
ing of NL and therefore impose themselves for
ECC modeling in our scenario. The technical appli-
cations for ECCs are manifold. But ECCs do not
necessarily be constructed. They already occur in
nature. DNA is a robust and fault-tolerant storage
medium (Brady et al., 2009) to mention only one
example. Hence, we provide a definition of an ECC
which is neither limited to technical applications
nor to the classical methods for ECC-construction.

2 Preliminaries

2.1 Data

For the homonym experiment in Subsection 6.1 sel-
dom lemmata are of significant importance since
we would lose potential homonyms otherwise. For
this reason we chose the huge corpus of omorfi
(Pirinen, 2015)1, since it is incorporating as many
lemmata as possible to circumvent parsing errors.
However, again for circumventing parsing errors,
this corpus includes a high percentage of proper
nouns and non-Finnish terms. In the first step, these
are filtered out. From the freely available2 word
embeddings (TurkuNLP, 2019) the remaining list
of lemmata receives its word2vec distances (Luo-
tolahti et al., 2015; Zeman et al., 2018). Our scripts

1omorfi in version 20191111 https://github.com/
flammie/omorfi/releases/tag/20191111

2The word2vec embeddings are available at https://
github.com/jmyrberg/finnish-word-embeddings.

and data from the conducted experiment are avail-
able3 including among others the filter script, the
word2vec processing and our manual classifica-
tion.

2.2 Methods
To answer the research question of whether natu-
ral robust systems can be viewed as ECCs, word
embeddings as well as notions from coding and
automata theory provide the methods. The math-
ematical fundament from coding theory will be
ported or adapted to natural systems. Since we
choose vowel harmony as an example for a nat-
ural system, the methods used in automata and
formal language theory suit the purpose. Since cod-
ing theory deals with word distances, the method
word2vec (Mikolov et al., 2015) is useful.

2.3 Notation
An alphabet Λ is a finite set of symbols. Symbols
added to an alphabet are given in the subscript:
Λ� = Λ ∪ {�}. Λ∗ denotes the set of all strings
over Λ. Such a string s ∈ Λ∗ will be called a
word or an utterance depending on the context.
The length of a string s is written as |s|. Σ will
denote an alphabet with terminal symbols only.
On the contrary, Γ denotes an alphabet which
comprises both terminals and nonterminals. We
call a symbol from an alphabet a nonterminal, if it
does not occur when pronouncing a NL, i.e. if it is
not phoneme and thus not pronounceable. For a
NL the phonemes Σ are divided into the disjunct
alphabets of vowels V and consonants C. H is an
alphabet of nonterminals called abstract vowels
which are mapped during language production by
the vowel harmony into pronounceable vowels V.
B is the alphabet of delimiters. None of the
delimiters are phonemes: B ∩ Σ , ∅. All kind
of delimiters for NL are elements of B: pause
in spoken language, space and interpunctuation
in written language. In the course of the paper,
strings do not comprise those delimiters; they
are eliminated. The only delimiters occurring
are delimiters for VH �, \ ∈ B. The power set is
denoted by P(·). Finite state automata (FSA) and
transducers are defined in the usual way. An FSA
is a quintuple (Q,Λ, q0, δ, F) with states Q, a start
state q0, a partial transition function δ and final
states F ⊆ Q. A metric ∆ : Λ∗ × Λ∗ → R is a
measure for a distance between two strings with

3The git-repository for our conducted experiment is
https://codeberg.org/vhecc/experiment-minpair.
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q�q1Σ˜ 1 q2 Σ˜ 2
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Figure 1: The Finnish Vowel Harmony Automaton
fiVHA

(1) ∆(x, y) = 0 ⇔ x = y, (2) ∆(x, y) = ∆(y, x) and
(3) triangle inequality: ∆(x, y) ≤ ∆(x, z) + ∆(z, y).

3 Vowel harmony (VH)

Vowel harmony ensures the exclusion of certain
vowels in a vowel harmony’s scope. The allowed
vowels within a scope are chiming together, to
say it in a poetic way. After the definition of VH
classes, we can define VH from a formal language
theoretic perspective.

Definition 1 (Vowel Harmony Classes). A vowel
harmony class Hj with index j ∈ h is a subset of the
pronounceable vowels V . Let h be the set of indices
of the harmony classes, where h is a sequence start-
ing from 0 or 1 respectively depending on whether
the vowel harmony at hand has a neutral class or
not. Thus the neutral vowel harmony class is de-
noted by H0. A tilde above a symbol indicates the
exclusion of neutral vowels; a tilde below the ex-
clusion of the nonneutral vowels: the set of indices
for the nonneutral vowels is written as h̃ = h \ {0},
the nonneutral vowels as Ṽ = ∪iHi,∀i ∈ h̃. Addi-
tionally to Σ˜ = Σ \ Ṽ, an index i ∈ h̃ indicates that a
harmony class is added Σ˜ i = Σ˜∪ Hi. Observe that
Σ˜ = C ∪ H0.

At least the harmony sets H1 and H2 thus always
exist. H0 occurs often in a NLs harmony. For
example, Finnish exhibits the harmony class H0.
Turkish, on the other hand, has no neutral vowels
H0.

Definition 2 (Vowel Harmony). A vowel harmony
is a tuple (H ,V, υ, � ), for short just H . It arranges
all its pronounceable vowels by υ : V → H into
its harmony classes Hi ∈H with ∀v(v ∈ V ⇒ ∃i :
v ∈ Hi) where i ∈ h and imposes the requirements

H0

e

i

H1 H2 H
a ä ȧ
o ö ȯ
u y u̇
(a) Finnish

H1a H1b H2a H2b H

e a o ö ea
oö

i ı u ü i ı
uü

H′1 H′2 H′

e a ea

i ı iı

o ö o
ö

u ü u
ü

(b) Turkish

Table 1: The vowel harmonies with their corresponding
abstract vowels

that all harmony classes are nonempty and | h̃ | > 1.
A symbol � ∈ B serves as delimiter for H .

This means that a minimum of two nonneutral
harmony classes must exist. We can construct the
terminal set of vowels from the harmony classes:
V = ∪ jH j, ∀ j∈h. A VH yields its VH language.

Definition 3 (Vowel Harmony Language (VHL)).
The (proper) vowel harmony language VHL over
the harmony H , with VHL ⊆ Λ∗�, is given by:

VHL(Λ�) =
{
(w�)∗ | w ∈ Λ˜∗j , j ∈ h , � ∈ B

}
.

A VHL(Λ�) with V * Λ is given by VHL(Λ�) ={
(w�)∗ | w ∈ Λ∗

}
. In a VH utterance u ∈ VHL a

symbol � ∈ B denotes the end of every VH word
w ∈ Λ˜∗j for all j ∈ h to indicate the scope of the
vowel harmony. For brevity a(n) VH utterance
/ word is just called a(n) utterance / word if the
context is clear. An utterance u complies with a
harmony iff u ∈ VHL.

The above formula for VHL shows that a VH
thus just draws its words from different alphabets,
since the scope of one harmony class is exactly one
VH word.

Example 1 (Finnish Vowel Harmony). Table 1a
shows fiH, the Finnish VH with its three harmony
classes, the neutral one H0, as well as H1 and H2.
The Finnish VH language fiVHL =

{
(w�)∗ | w ∈

Σ˜ ∗1∪Σ˜ ∗2 }
complies with the Finnish vowel harmony

but to no other grammar phenomena. Thus, it com-
prises also utterances which convey no semantics.
The transition function δ given by Figure 1 illus-
trates the DFA for recognizing fiVHL. The omitted
dead state would indicate a harmony clash.
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Finnish is very strict in its vowel harmony. Com-
pounds are written without a space, thus the �
is compressed away here, but apart from that ev-
ery lemma complies with vowel harmony. Even
loan words are either changed for compliance or, if
not, at least in spoken language often pronounced
‘wrongly’ – that is, not realized as written – but
right in terms of the Finnish VH. In that last case
only the spoken version complies with VH. In lan-
guages not that strict, like Turkish, it sometimes
needs a delimiter within a Turkish semantic entity,
c.f. Example 2.

Corollary 1 (VH Compliance). Let u, u′ ∈ Λ∗�
be utterances. Every utterance u < VHL can be
adapted to an u′ ∈ VHL in order to comply with a
VH without changing the vowels occurring in u.

Proof. This follows trivially from Definition 3:
Utterances contradicting VH, thus u < VHL, are
constructed by drawing vowels vk, vl from different
harmony classes Hk,Hl, resp. and place them ad-
jacent or with no delimiter in between. Separating
those contradicting vowels at an arbitrary position
by a � ∈ B makes u′ an element of VHL. �

For certain constructions Corollary 1 is helpful.
In the Turkish language, some lemmata comply
with neither of Turkish’s vowel harmonies. For
example, we would need to write el�ma� (apple)
and an�ne� (mother), thus using a VH delimiter
inside a semantic entity.

Example 2 (Turkish Vowel Harmony). Turkish
splits its vowels twice into a harmony, see them
listed in Table 1b. The eight vowels are split into
two classes by the harmony trH ′, those two sets
are split again resulting in four harmony classes
for harmony trH . This yields a nested VH where
inside a VH word ended with � for trH ′ a second
delimiter \ may occur for trH , e.g. an�neciğim\
(mother, diminutive).

4 Error-Correcting Code (ECC)

Error-correction seeks to improve robustness over a
noisy channel at the expense of adding redundancy.
A broader definition for ECCs than the one used
in literature (Arora and Barak, 2009, 19.2.1 and
19.2.3) reflects also the character of non-technical
codes. Imagine, you want to retrieve specific infor-
mation from some data. The use-case of technical
error-correction is the reconstruction of the whole
data. Natural systems often have the use-case to

retrieve specific information in contrary to recon-
struct the entire data stream. List decoding (Zhang
et al., 2020) goes slightly into this direction by
delivering not one but several decoded candidates.
We view a function as an ECC concerning a specific
noise type with respect to the requested informa-
tion, if and only if we can retrieve the information
(partially) more often and better (see metric below)
if preprocessed with ECC before exposure to the
noise than the pure data exposed to the same type
of noise. We formalize the preceding notion of
error-correction as follows.

Definition 4 (Error-Correcting Code (ECC)). Let
ECC be computable and Γraw and Λecc alphabets
for

ECC : Γ∗raw → P(Λ∗ecc).

In c ∈ ECC(w) we call w ∈Γ∗raw a raw word and
c∈Λ∗ecc its code word. Let ∆ be a metric over Λ =

Γraw ∪ Λecc. Let ·′ : Λ∗ → P(Λ∗) be a channel type
(noise) with c′ and w′ called the corrupted versions
of c and w, resp. We extend it to sets by applying it
to every element of the set. Computable decoding
functions i. : Λ→ I retreive the information i ∈ I
announcing in their indice for which input type they
retreive the information. ECC is called an error-
correcting code (ECC) with respect to information
i and channel ′ iff∑

w∈Γ∗raw

∑
c′∈ECC(w)′

∆
(
ic′(c′), iw(w)

)
−∆

(
iw′(w′), iw(w)

)
> 0.

To sum it up, the ECC should be advantageous to
the raw version with respect to both the requested
information and the type of noise. This is a very
broad definition to capture all use-cases of error-
correcting capabilities.

Technical error-correcting codes impose addi-
tional constraints:

§1 The raw word w is shorter than the code
word c (called block length): Λ|w | → Λ| c |

with |w | < | c | .
§2 The input and the output alphabets are identi-

cal: Λ = Γraw = Λecc.
§3 The function ECC delivers only one code

word: Λ∗ → Λ∗ and not possibly a set of code
words.

§4 Arbitrary input w is encoded – in contrary
above definition returns the empty set for un-
valid w.
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§5 The metric operates directly on the symbols,
like edit distances (Winter et al., 2020) or the
Hamming distance, and not on their seman-
tics.

5 Vowel Harmony ECC (VHECC)

Viewing vowel harmony as an error-correcting code
results in a definition for a vowel harmony error-
correcting code (VHECC). The combination of VH,
as defined in Section 3, with the generalized defini-
tion of an ECC, as given in Section 4, will allow us
in Section 6 to formally and concisely analyze the
capabilities of vowel harmony for detecting errors
and partly correcting them. This section provides
three definitions of ECCs for VH: (1) a general one,
(2) one which historically formed the lexicon and
(3) a real-time ECC where the VH operates on the
morphology.

Definition 5 (Vowel Harmony Error-Correcting
Code (VHECC)). Let Γ = Σ ∪ H. The vowel
harmony error-correcting code VHECC over a har-
mony H =

(
H ,H0 ∪ (H × h̃), υ, �

)
is an ECC

(see Def. 4) with

VHECC : Γ∗� → P(Λ∗�)

which maps an utterance u to all combinations of
code words where every code word c ∈ VHL and
where every abstract vowel a ∈ H is either mapped
to itself or to one of its vowels v = (a, i) for i ∈ h̃.
A VHECC is called complete if the input alphabet
does not contain pronounceable nonneutral vowels
and the output alphabet contains only terminals:
cVHECC : Γ˜∗� → P(Σ∗�).

Note that here for VHECC we need the broad
notion of an ECC, c.f. Def. 4. In several aspects
the technical ECCs differ. First of all, the length of
a VH word as well as of a whole utterance remains
the same when VHECC has been applied, in con-
trast to technical ECCs see §2 on page 4. Secondly,
this is only possible by enlarging the alphabet, see
§2. Astonishingly, VHECC uses the power set of
utterances as codomain, since different code words
for the same raw utterance are allowed in contrary
to one codeword per raw word in §3.

Example 3 (Finnish VHECC). The partitioning
of V for fiVHL into harmony classes (recall Ex-
ample 1) is extended to a H× h̃-matrix shown in
Table 1a. This requires the nonneutral VH classes
Hi to be of same size to permit a bijection. The
abstract vowels H are ȧ , ȯ and u̇ . Every vowel

v ∈ V is then a tuple of its abstract vowel and its
harmony class (a, i) with a∈H, i ∈ h̃. The complete
VHECC for Finnish can be expressed nicely by a
nondeterministic transducer, c.f. Figure 2a. All
abstract vowels a ∈ H are nondeterministically
replaced by their pronounceable counterparts.
Example 4 (Turkish VHECC). Since Turkish ex-
hibts no neutral class, the vowels are mapped into
2×4 and 4×2 matrices, see Table 1b. This is aston-
ishing since the number of vowels, a quite central
quantitiy for a language, has to be a product of
natural numbers in the nonneutral VHECC case,
as here for Turkish.

These complete VHECCs turn out to have two
components: the lexicon of a NL was constructed
with a VHECC and language production, thus
speaking or writing, performs a VHECC on the
fly.

5.1 Lexical VHECC
VH has a historical dimension. NLs exhibiting VH
constructed their lemmata complying (partly) to
VH. The span of a VH word often coincides with a
lemma. The power set in the following definition is
needed only in the rare cases of preVH homonyms
which we will treat in Subsection 6.1. Historically
the language ‘decided’ which harmony a lemma
should have. The function xVHECC can thus only
be specified by listing all nondeterminstic historical
choices the language has made. The x stands for
the x in lexicon:
Definition 6 (Lexical VHECC; Lemma; Lexicon).
The lexical vowel harmony error-correcting code
is a VHECC

xVHECC : Γ˜∗� → P(Γ∗�).

The union over all code words results in a set of
lemmata with those lemmata drawn from Γ∗ or Γ∗�.
The set of lemmata is a lexicon.
Example 5 (Finnish VH Lexicon). In Finnish the
lexicon does not contain vowel delimiters, if we
exclude compounds and build them in language
production instead, since the vowel harmony is
strictly covering a semantic entity and possibly
more: fixVHECC : Γ˜∗� → P(Γ∗).
Example 6 (Turkish VH Lexicon). The lemmata
mostly comply with the harmony trH ′ but having
delimiters \ inside for the nested harmony during
suffix harmonization. An examples is for a lemma
not complying to trH ′ is el�ma (apple). For Turk-
ish the lexicon thus comprises words from Γ∗

�\
.
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q�q1 q2
H|H1 H|H2

�

Σ˜

H|H1

�

Σ˜

H|H2

C, H0, �

(a) The nondeterministic transducer for transforming ab-
stract utterances, thus without the pronounceable vowels
from H1 and H2, into pronouncable utterances obeying
the Finnish vowel harmony. All abstract vowels are
nondeterministically replaced by their pronounceable
counterparts.

q�q1 q2
H1 H2

�

Σ˜

H|H1

�

Σ˜

H|H2

C, H0, �

H|H2

(b) The deterministic transducer for the real-time vowel
harmony error-correcting code which maps all remain-
ing abstract vowels in the suffixes to pronounceable ones.
This happens during speaking Finnish, e.g. kivillä – on
the stone. It rejects utterances where a vowel harmony
word does not comply with VH.

Figure 2: Transducers for utterances obeying the Finnish vowel harmony
The notation H|Hi denotes the replacement of the abstract vowel a with its pronounceable vowel (a, i).

Both Turkish and Finnish have a finite list of suf-
fixes in their lexica. Suffixes are the only lemmata
of the lexicon which comprise the abstract vowels.
One example are the question particles m i ı

uü and
k ȯ . Turkish can form a question by appending
-mi, -mı, -mu and -mü, Finnish with -ko or -kö.

5.2 Real-Time VHECC

The VHECC which is conducted during the real
production of NL, while speaking or writing, so to
say in real-time, harmonizes those vowels which
remained abstract after lexicon construction. Those
vowels have to be mapped just-in-time. This im-
poses a high complexity to the speaker who has to
formulate the semantics and in parallel respect all
grammar phenomena including VH.

Definition 7 (Real-Time VHECC). The real-
time vowel harmony error-correcting code is the
VHECC

tVHECC : Γ∗� → VHL(Σ�)

that maps all abstract vowel a ∈ H to their corre-
sponding vowel v = (a, i) for i ∈ h̃.

Example 7 (Finnish real-time VHECC). Finnish
maps suffixes to its second harmony if a lemma com-
prises only neutral vowels. Kivillä – on the stone
can be derived via the transducer in Figure 2b.

Example 8 (Turkish real-time VHECC). Turkish
exhibits no neutral vowels. Every assignment of a
suffix to its harmony is clear-cut. Mutluyum means
I am happy with the tVHECC-suffix -yum for I am.

The real-time VHECC is the first one which does
not accept all input. This would not be acceptable

for technical ECCs as we noted already in §4 on
page 4.

6 Capabilities of VHECCs

ECCs can detect and also correct corrupted code
words. In this section we look at the capabilities of
VH to detect and correct a NL utterance which is
called a code word from coding theory’s perspec-
tive.

Corruption can befall across a noisy channel. A
noisy football stadium, a phone call, or just the NL
conversation itself are examples for a noisy channel.
Surprisingly, corruption is used on purpose, too.
Then however it is not called like that but called
a lossy compression. Corruption happens here for
the sake of efficiency. We look at both unintended
as well as intended corruption, i.e. compression.

6.1 Robustness by xVHECC

This subsection provides empirical evidence for
our hypothesis that VH adds to the robustness of
its language. Rephrased this means that we pro-
vide empirical evidence that VHECC is an ECC as
defined in Def. 4. More specifically, we show this
for the lexical VHECC (recall Subsection 5.1). By
the analysis of this xVHECC in the Finnish dictio-
nary, which was discussed in Example 5, we expect
our experiment to show that fixVHECC fullfills the
requirements of an ECC.

Minimal pairs are a powerful means to identify
phonemes. Minimal pairs with respect to VH are
therefore a suitable candidate for an experiment to
shed light on whether VH acts as an ECC.

Definition 8 (VH Minimal Pair). Two words ci ∈
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
word2vec similarity

different
subtle
variant

Figure 3: The word2vec embeddings show that most of the preVH homonym pairs convey two meanings which are
quite different (first line / green) since the word2vec similarity value is low. Sometimes xVHECC seems to convey
subtle meaning variants (middle line / blue). The word2vec embeddings for preVH pairs with high similarity
(> 0.6) are mostly mere variants with identical semantics (last line / violet).
Thus, the experiment supports the thesis that primarily semantic distant homonym pairs are represented by the
same string before applying xVHECC. This means that only semantic far away word pairs differ only with respect
to VH. Similar word pairs strive for more difference than just chossing different VH classes.

Σ∗i and ck ∈ Σ∗k with ci , ck are called a VH minimal
pair if they are derived from the same raw word w,
thus ci, ck ∈ VHECC(w). We call both ci and ck a
preVH homonym.

For Finnish, we performed an experiment on
preVH homonyms. Figure 3 shows the word2vec
values for all preVH. On manual classification of
the homonyms, we, as native speakers, identified
three clearly distinct types of minimal pairs. We
were able to classify every pair doubtlessly. Color
coded with green, blue and violet, the plot shows
semantically distant pairs, subtle meaning nuances
and mere spelling variants of the same meaning,
respectively from top to bottom. Roughly between
0 – 0.6, the semantically uncorrelated pairs (first
line / green) lie – obvious homonyms in the clas-
sical sense namely same surface form with far
away meanings. These lemmata convey quite dif-
ferent semantics. Rarely scattered in this segment,
too, but mostly collapsed together in the adjacent
segment of 0.6 – 0.9, the spelling variants (last
line / violet) appear, such as tagi – tägi (engl.:
tag). At the beginning of this segment the subtle
meaning variations (middle line / blue) are scat-
tered. For a handful of pairs the VH variants consti-
tute a subtle meaning difference, such as pörinä –
porina. Those are both onomatopoeiae but conno-
tate slightly different nuances of the same meaning.
In this category, VH serves as fine-grained seman-
tic nuance and not as an ECC. While the majority
of the results in the word2vec space divides neatly
into expected low and high distance range, there
are a few outliers in the results. We take this to
be expected noise in the data, i.e. some of the
meanings have not received correct values in the
word2vec space. The only outlier for the different
meanings is taki – täki (engl.: coat – quilt). The

spelling variants (last line / violet) scattered in the
segment 0−0.6 of the different meanings (first line /

green), but also spelling variants in general seemed
to have not been identified by the word2vec cal-
culations correctly as meaning exactly the same.
The word2vec values indicate correctly their high
similarity but should be higher to show the equality.

We interpret the experiment as follows: Techni-
cal ECC design strives to maximize the distance
between all code words. Seldom, VH seems to
transmit semantic nuances, splitting one meaning
into a pair with slightly different but roughly the
same meaning. Here, VH transmits semantic infor-
mation. For most pairs in the experiment however,
VH disambiguates semantically distant pairs with
zero distance of the raw words – prior to VHECC,
see again Def. 8. These different meanings can
often be disambiguated by the context. If so, VH
acts here as an ECC, contributing to the robustness.
The Levenshtein metric is a suitable metric for VH
words but not for preVH homonyms. Technical
ECCs do not use semantic information of their to
be processed data, see §5 on page 5. We can define
a metric ∆ that increments this Levenshtein dis-
tance by semantic distance between the lemmata in
the VH word in some suitable canonical way. One
way would be to project the word2vec similarity
to a distance value in [0− 0.5] in order to retain the
triangle inequality required for a proper metric.

A speaker says u ∈ Σ∗� where a VH minimal
pair occurs: c = c′ = ECC(u) with w as a sub-
string of u. The information i answers the question:
which one of the two meanings of the occurring
homonym was meant? The speaker has u with w as
a substring in mind – w one of the two meanings
of the homonym w′. Speaking does not transmit
the meaning of w but only the pure u which in-
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cludes w′. Consequently, we view c already as
corrupted: c′ = c. As corruption ′ we thus use the
deletion of the unambiguous meaning. w′ is the
pair of preVH homonyms, one of them is w. Obvi-
ously the formula in Def. 4 is met, since ic′(c′) = i
can disambiguate the meaning due to VHECC.
∆ (ic′(c′), iw(w)) is zero for all w – the information
can be fully retrieved. ∆ (iw′(w′), iw(w)) ≥ 0 since
we can either disambiguate the homonym’s mean-
ing from the context, then iw′(w′) = i, or we cannot.
Note that ∆ must operate not only on strings but
also on meanings defined in some canonical way.
We conclude that VHECC for utterances including
a preVH homonym with respect to the corruption
being the noiseless transmission and asking for dis-
ambiguation of the homonyms meets the definition
of an ECC.

6.2 Lossy Decompression via VHECC

Error-correcting facilities may act as a decompres-
sion. A lossy compression is a corruption of the
input which is done on purpose. Viewed that way,
the lossy compression corresponds to the noisy
channel. If this input was enriched via an ECC,
thus before being compressed, the decompression
can be conducted with the help of this ECC.

In spoken language we find long utterances with-
out a break. Until there is a silence with no voice,
it takes several written words. Delimiters, like writ-
ten spaces, are compressed away. We could not
speak fluently and fast enough if we would stop
our voice after every semantic entity or at every VH
delimiter. Compressing VH delimiters is done on
purpose. VHECC addresses this lost tokenization
of the input stream in language perception. The
VHECC decoding is a decompression. Note that
the compression of delimiters may be lossy mean-
ing that we cannot reconstruct all of the delimiters.
In particular, reconstruction of the exact positions
of delimiters cannot be guaranteed. If words of
the same harmony ensue each other we lose the
delimiter completely. If two words of different har-
monies are adjacent, we know the exact position
of the delimiter only if the vowels of the distinct
harmonies which are in juxtaposition with each
other.

Theorem 2 (Reconstruction of the Number of VH
Delimiters). Let u′ be a nonempty error-corrected
and corrupted utterance u′ ∈ cVHECC′(uraw) for
all uraw ∈ Γ˜�. The channel ′ is the loss of VH de-
limiters resulting in u′ ∈ Σ∗. As information i we

are able provide the minimum number of recon-
structable VH delimiters as well as the maximum
number. VHECC is an ECC with respect to the
noise type of VH delimiter deletion and the infor-
mation i.

Proof. The minimum number of VH delimiters in
the raw utterance equals |h̃|, since we can group all
words of one harmony Hi next to each other. Only
adjacent words from different harmonies reveal
a vowel harmony delimiter. In an uncompressed
utterance every word’s end is indicated by the VH
delimiter. The decompression thus reconstructs
|h̃| as the minimum number of delimiters, since in
above arrangement of the words we can reconstruct
only that a harmony ends, not that a word ends.

Let #i be the number of words w in a harmony
Hi thus w ∈ Σ˜∗i with w includes at least one vowel
from Hi. To reach the maximum number of recon-
structable spaces, we alternate and iterate through
the harmonies. Alternating between two types of
words is sufficient to make a delimiter visible. We
denote words of the harmony which occurs most
often4 in u with x. The words y are drawn from all
the other harmonies. We denote the cardinality of
those two sets of words by #x and #y, respectively:

#x = max
i ∈ h̃

#i and #y =

∑
i ∈ h̃

#i

 − #x.

We lose only VH delimiters when we cannot al-
ternate anymore which is the case if #x > #y + 1.
The harmony with the most words in u, denoted
by Hx, does show whether delimiters are not recon-
structable, since in that case Hx has no counterpart
to alternate with. Thus from the words y we take
aside an amount of #x − 1 for separating all x from
each other. In every alternation step we addition-
ally iterate through the harmonies to place also the
remaining words y. The maximum number of VH
delimiters is either (#x − #y − 1) or 1.

Now we proof that cVHECC is an ECC. This
is now obvious for both the information i of the
maximum or the minimum number of �s or even
the combination of those by subtracting the mini-
mum from the maximum number. Since the cor-
rupted, not error-corrected utterance u′raw has no
information about the delimiters except the end of
the utterance for every u′raw both the maximum as
well as the minimum number of reconstructable �s
is one. This is less than the i for u′ or the same.

4The x stands for the x in maximum.
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Consequently cVHECC guarantees that it is advan-
tageous since this means that the sum in Def. 4 is
always greater than zero. �

7 Conclusion

This paper formalizes VH from a viewpoint of
formal language theory (FLT) and automata the-
ory. This viewpoint suggests itself since FLT and
the corresponding automata are the traditional ap-
proach in literature to formalize NLs’ theoretic as-
pects. This formalism allows us to compare vowel
harmony to ECCs defined originally for technical
applications only. We could show that our hypoth-
esis bears this comparison with empirical and for-
mal evidence. (1) PreVH homonyms, lemmata
which would be homonyms without VH, exhibit
mostly a high semantic difference. This shows
that VH is used to enlarge the distance between
lemmata which in turns shows that VH acts as
an ECC. (2) The compression via delimiter elimi-
nation conducted in spoken language is lossy but
vowel harmony delimiters can partly be found via
error-correction. In turn, those delimiters help to
reconstruct the original tokenization. In conclusion,
we can state that VH indeed serves as a mechanism
for error-correction in communication.
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